- home
- Advanced Search
- Energy Research
- 2021-2025
- Open Access
- Closed Access
- Restricted
- Open Source
- Embargo
- FI
- Energy Research
- 2021-2025
- Open Access
- Closed Access
- Restricted
- Open Source
- Embargo
- FI
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Azhin Hosseini; Amir Mirzapour-Kamanaj; Rasool Kazemzadeh; Kazem Zare; Behnam Mohammadi-Ivatloo;Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2023.101153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2023.101153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:SAGE Publications Barrows, Sam; Blomkvist, Magnus; Dimic, Nebojsa; Vulanovic; Milos;This study examines the impact of oil price uncertainty on mergers and acquisition (M&A) activity in the oil and gas sector. Analyzing this industry enables us to construct a natural forward-looking measure of oil price uncertainty, namely the implied crude oil volatility. Using a sample of U.S. firms in the oil and gas sector from 1994–2018 containing 4,323 announced transactions, we document that oil price uncertainty is negatively related to future M&A activity. Uncertainty is mainly a driver of horizontal and vertical M&A activity, where upstream firms are more affected by this uncertainty than downstream firms. Our results lend support to a real options explanation of investment under uncertainty where firms choose to defer investments as a response to increased uncertainty.
The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, FinlandPublisher:Elsevier BV Shah, M. A.K.Yousaf; Lu, Yuzheng; Mushtaq, Naveed; Rauf, Sajid; Yousaf, Muhammad; Asghar, Muhammad Imran; Lund, Peter D.; Zhu; Bin;Funding Information: This work was supported Southeast University (SEU) project 3203002003A1 and National Natural Science Foundation of China (NSFC) under the grant 51772080 and 11604088 . Jiangsu Provincial Innovation and Entrepreneurship Talent program Project No. JSSCRC2021491 . Industry-University-Research Cooperation Project of Jiangsu Province in China , Grant No. BY2021057 . Dr. Asghar thanks the Hubei Talent 100 program and Academy of Finland ( 13329016 , 13322738 ) for their financial support. Publisher Copyright: © 2022 The Authors Electrolytes with high-proton conduction and low activation energy are attractive for reducing the high operating temperature of solid-oxide fuel cells to less than <600 °C. In this work, we have fabricated semiconducting electrolyte SrFeTiO3-δ (SFT) material exhibiting high ionic conduction and exceptionally high protonic conduction at low operating temperature but with low electronic conduction to evade the short-circuiting issue. The prepared fuel cell device exhibited high open-circuit voltage (OCV) and a high-power output of 534 mW/cm2, of which 474 mW/cm2 could be for sure be related to the protonic part. The current study suggests that usage of semiconductor SrFeTiO3-δ facilitates a high concentration of oxygen vacancies on the surface of SFT, which mainly benefits proton conduction. Moreover, lower grain boundary resistance leads to obtain higher performance. Also, the Schottky junction phenomena are proposed to inhibit the e-conduction and excel the ions transportation. The high performance and ionic conductivity suggest that SFT could be a promising electrolyte for protonic ceramic fuel cells. Peer reviewed
Renewable Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Frontiers Media SA Funded by:EC | GES4SEAS, EC | OBAMA-NEXTEC| GES4SEAS ,EC| OBAMA-NEXTLazar, Luminita; Spanu, Alina; Boicenco, Laura; Oros, Andra; Damir, Nicoleta; Bisinicu, Elena; Abaza, Valeria; Filimon, Adrian; Harcota, George; Marin, Oana; Pantea, Elena; Timofte, Florin; Vlas, Oana; Korpinen, Samuli;This study aims to develop a methodology for identifying predominant pressures on the marine ecosystem, emphasizing the significance of examining these pressures and the necessity for management scenarios. The research focuses on how the Black Sea ecosystem responds to the combined effects of human pressures, climate change, and policies. An in-depth analysis was conducted on environmental pressures affecting the Romanian Black Sea, highlighting dominant pressures such as physical habitat loss, hydrocarbon introduction, and non-indigenous species invasion. The research employs a novel methodological approach to assess the implications of these pressures under different Shared Socioeconomic Pathways (SSPs): SSP1 “Taking the Green Road”, SSP2 “Middle of the Road”, and SSP5 “Taking the Highway”. The findings reveal a complex interplay between economic development and environmental conservation, with each pathway presenting distinct outcomes for marine ecosystems. Recent developments, including beach rehabilitation, maritime transport, and oil and gas exploitation, have overshadowed traditional pressures such as nutrient introduction and fishing. The study identifies the increasing vulnerability of critical habitats to anthropogenic pressures, with the rehabilitation of these ecosystems remaining challenging even under reduced pressures. The results underscore the need for adaptive management strategies to enhance the Black Sea ecosystem’s sustainability and resilience. The study’s insights are important for developing management strategies that address ongoing environmental challenges. This research provides knowledge for policymakers and stakeholders involved in marine management and conservation efforts in the Black Sea region, emphasizing the importance of adaptive strategies to mitigate the adverse effects of human activities and climate change on marine ecosystems.
Frontiers in Marine ... arrow_drop_down Frontiers The Interdisciplinary Journal of Study AbroadArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1388877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Frontiers The Interdisciplinary Journal of Study AbroadArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1388877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Brännlund, Anton; Amcoff, Jan; Österman, Marcus; Peterson, Lauri; Brännlund, Håkan;This research examines the overlooked political implications of energy pricing on voting patterns in manufacturing communities, amidst increasing scholarly interest in the political ramifications of Western industrial decline. We focus specifically on the surge in electricity prices and their effect on electoral choices in manufacturing -dense regions in Sweden during the 2022 general elections. The rise in electricity costs holds particular significance given Europe's reliance on imported energy for competitive manufacturing, coupled with the existing constraints on energy supply. With energy prices being a direct threat to industries and influencing the competitiveness of manufacturing firms and job security, we argue that these factors could significantly influence voting behaviour in affected communities. Our findings show that areas with higher electricity costs witnessed a more robust performance by the incumbent Social Democratic Party, suggesting that economic insecurity may indeed spur greater demand for traditional left-wing policies, such as economic compensation.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2024.103419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2024.103419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | MegaRollerEC| MegaRollerVälisalo, Tero; Tiusanen, Risto; Sarsama, Janne; Räikkönen; Minna; Heikkilä, Eetu;doi: 10.3390/jmse9050552
Wave power is a potential technology for generating sustainable renewable energy. Several types of wave energy converters (WECs) have been proposed for this purpose. WECs operate in a harsh maritime environment that sets strict limitations on how and when the device can be economically and safely reached for maintenance. Thus, to ensure profitable energy generation over the system life cycle, system reliability is a key aspect to be considered in WEC development. In this article, we describe a reliability analysis approach for WEC development, based on the use of reliability block diagram (RBD) modelling. We apply the approach in a case study involving a submerged oscillating wave surge converter device concept that utilizes hydraulics in its power take-off system. In addition to describing the modelling approach, we discuss the data sources that were used for gathering reliability data for the components used in a novel system concept with very limited historical or experimental data available. This includes considerations of the data quality from various sources. As a result, we present examples of applying the RBD modelling approach in the context of WEC development and discuss the applicability of the approach in supporting the development of new technologies.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/552/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-1312/9/5/552/pdfData sources: SygmaJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Marine Science and EngineeringArticle . 2021License: CC BYData sources: VTT Research Information SystemJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 6 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/552/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-1312/9/5/552/pdfData sources: SygmaJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Marine Science and EngineeringArticle . 2021License: CC BYData sources: VTT Research Information SystemJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:Oxford University Press (OUP) J Sillman; L Lakanen; S Annala; K Grönman; M Luoranen; R Soukka;doi: 10.1093/ce/zkad022
Abstract The transition towards zero-carbon energy production is necessary to limit global warming. Smart energy systems have facilitated the control of demand-side resources to maintain the stability of the power grid and to provide balancing power for increasing renewable energy production. Virtual power plants are examples of demand–response solutions, which may also enable greenhouse gas (GHG) emission reductions due to the lower need for fossil-based balancing energy in the grid and the increased share of renewables. The aim of this study is to show how potential GHG emission reductions can be assessed through the carbon handprint approach for a virtual power plant (VPP) in a grid balancing market in Finland. According to our results, VPP can reduce the hourly based GHG emissions in the studied Finnish grid systems compared with the balancing power without the VPP. Typical energy sources used for the balance power are hydropower and fossil fuels. The reduction potential of GHG emissions varies from 68% to 98% depending on the share of the used energy source for the power balancing, thus VPPs have the potential to significantly reduce GHG emissions of electricity production and hence help mitigate climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ce/zkad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ce/zkad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2020 United KingdomPublisher:Elsevier BV Funded by:EC | ReUseHeatEC| ReUseHeatAuthors: Volodina, Victoria; Wheatcroft, Edward; Wynn, Henry;District heating is a network of pipes through which heat is delivered from a centralised source. It is expected to play an important role in the decarbonisation of the energy sector in the coming years. In district heating, heat is traditionally generated through fossil fuels, often with combined heat and power (CHP) units. However, increasingly, waste heat is being used as a low carbon alternative, either directly or, for low temperature sources, via a heat pump. The design of district heating often has competing objectives: the need for inexpensive energy and meeting low carbon targets. In addition, the planning of district heating schemes is subject to multiple sources of uncertainty such as variability in heat demand and energy prices. This paper proposes a decision support tool to analyse and compare system designs for district heating under uncertainty using stochastic ordering (dominance). Contrary to traditional uncertainty metrics that provide statistical summaries and impose total ordering, stochastic ordering is a partial ordering and operates with full probability distributions. In our analysis, we apply the orderings in the mean and dispersion to the waste heat recovery problem in Brunswick, Germany.
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteSustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteSustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | Proton powered motors: le..., AKA | Genes or environment: How..., EC | BioExcel-2AKA| Proton powered motors: learning from biology with multi-scale modeling (PROTOMOT) ,AKA| Genes or environment: How the protein surroundings affects their function. ,EC| BioExcel-2Buslaev, Pavel; Jansen, Anton; Bauer, Paul; Groenhof, Gerrit; Hess; Berk; Aho, Noora;Molecular dynamics (MD) computer simulations are used routinely to compute atomistic trajectories of complex systems. Systems are simulated in various ensembles, depending on the experimental conditions one aims to mimic. While constant energy, temperature, volume, and pressure are rather straightforward to model, pH, which is an equally important parameter in experiments, is more difficult to account for in simulations. Although a constant pH algorithm based on the $\lambda$-dynamics approach by Brooks and co-workers was implemented in a fork of the GROMACS molecular dynamics program, uptake has been rather limited, presumably due to the poor scaling of that code with respect to the number of titratable sites. To overcome this limitation, we implemented an alternative scheme for interpolating the Hamiltonians of the protonation states that makes the constant pH molecular dynamics simulations almost as fast as a normal MD simulation with GROMACS. In addition, we implemented a simpler scheme, called multisite representation, for modeling side chains with multiple titratable sites, such as imidazole rings. This scheme, which is based on constraining the sum of the $\lambda$-coordinates, not only reduces the complexity associated with parameterizing the intra-molecular interactions between the sites, but is also easily extendable to other molecules with multiple titratable sites. With the combination of a more efficient interpolation scheme and multisite representation of titratable groups, we anticipate a rapid uptake of constant pH molecular dynamics simulations within the GROMACS user community.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Lehtoranta S; V. Laukka; K. Silvennoinen;pmid: 39689533
The growing concern on global warming has pushed to set ambitious targets of carbon neutrality or net zero at the water sector. Meanwhile, poor data availability has been reported to restrict the national assessment of climate impacts and mitigation strategies in water sector. In national greenhouse gas (GHG) inventories, water sector is embedded in other sectors' emissions making it difficult to monitor separately. This study presents a national scale evaluation of climate change impacts for water sector in Finland based on life cycle analysis (LCA). In addition, the effectiveness of currently available emission reduction measures is evaluated by scenario analysis until the year 2035. According to the results, the life cycle climate change impacts from the Finnish municipal water sector were 0,67 (0,46-0,88) million tonnes CO2-eq./year (142.8 (98.9-187.1) kg CO2-eq./person/year). Drinking water services accounted for 12.5-13.9 % and wastewater services 86.1-87.4 % of the total emissions. With currently feasible emission reduction measures, the climate change impacts could be reduced approximately 14-30 % in total by 2035. The aim of carbon neutrality in the water sector was found to be unrealistic to achieve with existing and currently feasible measures for Finland and thus significant new emission mitigation measures are needed. The vague definition of carbon neutrality and system boundary of water sector as well as the uncertainties related to the assessment of direct emissions, undermine the credibility of the ambitiously set target. Prioritizing emission offsets to reach the target may inadvertently lead to unintended negative consequences due to the limitations and incompleteness of offset methods.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.123732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.123732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Azhin Hosseini; Amir Mirzapour-Kamanaj; Rasool Kazemzadeh; Kazem Zare; Behnam Mohammadi-Ivatloo;Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2023.101153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2023.101153&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:SAGE Publications Barrows, Sam; Blomkvist, Magnus; Dimic, Nebojsa; Vulanovic; Milos;This study examines the impact of oil price uncertainty on mergers and acquisition (M&A) activity in the oil and gas sector. Analyzing this industry enables us to construct a natural forward-looking measure of oil price uncertainty, namely the implied crude oil volatility. Using a sample of U.S. firms in the oil and gas sector from 1994–2018 containing 4,323 announced transactions, we document that oil price uncertainty is negatively related to future M&A activity. Uncertainty is mainly a driver of horizontal and vertical M&A activity, where upstream firms are more affected by this uncertainty than downstream firms. Our results lend support to a real options explanation of investment under uncertainty where firms choose to defer investments as a response to increased uncertainty.
The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Energy Journal arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5547/01956574.44.4.sbar&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Finland, FinlandPublisher:Elsevier BV Shah, M. A.K.Yousaf; Lu, Yuzheng; Mushtaq, Naveed; Rauf, Sajid; Yousaf, Muhammad; Asghar, Muhammad Imran; Lund, Peter D.; Zhu; Bin;Funding Information: This work was supported Southeast University (SEU) project 3203002003A1 and National Natural Science Foundation of China (NSFC) under the grant 51772080 and 11604088 . Jiangsu Provincial Innovation and Entrepreneurship Talent program Project No. JSSCRC2021491 . Industry-University-Research Cooperation Project of Jiangsu Province in China , Grant No. BY2021057 . Dr. Asghar thanks the Hubei Talent 100 program and Academy of Finland ( 13329016 , 13322738 ) for their financial support. Publisher Copyright: © 2022 The Authors Electrolytes with high-proton conduction and low activation energy are attractive for reducing the high operating temperature of solid-oxide fuel cells to less than <600 °C. In this work, we have fabricated semiconducting electrolyte SrFeTiO3-δ (SFT) material exhibiting high ionic conduction and exceptionally high protonic conduction at low operating temperature but with low electronic conduction to evade the short-circuiting issue. The prepared fuel cell device exhibited high open-circuit voltage (OCV) and a high-power output of 534 mW/cm2, of which 474 mW/cm2 could be for sure be related to the protonic part. The current study suggests that usage of semiconductor SrFeTiO3-δ facilitates a high concentration of oxygen vacancies on the surface of SFT, which mainly benefits proton conduction. Moreover, lower grain boundary resistance leads to obtain higher performance. Also, the Schottky junction phenomena are proposed to inhibit the e-conduction and excel the ions transportation. The high performance and ionic conductivity suggest that SFT could be a promising electrolyte for protonic ceramic fuel cells. Peer reviewed
Renewable Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Renewable Energy arrow_drop_down Aaltodoc Publication ArchiveArticle . 2022 . Peer-reviewedData sources: Aaltodoc Publication Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2022.06.154&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Frontiers Media SA Funded by:EC | GES4SEAS, EC | OBAMA-NEXTEC| GES4SEAS ,EC| OBAMA-NEXTLazar, Luminita; Spanu, Alina; Boicenco, Laura; Oros, Andra; Damir, Nicoleta; Bisinicu, Elena; Abaza, Valeria; Filimon, Adrian; Harcota, George; Marin, Oana; Pantea, Elena; Timofte, Florin; Vlas, Oana; Korpinen, Samuli;This study aims to develop a methodology for identifying predominant pressures on the marine ecosystem, emphasizing the significance of examining these pressures and the necessity for management scenarios. The research focuses on how the Black Sea ecosystem responds to the combined effects of human pressures, climate change, and policies. An in-depth analysis was conducted on environmental pressures affecting the Romanian Black Sea, highlighting dominant pressures such as physical habitat loss, hydrocarbon introduction, and non-indigenous species invasion. The research employs a novel methodological approach to assess the implications of these pressures under different Shared Socioeconomic Pathways (SSPs): SSP1 “Taking the Green Road”, SSP2 “Middle of the Road”, and SSP5 “Taking the Highway”. The findings reveal a complex interplay between economic development and environmental conservation, with each pathway presenting distinct outcomes for marine ecosystems. Recent developments, including beach rehabilitation, maritime transport, and oil and gas exploitation, have overshadowed traditional pressures such as nutrient introduction and fishing. The study identifies the increasing vulnerability of critical habitats to anthropogenic pressures, with the rehabilitation of these ecosystems remaining challenging even under reduced pressures. The results underscore the need for adaptive management strategies to enhance the Black Sea ecosystem’s sustainability and resilience. The study’s insights are important for developing management strategies that address ongoing environmental challenges. This research provides knowledge for policymakers and stakeholders involved in marine management and conservation efforts in the Black Sea region, emphasizing the importance of adaptive strategies to mitigate the adverse effects of human activities and climate change on marine ecosystems.
Frontiers in Marine ... arrow_drop_down Frontiers The Interdisciplinary Journal of Study AbroadArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1388877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Frontiers in Marine ... arrow_drop_down Frontiers The Interdisciplinary Journal of Study AbroadArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fmars.2024.1388877&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Brännlund, Anton; Amcoff, Jan; Österman, Marcus; Peterson, Lauri; Brännlund, Håkan;This research examines the overlooked political implications of energy pricing on voting patterns in manufacturing communities, amidst increasing scholarly interest in the political ramifications of Western industrial decline. We focus specifically on the surge in electricity prices and their effect on electoral choices in manufacturing -dense regions in Sweden during the 2022 general elections. The rise in electricity costs holds particular significance given Europe's reliance on imported energy for competitive manufacturing, coupled with the existing constraints on energy supply. With energy prices being a direct threat to industries and influencing the competitiveness of manufacturing firms and job security, we argue that these factors could significantly influence voting behaviour in affected communities. Our findings show that areas with higher electricity costs witnessed a more robust performance by the incumbent Social Democratic Party, suggesting that economic insecurity may indeed spur greater demand for traditional left-wing policies, such as economic compensation.
Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2024.103419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy Research & So... arrow_drop_down Energy Research & Social ScienceArticle . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefDigitala Vetenskapliga Arkivet - Academic Archive On-lineArticle . 2024 . Peer-reviewedadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2024.103419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | MegaRollerEC| MegaRollerVälisalo, Tero; Tiusanen, Risto; Sarsama, Janne; Räikkönen; Minna; Heikkilä, Eetu;doi: 10.3390/jmse9050552
Wave power is a potential technology for generating sustainable renewable energy. Several types of wave energy converters (WECs) have been proposed for this purpose. WECs operate in a harsh maritime environment that sets strict limitations on how and when the device can be economically and safely reached for maintenance. Thus, to ensure profitable energy generation over the system life cycle, system reliability is a key aspect to be considered in WEC development. In this article, we describe a reliability analysis approach for WEC development, based on the use of reliability block diagram (RBD) modelling. We apply the approach in a case study involving a submerged oscillating wave surge converter device concept that utilizes hydraulics in its power take-off system. In addition to describing the modelling approach, we discuss the data sources that were used for gathering reliability data for the components used in a novel system concept with very limited historical or experimental data available. This includes considerations of the data quality from various sources. As a result, we present examples of applying the RBD modelling approach in the context of WEC development and discuss the applicability of the approach in supporting the development of new technologies.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/552/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-1312/9/5/552/pdfData sources: SygmaJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Marine Science and EngineeringArticle . 2021License: CC BYData sources: VTT Research Information SystemJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 6 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/552/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-1312/9/5/552/pdfData sources: SygmaJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Marine Science and EngineeringArticle . 2021License: CC BYData sources: VTT Research Information SystemJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 FinlandPublisher:Oxford University Press (OUP) J Sillman; L Lakanen; S Annala; K Grönman; M Luoranen; R Soukka;doi: 10.1093/ce/zkad022
Abstract The transition towards zero-carbon energy production is necessary to limit global warming. Smart energy systems have facilitated the control of demand-side resources to maintain the stability of the power grid and to provide balancing power for increasing renewable energy production. Virtual power plants are examples of demand–response solutions, which may also enable greenhouse gas (GHG) emission reductions due to the lower need for fossil-based balancing energy in the grid and the increased share of renewables. The aim of this study is to show how potential GHG emission reductions can be assessed through the carbon handprint approach for a virtual power plant (VPP) in a grid balancing market in Finland. According to our results, VPP can reduce the hourly based GHG emissions in the studied Finnish grid systems compared with the balancing power without the VPP. Typical energy sources used for the balance power are hydropower and fossil fuels. The reduction potential of GHG emissions varies from 68% to 98% depending on the share of the used energy source for the power balancing, thus VPPs have the potential to significantly reduce GHG emissions of electricity production and hence help mitigate climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ce/zkad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/ce/zkad022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2020 United KingdomPublisher:Elsevier BV Funded by:EC | ReUseHeatEC| ReUseHeatAuthors: Volodina, Victoria; Wheatcroft, Edward; Wynn, Henry;District heating is a network of pipes through which heat is delivered from a centralised source. It is expected to play an important role in the decarbonisation of the energy sector in the coming years. In district heating, heat is traditionally generated through fossil fuels, often with combined heat and power (CHP) units. However, increasingly, waste heat is being used as a low carbon alternative, either directly or, for low temperature sources, via a heat pump. The design of district heating often has competing objectives: the need for inexpensive energy and meeting low carbon targets. In addition, the planning of district heating schemes is subject to multiple sources of uncertainty such as variability in heat demand and energy prices. This paper proposes a decision support tool to analyse and compare system designs for district heating under uncertainty using stochastic ordering (dominance). Contrary to traditional uncertainty metrics that provide statistical summaries and impose total ordering, stochastic ordering is a partial ordering and operates with full probability distributions. In our analysis, we apply the orderings in the mean and dispersion to the waste heat recovery problem in Brunswick, Germany.
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteSustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2020License: arXiv Non-Exclusive DistributionData sources: DataciteSustainable Energy Grids and NetworksArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2022.100634&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | Proton powered motors: le..., AKA | Genes or environment: How..., EC | BioExcel-2AKA| Proton powered motors: learning from biology with multi-scale modeling (PROTOMOT) ,AKA| Genes or environment: How the protein surroundings affects their function. ,EC| BioExcel-2Buslaev, Pavel; Jansen, Anton; Bauer, Paul; Groenhof, Gerrit; Hess; Berk; Aho, Noora;Molecular dynamics (MD) computer simulations are used routinely to compute atomistic trajectories of complex systems. Systems are simulated in various ensembles, depending on the experimental conditions one aims to mimic. While constant energy, temperature, volume, and pressure are rather straightforward to model, pH, which is an equally important parameter in experiments, is more difficult to account for in simulations. Although a constant pH algorithm based on the $\lambda$-dynamics approach by Brooks and co-workers was implemented in a fork of the GROMACS molecular dynamics program, uptake has been rather limited, presumably due to the poor scaling of that code with respect to the number of titratable sites. To overcome this limitation, we implemented an alternative scheme for interpolating the Hamiltonians of the protonation states that makes the constant pH molecular dynamics simulations almost as fast as a normal MD simulation with GROMACS. In addition, we implemented a simpler scheme, called multisite representation, for modeling side chains with multiple titratable sites, such as imidazole rings. This scheme, which is based on constraining the sum of the $\lambda$-coordinates, not only reduces the complexity associated with parameterizing the intra-molecular interactions between the sites, but is also easily extendable to other molecules with multiple titratable sites. With the combination of a more efficient interpolation scheme and multisite representation of titratable groups, we anticipate a rapid uptake of constant pH molecular dynamics simulations within the GROMACS user community.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Authors: Lehtoranta S; V. Laukka; K. Silvennoinen;pmid: 39689533
The growing concern on global warming has pushed to set ambitious targets of carbon neutrality or net zero at the water sector. Meanwhile, poor data availability has been reported to restrict the national assessment of climate impacts and mitigation strategies in water sector. In national greenhouse gas (GHG) inventories, water sector is embedded in other sectors' emissions making it difficult to monitor separately. This study presents a national scale evaluation of climate change impacts for water sector in Finland based on life cycle analysis (LCA). In addition, the effectiveness of currently available emission reduction measures is evaluated by scenario analysis until the year 2035. According to the results, the life cycle climate change impacts from the Finnish municipal water sector were 0,67 (0,46-0,88) million tonnes CO2-eq./year (142.8 (98.9-187.1) kg CO2-eq./person/year). Drinking water services accounted for 12.5-13.9 % and wastewater services 86.1-87.4 % of the total emissions. With currently feasible emission reduction measures, the climate change impacts could be reduced approximately 14-30 % in total by 2035. The aim of carbon neutrality in the water sector was found to be unrealistic to achieve with existing and currently feasible measures for Finland and thus significant new emission mitigation measures are needed. The vague definition of carbon neutrality and system boundary of water sector as well as the uncertainties related to the assessment of direct emissions, undermine the credibility of the ambitiously set target. Prioritizing emission offsets to reach the target may inadvertently lead to unintended negative consequences due to the limitations and incompleteness of offset methods.
Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.123732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Journal of Environme... arrow_drop_down Journal of Environmental ManagementArticle . 2025 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jenvman.2024.123732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu