- home
- Advanced Search
- Energy Research
- 7. Clean energy
- NL
- DE
- FR
- Wageningen Staff Publications
- Energy Research
- 7. Clean energy
- NL
- DE
- FR
- Wageningen Staff Publications
description Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Morocco, NetherlandsPublisher:Royal Society of Chemistry (RSC) Michel H.M. Eppink; Giuseppe Olivieri; Jeroen H. de Vree; Maria J. Barbosa; Jesús Ruiz; J. Hans Reith; René H. Wijffels; René H. Wijffels; Dorinde M.M. Kleinegris; R. Bosma; Philippe Willems;doi: 10.1039/c6ee01493c
Model projections show that production of high-value products from microalgae could be profitable nowadays and commodities will become profitable within 10 years.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 296 citations 296 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 NetherlandsPublisher:Zenodo Funded by:EC | MAGNITUDEEC| MAGNITUDEKessels, Kris; Madani, Mehdi; Mou, Yuting; Sels, Peter; Shariat Torbaghan, Shahab; Virag, Ana;Dataset (partial) for the journal article Torbaghan, Shahab Shariat, et al. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms." Applied Energy 285 (2021): 116390. https://doi.org/10.1016/j.apenergy.2020.116390 Historical electricity bids obtained from the website of GME, the Italian power exchange, cannot be redistributed and are not included in the present dataset.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4923182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 99visibility views 99 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4923182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018 NetherlandsPublisher:Taylor & Francis Authors: Tudorica-Iacobuta, G.; Dubash, Navroz K.; Upadhyaya, Prabhat; Deribe, Mekdelawit; +1 AuthorsTudorica-Iacobuta, G.; Dubash, Navroz K.; Upadhyaya, Prabhat; Deribe, Mekdelawit; Hoehne, N.E.;Global climate change governance has changed substantially in the last decade, with a shift in focus from negotiating globally agreed greenhouse gas (GHG) reduction targets to nationally determined contributions, as enshrined in the 2015 Paris Agreement. This paper analyses trends in adoption of national climate legislation and strategies, GHG targets, and renewable and energy efficiency targets in almost all UNFCCC Parties, focusing on the period from 2007 to 2017. The uniqueness and added value of this paper reside in its broad sweep of countries, the more than decade-long coverage and the use of objective metrics rather than normative judgements. Key results show that national climate legislation and strategies witnessed a strong increase in the first half of the assessed decade, likely due to the political lead up to the Copenhagen Climate Conference in 2009, but have somewhat stagnated in recent years, currently covering 70% of global GHG emissions (almost 50% of countries). In comparison, the coverage of GHG targets increased considerably in the run up to adoption of the Paris Agreement and 89% of global GHG emissions are currently covered by such targets. Renewable energy targets saw a steady spread, with 79% of the global GHG emissions covered in 2017 compared to 45% in 2007, with a steep increase in developing countries. Key policy insightsThe number of countries that have national legislation and strategies in place increased strongly up to 2012, but the increase has levelled off in recent years, now covering 70% of global emissions by 2017 (48% of countries and 76% of global population).Economy-wide GHG reduction targets witnessed a strong increase in the build up to 2015 and are adopted by countries covering 89% of global GHG emissions (76% not counting USA) and 90% of global population (86% not counting USA) in 2017.Renewable energy targets saw a steady increase throughout the last decade with coverage of countries in 2017 comparable to that of GHG targets.Key shifts in national measures coincide with landmark international events – an increase in legislation and strategy in the build-up to the Copenhagen Climate Conference and an increase in targets around the Paris Agreement – emphasizing the importance of the international process to maintaining national momentum. The number of countries that have national legislation and strategies in place increased strongly up to 2012, but the increase has levelled off in recent years, now covering 70% of global emissions by 2017 (48% of countries and 76% of global population). Economy-wide GHG reduction targets witnessed a strong increase in the build up to 2015 and are adopted by countries covering 89% of global GHG emissions (76% not counting USA) and 90% of global population (86% not counting USA) in 2017. Renewable energy targets saw a steady increase throughout the last decade with coverage of countries in 2017 comparable to that of GHG targets. Key shifts in national measures coincide with landmark international events – an increase in legislation and strategy in the build-up to the Copenhagen Climate Conference and an increase in targets around the Paris Agreement – emphasizing the importance of the international process to maintaining national momentum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.6743039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.6743039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020 NetherlandsPublisher:Cranfield Online Research Data (CORD) Chowdhury, Jahedul; Ozkan, Nazmiye; Goglio, Pietro; Hu, Yukun; Varga, Liz; McCabe, Leah;This file includes data from the National Grid, UK for electricity supply and demand which was modified according to the research methodology laid out in the paper here (https://doi.org/10.1016/j.rser.2020.110018). Also, all the data needed for reproducing figures presented in the journal article are also included in the data file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17862/cranfield.rd.12662681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17862/cranfield.rd.12662681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2010 NetherlandsPublisher:Verlag Dr. Albert Bartens KG Authors: Claassen, P.A.M.; de Vrije, G.J.; Urbaniec, K.; Grabarczyk, R.;doi: 10.36961/si9610
The production of hydrogen gas from biomass to meet the foreseen demand arising from the expected introduction of fuel cells is envisaged. Apart from the well-known gasification method, fermentative conversion can also be applied for this purpose. Two options of the latter method, that is, thermophilic fermentation and photofermentation can be combined in a two-stage process in which about 70% of hydrogen present in biomass is converted to gaseous form. It is expected that this process can be applied in decentralized, small-scale production units. The main stages of the fermentative hydrogen production process are the following: – biomass pretreatment to give fermentable feedstock and non-fermentables, – thermophilic fermentation in which fermentable feedstock is converted to hydrogen gas and organic acids, – photofermentation in which the organic acids are converted to hydrogen gas, – upgrading of hydrogen gas to meet product specification, – separation and treatment of non-fermentables. In order to develop a sustainable hydrogen production route based on fermentation, it is necessary to improve the existing knowledge of these process stages and to carry out process optimization studies. As a major step in this direction, the European research project HYVOLUTION has been organized under the 6th Framework Programme of the EU.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36961/si9610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36961/si9610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Yue Dou; Cecilia Zagaria; Louise O'Connor; Wilfried Thuiller; Peter H. Verburg;Ambitious international targets are being developed to protect and restore biodiversity under the Convention on Biological Diversity's post-2020 Global Biodiversity Framework and the European Union's Green Deal. Yet, the land system consequences of meeting such targets are unclear, as multiple pathways may be able to deliver on the set targets. This paper introduces a novel scenario approach assessing the plural implementations of these targets. The Nature Futures Framework (NFF) developed by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services aims to illustrate the different, positive ways in which society can value nature. It therefore offers a lens through which the spatial implementation of sustainability targets may be envisioned. We used CLUMondo, a spatially explicit model, to simulate plural land system scenarios for Europe for 2050. The model builds on current land system representations of Europe and explores how and where sustainability targets can be implemented under projected population trends and commodity demands. We created three different scenarios in which the sustainability targets are met, each representing an alternative, normative view on nature as represented by the NFF, favoring land systems providing strong climate regulation (Nature for Society), species conservation (Nature for Nature), or agricultural heritage features (Nature as Culture). Our results show that, irrespective of the NFF view, meeting sustainability targets will require European land systems to drastically change, as natural grasslands and forests are forecast to expand while productive areas are projected to undergo a dual intensification and diversification trajectory. Despite each NFF perspective showcasing a similar direction of change, 20% of Europe's land area will differ based on the adopted NFF perspective, with hotspots of disagreement identified in eastern and western Europe. These simulations go beyond existing scenario approaches by not only depicting broad societal developments for Europe, but also by quantifying the land system synergies and trade-offs associated with alternative, archetypal, interpretations and values of how nature may be managed for sustainability. This quantification exemplifies a means towards constructive dialogue, on the one hand by acknowledging areas of contention, and bringing such issues to the fore, and on the other by highlighting points of convergence in a vision for a sustainable Europe.
IIASA DARE arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2023.102766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2023.102766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:SGOV | COHERENCIA CUANTICA PARA ..., EC | NANOANTENNASSGOV| COHERENCIA CUANTICA PARA EFICIENCIA DE ENERGIA ,EC| NANOANTENNASWientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.;The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes.
CORE arrow_drop_down EnlightenArticle . 2014License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/106070/1/106070.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms5236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 14download downloads 14 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2014License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/106070/1/106070.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms5236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Deeke, A.; Sleutels, T.H.J.A.; Heijne, A., ter; Hamelers, H.V.M.; Buisman, C.J.N.;Earlier it was shown, that it is possible to operate a Microbial Fuel Cell with an integrated capacitive bio-anode with a thickness of 0.5 mm and thereby to increase the power output. The integrated capacitive bioanode enabled storage of electricity produced by microorganisms directly inside an MFC. To increase the performance of this integrated storage system even more; the thickness of the capacitive electrode was varied: 0.2 mm, 0.5 mm and 1.5 mm. Each of these capacitive electrodes was tested in the MFC setup during polarization curves and charge–discharge experiments for the steady-state current density and the maximum charge recovery. The capacitive electrode with a thickness of 0.2 mm outperformed the other electrodes in all experiments: it reached a maximum current density of 2.53 Am-² during polarization curves, and was able to store a cumulative total charge of 96013 cm-² during charge–discharge experiments. The highest relative charge recovery for this electrode was 1.4, which means that 40% more current can be gained from this capacitive electrode during intermittent operation compared to continuous operation of a noncapacitive electrode. Surprisingly it was possible to increase the performance of the MFC through decrease of the thickness of the capacitive electrode.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.05.195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.05.195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Informa UK Limited Kuramochi, Takeshi; Asuka, Jusen; Fekete, Hanna; Tamura, Kentaro; Höhne, Niklas;This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2 °C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget. The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450 ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550 ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450 ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets. Policy relevance In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2 °C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2015.1064344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2015.1064344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Authors: Bohringer, C.; Keller, A.; Werf, E.H., van der;In view of pressing unemployment problems, policy makers across all parties jump on the prospects of renewable energy promotion as a job creation engine which can boost economic well-being. Our analytical model shows that initial labor market rigidities in theory provide some scope for such a double dividend. However, the practical outcome of renewable energy promotion might be sobering. Our computable general equilibrium analysis of subsidized electricity production from renewable energy sources (RES-E) in Germany suggests that the prospects for employment and welfare gains are quite limited and hinge crucially on the level of the subsidy rate and the financing mechanism. If RES-E subsidies are financed by labor taxes, welfare and employment effects are strictly negative for a broad range of subsidy rates. The use of an electricity tax to fund RES-E subsidies generates minor benefits for small subsidy rates but these benefits quickly turn into significant losses as the subsidy rate exceeds some threshold value.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 Spain, Morocco, NetherlandsPublisher:Royal Society of Chemistry (RSC) Michel H.M. Eppink; Giuseppe Olivieri; Jeroen H. de Vree; Maria J. Barbosa; Jesús Ruiz; J. Hans Reith; René H. Wijffels; René H. Wijffels; Dorinde M.M. Kleinegris; R. Bosma; Philippe Willems;doi: 10.1039/c6ee01493c
Model projections show that production of high-value products from microalgae could be profitable nowadays and commodities will become profitable within 10 years.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 296 citations 296 popularity Top 1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Repositorio de Objetos de Docencia e Investigación de la Universidad de CádizArticle . 2016License: CC BY NC NDWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c6ee01493c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 NetherlandsPublisher:Zenodo Funded by:EC | MAGNITUDEEC| MAGNITUDEKessels, Kris; Madani, Mehdi; Mou, Yuting; Sels, Peter; Shariat Torbaghan, Shahab; Virag, Ana;Dataset (partial) for the journal article Torbaghan, Shahab Shariat, et al. "Designing day-ahead multi-carrier markets for flexibility: Models and clearing algorithms." Applied Energy 285 (2021): 116390. https://doi.org/10.1016/j.apenergy.2020.116390 Historical electricity bids obtained from the website of GME, the Italian power exchange, cannot be redistributed and are not included in the present dataset.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4923182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 99visibility views 99 download downloads 4 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4923182&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2018 NetherlandsPublisher:Taylor & Francis Authors: Tudorica-Iacobuta, G.; Dubash, Navroz K.; Upadhyaya, Prabhat; Deribe, Mekdelawit; +1 AuthorsTudorica-Iacobuta, G.; Dubash, Navroz K.; Upadhyaya, Prabhat; Deribe, Mekdelawit; Hoehne, N.E.;Global climate change governance has changed substantially in the last decade, with a shift in focus from negotiating globally agreed greenhouse gas (GHG) reduction targets to nationally determined contributions, as enshrined in the 2015 Paris Agreement. This paper analyses trends in adoption of national climate legislation and strategies, GHG targets, and renewable and energy efficiency targets in almost all UNFCCC Parties, focusing on the period from 2007 to 2017. The uniqueness and added value of this paper reside in its broad sweep of countries, the more than decade-long coverage and the use of objective metrics rather than normative judgements. Key results show that national climate legislation and strategies witnessed a strong increase in the first half of the assessed decade, likely due to the political lead up to the Copenhagen Climate Conference in 2009, but have somewhat stagnated in recent years, currently covering 70% of global GHG emissions (almost 50% of countries). In comparison, the coverage of GHG targets increased considerably in the run up to adoption of the Paris Agreement and 89% of global GHG emissions are currently covered by such targets. Renewable energy targets saw a steady spread, with 79% of the global GHG emissions covered in 2017 compared to 45% in 2007, with a steep increase in developing countries. Key policy insightsThe number of countries that have national legislation and strategies in place increased strongly up to 2012, but the increase has levelled off in recent years, now covering 70% of global emissions by 2017 (48% of countries and 76% of global population).Economy-wide GHG reduction targets witnessed a strong increase in the build up to 2015 and are adopted by countries covering 89% of global GHG emissions (76% not counting USA) and 90% of global population (86% not counting USA) in 2017.Renewable energy targets saw a steady increase throughout the last decade with coverage of countries in 2017 comparable to that of GHG targets.Key shifts in national measures coincide with landmark international events – an increase in legislation and strategy in the build-up to the Copenhagen Climate Conference and an increase in targets around the Paris Agreement – emphasizing the importance of the international process to maintaining national momentum. The number of countries that have national legislation and strategies in place increased strongly up to 2012, but the increase has levelled off in recent years, now covering 70% of global emissions by 2017 (48% of countries and 76% of global population). Economy-wide GHG reduction targets witnessed a strong increase in the build up to 2015 and are adopted by countries covering 89% of global GHG emissions (76% not counting USA) and 90% of global population (86% not counting USA) in 2017. Renewable energy targets saw a steady increase throughout the last decade with coverage of countries in 2017 comparable to that of GHG targets. Key shifts in national measures coincide with landmark international events – an increase in legislation and strategy in the build-up to the Copenhagen Climate Conference and an increase in targets around the Paris Agreement – emphasizing the importance of the international process to maintaining national momentum.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.6743039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.6084/m9.figshare.6743039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2020 NetherlandsPublisher:Cranfield Online Research Data (CORD) Chowdhury, Jahedul; Ozkan, Nazmiye; Goglio, Pietro; Hu, Yukun; Varga, Liz; McCabe, Leah;This file includes data from the National Grid, UK for electricity supply and demand which was modified according to the research methodology laid out in the paper here (https://doi.org/10.1016/j.rser.2020.110018). Also, all the data needed for reproducing figures presented in the journal article are also included in the data file.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17862/cranfield.rd.12662681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17862/cranfield.rd.12662681&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Part of book or chapter of book , Journal 2010 NetherlandsPublisher:Verlag Dr. Albert Bartens KG Authors: Claassen, P.A.M.; de Vrije, G.J.; Urbaniec, K.; Grabarczyk, R.;doi: 10.36961/si9610
The production of hydrogen gas from biomass to meet the foreseen demand arising from the expected introduction of fuel cells is envisaged. Apart from the well-known gasification method, fermentative conversion can also be applied for this purpose. Two options of the latter method, that is, thermophilic fermentation and photofermentation can be combined in a two-stage process in which about 70% of hydrogen present in biomass is converted to gaseous form. It is expected that this process can be applied in decentralized, small-scale production units. The main stages of the fermentative hydrogen production process are the following: – biomass pretreatment to give fermentable feedstock and non-fermentables, – thermophilic fermentation in which fermentable feedstock is converted to hydrogen gas and organic acids, – photofermentation in which the organic acids are converted to hydrogen gas, – upgrading of hydrogen gas to meet product specification, – separation and treatment of non-fermentables. In order to develop a sustainable hydrogen production route based on fermentation, it is necessary to improve the existing knowledge of these process stages and to carry out process optimization studies. As a major step in this direction, the European research project HYVOLUTION has been organized under the 6th Framework Programme of the EU.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36961/si9610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.36961/si9610&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Yue Dou; Cecilia Zagaria; Louise O'Connor; Wilfried Thuiller; Peter H. Verburg;Ambitious international targets are being developed to protect and restore biodiversity under the Convention on Biological Diversity's post-2020 Global Biodiversity Framework and the European Union's Green Deal. Yet, the land system consequences of meeting such targets are unclear, as multiple pathways may be able to deliver on the set targets. This paper introduces a novel scenario approach assessing the plural implementations of these targets. The Nature Futures Framework (NFF) developed by the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services aims to illustrate the different, positive ways in which society can value nature. It therefore offers a lens through which the spatial implementation of sustainability targets may be envisioned. We used CLUMondo, a spatially explicit model, to simulate plural land system scenarios for Europe for 2050. The model builds on current land system representations of Europe and explores how and where sustainability targets can be implemented under projected population trends and commodity demands. We created three different scenarios in which the sustainability targets are met, each representing an alternative, normative view on nature as represented by the NFF, favoring land systems providing strong climate regulation (Nature for Society), species conservation (Nature for Nature), or agricultural heritage features (Nature as Culture). Our results show that, irrespective of the NFF view, meeting sustainability targets will require European land systems to drastically change, as natural grasslands and forests are forecast to expand while productive areas are projected to undergo a dual intensification and diversification trajectory. Despite each NFF perspective showcasing a similar direction of change, 20% of Europe's land area will differ based on the adopted NFF perspective, with hotspots of disagreement identified in eastern and western Europe. These simulations go beyond existing scenario approaches by not only depicting broad societal developments for Europe, but also by quantifying the land system synergies and trade-offs associated with alternative, archetypal, interpretations and values of how nature may be managed for sustainability. This quantification exemplifies a means towards constructive dialogue, on the one hand by acknowledging areas of contention, and bringing such issues to the fore, and on the other by highlighting points of convergence in a vision for a sustainable Europe.
IIASA DARE arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2023.102766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert IIASA DARE arrow_drop_down Wageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff Publicationsadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.gloenvcha.2023.102766&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United Kingdom, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:SGOV | COHERENCIA CUANTICA PARA ..., EC | NANOANTENNASSGOV| COHERENCIA CUANTICA PARA EFICIENCIA DE ENERGIA ,EC| NANOANTENNASWientjes, Emilie; Renger, Jan; Curto, Alberto G.; Cogdell, Richard; van Hulst, Niek F.;The nature of the highly efficient energy transfer in photosynthetic light-harvesting complexes is a subject of intense research. Unfortunately, the low fluorescence efficiency and limited photostability hampers the study of individual light-harvesting complexes at ambient conditions. Here we demonstrate an over 500-fold fluorescence enhancement of light-harvesting complex 2 (LH2) at the single-molecule level by coupling to a gold nanoantenna. The resonant antenna produces an excitation enhancement of circa 100 times and a fluorescence lifetime shortening to ~20 ps. The radiative rate enhancement results in a 5.5-fold-improved fluorescence quantum efficiency. Exploiting the unique brightness, we have recorded the first photon antibunching of a single light-harvesting complex under ambient conditions, showing that the 27 bacteriochlorophylls coordinated by LH2 act as a non-classical single-photon emitter. The presented bright antenna-enhanced LH2 emission is a highly promising system to study energy transfer and the role of quantum coherence at the level of single complexes.
CORE arrow_drop_down EnlightenArticle . 2014License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/106070/1/106070.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms5236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
download 14download downloads 14 Powered bymore_vert CORE arrow_drop_down EnlightenArticle . 2014License: CC BY NC NDFull-Text: http://eprints.gla.ac.uk/106070/1/106070.pdfData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/ncomms5236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Deeke, A.; Sleutels, T.H.J.A.; Heijne, A., ter; Hamelers, H.V.M.; Buisman, C.J.N.;Earlier it was shown, that it is possible to operate a Microbial Fuel Cell with an integrated capacitive bio-anode with a thickness of 0.5 mm and thereby to increase the power output. The integrated capacitive bioanode enabled storage of electricity produced by microorganisms directly inside an MFC. To increase the performance of this integrated storage system even more; the thickness of the capacitive electrode was varied: 0.2 mm, 0.5 mm and 1.5 mm. Each of these capacitive electrodes was tested in the MFC setup during polarization curves and charge–discharge experiments for the steady-state current density and the maximum charge recovery. The capacitive electrode with a thickness of 0.2 mm outperformed the other electrodes in all experiments: it reached a maximum current density of 2.53 Am-² during polarization curves, and was able to store a cumulative total charge of 96013 cm-² during charge–discharge experiments. The highest relative charge recovery for this electrode was 1.4, which means that 40% more current can be gained from this capacitive electrode during intermittent operation compared to continuous operation of a noncapacitive electrode. Surprisingly it was possible to increase the performance of the MFC through decrease of the thickness of the capacitive electrode.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.05.195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 62 citations 62 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2013.05.195&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 NetherlandsPublisher:Informa UK Limited Kuramochi, Takeshi; Asuka, Jusen; Fekete, Hanna; Tamura, Kentaro; Höhne, Niklas;This article assesses Japan's carbon budgets up to 2100 in the global efforts to achieve the 2 °C target under different effort-sharing approaches based on long-term GHG mitigation scenarios published in 13 studies. The article also presents exemplary emission trajectories for Japan to stay within the calculated budget. The literature data allow for an in-depth analysis of four effort-sharing categories. For a 450 ppm CO2e stabilization level, the remaining carbon budgets for 2014–2100 were negative for the effort-sharing category that emphasizes historical responsibility and capability. For the other three, including the reference ‘Cost-effectiveness’ category, which showed the highest budget range among all categories, the calculated remaining budgets (20th and 80th percentile ranges) would run out in 21–29 years if the current emission levels were to continue. A 550 ppm CO2e stabilization level increases the budgets by 6–17 years-equivalent of the current emissions, depending on the effort-sharing category. Exemplary emissions trajectories staying within the calculated budgets were also analysed for ‘Equality’, ‘Staged’ and ‘Cost-effectiveness’ categories. For a 450 ppm CO2e stabilization level, Japan's GHG emissions would need to phase out sometime between 2045 and 2080, and the emission reductions in 2030 would be at least 16–29% below 1990 levels even for the most lenient ‘Cost-effectiveness’ category, and 29–36% for the ‘Equality’ category. The start year for accelerated emissions reductions and the emissions convergence level in the long term have major impact on the emissions reduction rates that need to be achieved, particularly in the case of smaller budgets. Policy relevance In previous climate mitigation target formulation processes for 2020 and 2030 in Japan, neither equity principles nor long-term management of cumulative GHG emissions was at the centre of discussion. This article quantitatively assesses how much more GHGs Japan can emit by 2100 to achieve the 2 °C target in light of different effort-sharing approaches, and how Japan's GHG emissions can be managed up to 2100. The long-term implications of recent energy policy developments following the Fukushima nuclear disaster for the calculated carbon budgets are also discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2015.1064344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14693062.2015.1064344&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 NetherlandsPublisher:Elsevier BV Authors: Bohringer, C.; Keller, A.; Werf, E.H., van der;In view of pressing unemployment problems, policy makers across all parties jump on the prospects of renewable energy promotion as a job creation engine which can boost economic well-being. Our analytical model shows that initial labor market rigidities in theory provide some scope for such a double dividend. However, the practical outcome of renewable energy promotion might be sobering. Our computable general equilibrium analysis of subsidized electricity production from renewable energy sources (RES-E) in Germany suggests that the prospects for employment and welfare gains are quite limited and hinge crucially on the level of the subsidy rate and the financing mechanism. If RES-E subsidies are financed by labor taxes, welfare and employment effects are strictly negative for a broad range of subsidy rates. The use of an electricity tax to fund RES-E subsidies generates minor benefits for small subsidy rates but these benefits quickly turn into significant losses as the subsidy rate exceeds some threshold value.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 94 citations 94 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eneco.2012.08.029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu