- home
- Advanced Search
- Energy Research
- 2025-2025
- Closed Access
- Restricted
- Open Source
- FR
- DE
- Energy Research
- 2025-2025
- Closed Access
- Restricted
- Open Source
- FR
- DE
description Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Royal Society of Chemistry (RSC) Zihao Zhou; Yuan Ma; Torsten Brezesinski; Ben Breitung; Yuping Wu; Yanjiao Ma;doi: 10.1039/d4ee03708a
An overview of high-entropy strategies for batteries is provided, emphasizing their unique structural/compositional attributes and positive effects on stability and performance, alongside a discussion of key challenges and future research directions.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03708a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03708a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:Wiley Michalet, Richard; Dolezal, Jiri; Lenoir, Jonathan; Le Roux, Peter; Rumpf, Sabine; Wipf, Sonja;doi: 10.1111/jvs.70028
Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jvs.70028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jvs.70028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:American Physical Society (APS) Funded by:AKA | AI software based Materia..., AKA | Machine Learning Material...AKA| AI software based Material design for sustainable AI hardware (AI4AI) ,AKA| Machine Learning Materials for Solar EnergyAuthors: Henrietta Homm; Jarno Laakso; Patrick Rinke;Physical Review Mate... arrow_drop_down Physical Review MaterialsArticle . 2025 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevmaterials.9.053802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Physical Review Mate... arrow_drop_down Physical Review MaterialsArticle . 2025 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevmaterials.9.053802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Yuedan Zhao; Nan Lu; Hao Shi; Jianbei Huang; Bojie Fu;doi: 10.1111/gcb.70025
pmid: 39757927
ABSTRACTLitter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism. Using the ARIDEC data collection and published literature, a global database on litter decomposition and corresponding environmental conditions in drylands was developed, comprising 2204 observations from 158 sites. Decomposition rates varied across the four dryland subregions, with the highest rates in the dry‐subhumid region (3.24% month−1), followed by semi‐arid (3.15% month−1), arid (2.62% month−1), and hyper‐arid (2.35% month−1) regions. Notably, the dry‐subhumid region exhibited the greatest variability. Anthropogenic systems, such as cropland (5.52% month−1) and urban ecosystems (7.88% month−1), demonstrated higher decomposition rates than natural systems (averaging 3.07% month−1). Across drylands, the decomposition rate followed an exponential function of decomposition duration (), influenced by litter quality, climate, and soil properties. Beyond decomposition duration, three boosted regression tree models were developed to identify the primary factors influencing early (R2 = 0.92), mid (R2 = 0.71), and late (R2 = 0.80) decomposition stages. In the early‐ and mid‐stages, precipitation, atmospheric temperature, and soil moisture were critical factors, while the UV index and initial nitrogen content of litter played significant roles in the early and mid‐phases, respectively. In the late phase, soil total nitrogen, soil organic carbon, and the initial C/N ratio of litter were the primary factors. Our findings reveal consistent temporal patterns in decomposition rates and the mechanisms underlying them in global dryland ecosystems. These insights can enhance the accuracy of biogeochemical models in drylands and improve predictions of their feedback to the climate system.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2025 GermanyPublisher:Institution of Engineering and Technology (IET) Authors: Bents, Hauke; von Bremen, Lueder; Schyska, Bruno;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/icp.2024.3777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/icp.2024.3777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:Human Kinetics Metz, Lore; Guirado, Terry; Moore, Halim; Brun, Carole; Pereira, Bruno; Thivel, David; Duclos, Martine; Isacco, Laurie;pmid: 39832503
Background: Active breaks and very low- to low-intensity exercises such as walking or cycling at an active desk have been shown to significantly counteract the negative effect of prolonged sedentary behaviors. The objective was to investigate the effect of physical activity level (PAL) on changes in energy expenditure (EE), heart rate, and substrate oxidation from sit-to-stand and sit-to-light cycling. Methods: Fifty healthy young males and females (age: 23.9 [3.9] y, body mass index: 22.9 [2.3] kg/m2) were submitted to a fixed 1 hour session of different posture allocations: 15-minute sitting, 15-minute standing, 15-minute sitting, and 15-minute very low-intensity cycling. EE, substrate oxidation rates, and heart rate were continuously assessed throughout the experimental visit. Data were then compared between participants according to their PAL in tertiles (low, medium, or high). The high-PAL group showed lower sedentary time (P < .0001) and higher time spent in low (P < .0001), moderate (P < .0001), and vigorous physical activity (P = .0034). Results: ANOVA’s analysis showed that EE significantly increased when standing (+11%) and cycling (+94%) relative to the seated position (P < .05) without any differences between groups. There was also a significant increase in heart rate during standing and cycling compared with sitting (P < .05) without any differences between groups. Relative EE (in kilocalories per minute per kilogram) was significantly higher when seated (P < .05) independent of PAL but marginally higher in the high-PAL group when standing relative to the medium-PAL group (P = .06). Conclusion: The findings of this study suggest that people’s PAL does not impact energetic and metabolic adaptations during sit-to-stand and sit-to-very-light-intensity cycling exercise.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1123/jpah.2024-0236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1123/jpah.2024-0236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:Elsevier BV Authors: Yaqubi, Obaidullah; Guernouti, Sihem; Rodler, Auline; Musy, Marjorie;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Funded by:NIH | Targeting the casein kina..., NIH | Stress-induced transposon..., NSF | Collaborative Research: M... +27 projectsNIH| Targeting the casein kinase 1 (CK1)-like kinase Yck2 in fungal pathogenesis ,NIH| Stress-induced transposon mobilization in the human fungal pathogen Cryptococcus ,NSF| Collaborative Research: MIM: Gut-inhabiting fungi influence structure and function of herptile microbiomes through horizontal gene transfer and novel metabolic function ,NIH| Calcineurin signaling cascades governing Cryptococcus virulence ,NIH| RNAi-dependent epimutation roles in antimicrobial drug resistance and pathogenesis ,NSF| Development and application of innovative tools to mitigate White Nose Syndrome, a lethal fungal disease decimating North American bat populations ,NIH| Regulation and function of mucosal IgA immune responses to mycobiota in the gut. ,ARC| Industrial Transformation Research Hubs - Grant ID: IH190100022 ,NIH| Functions of Cryptococcus neoformans mating type loci ,NIH| Targeting Hsp90 in cryptococcal fungal pathogenesis ,NIH| Protective Immune Responses to Blastomyces Dermatitidis ,NIH| Malassezia and Candida auris: skin microbiome dysbiosis and de-regulation of cutaneous homeostasis ,NIH| Conjugate vaccines for prevention and treatment of cryptococcosis ,NIH| Commensal fungal communities in the regulation of immunity and intestinal inflammation. ,NIH| Cross-kingdom RNA communications between plant and fungal pathogens ,NIH| Novel Combination Adjuvant for Eliciting Systemic and Mucosal CD8 T Cell Memory ,NSF| Develop innovative stable RNA-based anti-fungal reagents to control plant fungal diseases ,NIH| The Genetic Basis of Virulence in Cryptococcus Neoformans ,NIH| Microbes in Health and Disease Training Program ,NIH| Mechanisms of vaccine immunity against coccidioidomycosis ,CIHR ,NIH| Biology of Fungal Melanin ,NIH| Systematic Analysis of Morphogenesis, Commensalism, and Virulence in a Leading Human Fungal Pathogen ,NIH| Evolved Heterogeneity Contributes to Chronic Fungal Lung Infections ,NIH| IMMUNOSUPPRESSANT TARGETS IN CRYPTOCOCCUS NEOFORMANS ,NIH| Molecular Pathogenesis of Blastomycosis ,NIH| Mononuclear phagocyte networks in mycobiota regulation and antifungal immunity. ,NIH| Synergy of Host Defense Mechanisms in the Lung ,NIH| Evolution of Aspergillus fumigatus virulence ,NSF| CAREER: When do mycorrhizal fungi influence plant community dynamics?Nicola T. Case; Sarah J. Gurr; Matthew C. Fisher; David S. Blehert; Charles Boone; Arturo Casadevall; Anuradha Chowdhary; Christina A. Cuomo; Cameron R. Currie; David W. Denning; Iuliana V. Ene; Lillian K. Fritz-Laylin; Aleeza C. Gerstein; Neil A. R. Gow; Asiya Gusa; Iliyan D. Iliev; Timothy Y. James; Hailing Jin; Regine Kahmann; Bruce S. Klein; James W. Kronstad; Kyla S. Ost; Kabir G. Peay; Rebecca S. Shapiro; Donald C. Sheppard; Neta Shlezinger; Jason E. Stajich; Eva H. Stukenbrock; John W. Taylor; Gerard D. Wright; Leah E. Cowen; Joseph Heitman; Julia A. Segre;Over the past billion years, the fungal kingdom has diversified to more than two million species, with over 95% still undescribed. Beyond the well-known macroscopic mushrooms and microscopic yeast, fungi are heterotrophs that feed on almost any organic carbon, recycling nutrients through the decay of dead plants and animals and sequestering carbon into Earth's ecosystems. Human-directed applications of fungi extend from leavened bread, alcoholic beverages and biofuels to pharmaceuticals, including antibiotics and psychoactive compounds. Conversely, fungal infections pose risks to ecosystems ranging from crops to wildlife to humans; these risks are driven, in part, by human and animal movement, and might be accelerating with climate change. Genomic surveys are expanding our knowledge of the true biodiversity of the fungal kingdom, and genome-editing tools make it possible to imagine harnessing these organisms to fuel the bioeconomy. Here, we examine the fungal threats facing civilization and investigate opportunities to use fungi to combat these threats.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08419-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08419-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:Elsevier BV Sadeh, Elaheh; Farhadian, Abdolreza; Maddah, Mina; Semenov, Matvei E.; Son, Evgeniy R.; Heydari, Atousa; Mirzakimov, Ulukbek Zh.; Valiullin, Lenar R.; Varfolomeev, Mikhail A.;The development of efficient, non-foaming promoters is essential for advancing the industrial applications of solidified gas hydrates in carbon capture, natural gas storage, and transportation. In this study, a novel surfactant, containing sulfonate, amide, and carboxyl groups (SSAC), was introduced as a promoter for methane hydrate formation. SSAC was synthesized by integrating the chemistries of amino acids and sodium dodecyl sulfate (SDS), distinguishing it from existing promoters. High-pressure autoclave experiments demonstrated that SSAC significantly enhanced the kinetics of methane hydrate formation, at a low concentration of 5 ppm, achieving a maximum water-to-hydrate conversion of 85.2 %, equivalent to a storage capacity of 163.5 v/v in deionized water. Increasing the SSAC concentration to 500 ppm resulted in an impressive conversion rate of 94.6 % and a storage capacity of 181.6 v/v. Methane recovery was accomplished without foaming within 15 min during hydrate dissociation at room temperature, addressing a critical challenge in current hydrate-based storage systems. Molecular dynamics simulations further revealed that SSAC molecules act as collectors for methane molecules in solution, thereby enhancing the rate of hydrate growth and increasing the number of hydrate cavities. Notably, SSAC exhibited a biodegradation level of 41 % after 28 days, indicating its potential for natural degradation and environmental compatibility. This combination of low concentration efficiency, foam-free formation, environmental sustainability, and enhanced methane collection is unprecedented in the current literature, highlighting the innovative nature of this work. These findings suggest that the integration of amino acid structures with anionic surfactants offers a promising strategy for designing effective promoters, with significant implications for energy storage, seawater desalination, and carbon capture technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Jessica Barichello; Barbara Paci; Paolo Moras; Javid Hajhemati; Amanda Generosi; Flavia Righi Riva; Stefania Cacovich; Farshad Jafarzadeh; Francesca Brunetti; Aldo Di Carlo; Fabio Matteocci;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.113237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.113237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2025 GermanyPublisher:Royal Society of Chemistry (RSC) Zihao Zhou; Yuan Ma; Torsten Brezesinski; Ben Breitung; Yuping Wu; Yanjiao Ma;doi: 10.1039/d4ee03708a
An overview of high-entropy strategies for batteries is provided, emphasizing their unique structural/compositional attributes and positive effects on stability and performance, alongside a discussion of key challenges and future research directions.
Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03708a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energy & Environment... arrow_drop_down Energy & Environmental ScienceArticle . 2025 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefKITopen (Karlsruhe Institute of Technologie)Article . 2024Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d4ee03708a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:Wiley Michalet, Richard; Dolezal, Jiri; Lenoir, Jonathan; Le Roux, Peter; Rumpf, Sabine; Wipf, Sonja;doi: 10.1111/jvs.70028
Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jvs.70028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Vegetatio... arrow_drop_down Journal of Vegetation ScienceArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jvs.70028&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:American Physical Society (APS) Funded by:AKA | AI software based Materia..., AKA | Machine Learning Material...AKA| AI software based Material design for sustainable AI hardware (AI4AI) ,AKA| Machine Learning Materials for Solar EnergyAuthors: Henrietta Homm; Jarno Laakso; Patrick Rinke;Physical Review Mate... arrow_drop_down Physical Review MaterialsArticle . 2025 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevmaterials.9.053802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Physical Review Mate... arrow_drop_down Physical Review MaterialsArticle . 2025 . Peer-reviewedLicense: APS Licenses for Journal Article Re-useData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1103/physrevmaterials.9.053802&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Wiley Yuedan Zhao; Nan Lu; Hao Shi; Jianbei Huang; Bojie Fu;doi: 10.1111/gcb.70025
pmid: 39757927
ABSTRACTLitter decomposition is essential in linking aboveground and belowground carbon, nutrient cycles, and energy flows within ecosystems. This process has been profoundly impacted by global change, particularly in drylands, which are highly susceptible to both anthropogenic and natural disturbances. However, a significant knowledge gap remains concerning the extent and drivers of litter decomposition across different dryland ecosystems, limiting our understanding of its role in ecosystem metabolism. Using the ARIDEC data collection and published literature, a global database on litter decomposition and corresponding environmental conditions in drylands was developed, comprising 2204 observations from 158 sites. Decomposition rates varied across the four dryland subregions, with the highest rates in the dry‐subhumid region (3.24% month−1), followed by semi‐arid (3.15% month−1), arid (2.62% month−1), and hyper‐arid (2.35% month−1) regions. Notably, the dry‐subhumid region exhibited the greatest variability. Anthropogenic systems, such as cropland (5.52% month−1) and urban ecosystems (7.88% month−1), demonstrated higher decomposition rates than natural systems (averaging 3.07% month−1). Across drylands, the decomposition rate followed an exponential function of decomposition duration (), influenced by litter quality, climate, and soil properties. Beyond decomposition duration, three boosted regression tree models were developed to identify the primary factors influencing early (R2 = 0.92), mid (R2 = 0.71), and late (R2 = 0.80) decomposition stages. In the early‐ and mid‐stages, precipitation, atmospheric temperature, and soil moisture were critical factors, while the UV index and initial nitrogen content of litter played significant roles in the early and mid‐phases, respectively. In the late phase, soil total nitrogen, soil organic carbon, and the initial C/N ratio of litter were the primary factors. Our findings reveal consistent temporal patterns in decomposition rates and the mechanisms underlying them in global dryland ecosystems. These insights can enhance the accuracy of biogeochemical models in drylands and improve predictions of their feedback to the climate system.
Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert Global Change Biolog... arrow_drop_down Global Change BiologyArticle . 2025 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.70025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2025 GermanyPublisher:Institution of Engineering and Technology (IET) Authors: Bents, Hauke; von Bremen, Lueder; Schyska, Bruno;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/icp.2024.3777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1049/icp.2024.3777&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:Human Kinetics Metz, Lore; Guirado, Terry; Moore, Halim; Brun, Carole; Pereira, Bruno; Thivel, David; Duclos, Martine; Isacco, Laurie;pmid: 39832503
Background: Active breaks and very low- to low-intensity exercises such as walking or cycling at an active desk have been shown to significantly counteract the negative effect of prolonged sedentary behaviors. The objective was to investigate the effect of physical activity level (PAL) on changes in energy expenditure (EE), heart rate, and substrate oxidation from sit-to-stand and sit-to-light cycling. Methods: Fifty healthy young males and females (age: 23.9 [3.9] y, body mass index: 22.9 [2.3] kg/m2) were submitted to a fixed 1 hour session of different posture allocations: 15-minute sitting, 15-minute standing, 15-minute sitting, and 15-minute very low-intensity cycling. EE, substrate oxidation rates, and heart rate were continuously assessed throughout the experimental visit. Data were then compared between participants according to their PAL in tertiles (low, medium, or high). The high-PAL group showed lower sedentary time (P < .0001) and higher time spent in low (P < .0001), moderate (P < .0001), and vigorous physical activity (P = .0034). Results: ANOVA’s analysis showed that EE significantly increased when standing (+11%) and cycling (+94%) relative to the seated position (P < .05) without any differences between groups. There was also a significant increase in heart rate during standing and cycling compared with sitting (P < .05) without any differences between groups. Relative EE (in kilocalories per minute per kilogram) was significantly higher when seated (P < .05) independent of PAL but marginally higher in the high-PAL group when standing relative to the medium-PAL group (P = .06). Conclusion: The findings of this study suggest that people’s PAL does not impact energetic and metabolic adaptations during sit-to-stand and sit-to-very-light-intensity cycling exercise.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1123/jpah.2024-0236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1123/jpah.2024-0236&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:Elsevier BV Authors: Yaqubi, Obaidullah; Guernouti, Sihem; Rodler, Auline; Musy, Marjorie;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2025.115441&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Springer Science and Business Media LLC Funded by:NIH | Targeting the casein kina..., NIH | Stress-induced transposon..., NSF | Collaborative Research: M... +27 projectsNIH| Targeting the casein kinase 1 (CK1)-like kinase Yck2 in fungal pathogenesis ,NIH| Stress-induced transposon mobilization in the human fungal pathogen Cryptococcus ,NSF| Collaborative Research: MIM: Gut-inhabiting fungi influence structure and function of herptile microbiomes through horizontal gene transfer and novel metabolic function ,NIH| Calcineurin signaling cascades governing Cryptococcus virulence ,NIH| RNAi-dependent epimutation roles in antimicrobial drug resistance and pathogenesis ,NSF| Development and application of innovative tools to mitigate White Nose Syndrome, a lethal fungal disease decimating North American bat populations ,NIH| Regulation and function of mucosal IgA immune responses to mycobiota in the gut. ,ARC| Industrial Transformation Research Hubs - Grant ID: IH190100022 ,NIH| Functions of Cryptococcus neoformans mating type loci ,NIH| Targeting Hsp90 in cryptococcal fungal pathogenesis ,NIH| Protective Immune Responses to Blastomyces Dermatitidis ,NIH| Malassezia and Candida auris: skin microbiome dysbiosis and de-regulation of cutaneous homeostasis ,NIH| Conjugate vaccines for prevention and treatment of cryptococcosis ,NIH| Commensal fungal communities in the regulation of immunity and intestinal inflammation. ,NIH| Cross-kingdom RNA communications between plant and fungal pathogens ,NIH| Novel Combination Adjuvant for Eliciting Systemic and Mucosal CD8 T Cell Memory ,NSF| Develop innovative stable RNA-based anti-fungal reagents to control plant fungal diseases ,NIH| The Genetic Basis of Virulence in Cryptococcus Neoformans ,NIH| Microbes in Health and Disease Training Program ,NIH| Mechanisms of vaccine immunity against coccidioidomycosis ,CIHR ,NIH| Biology of Fungal Melanin ,NIH| Systematic Analysis of Morphogenesis, Commensalism, and Virulence in a Leading Human Fungal Pathogen ,NIH| Evolved Heterogeneity Contributes to Chronic Fungal Lung Infections ,NIH| IMMUNOSUPPRESSANT TARGETS IN CRYPTOCOCCUS NEOFORMANS ,NIH| Molecular Pathogenesis of Blastomycosis ,NIH| Mononuclear phagocyte networks in mycobiota regulation and antifungal immunity. ,NIH| Synergy of Host Defense Mechanisms in the Lung ,NIH| Evolution of Aspergillus fumigatus virulence ,NSF| CAREER: When do mycorrhizal fungi influence plant community dynamics?Nicola T. Case; Sarah J. Gurr; Matthew C. Fisher; David S. Blehert; Charles Boone; Arturo Casadevall; Anuradha Chowdhary; Christina A. Cuomo; Cameron R. Currie; David W. Denning; Iuliana V. Ene; Lillian K. Fritz-Laylin; Aleeza C. Gerstein; Neil A. R. Gow; Asiya Gusa; Iliyan D. Iliev; Timothy Y. James; Hailing Jin; Regine Kahmann; Bruce S. Klein; James W. Kronstad; Kyla S. Ost; Kabir G. Peay; Rebecca S. Shapiro; Donald C. Sheppard; Neta Shlezinger; Jason E. Stajich; Eva H. Stukenbrock; John W. Taylor; Gerard D. Wright; Leah E. Cowen; Joseph Heitman; Julia A. Segre;Over the past billion years, the fungal kingdom has diversified to more than two million species, with over 95% still undescribed. Beyond the well-known macroscopic mushrooms and microscopic yeast, fungi are heterotrophs that feed on almost any organic carbon, recycling nutrients through the decay of dead plants and animals and sequestering carbon into Earth's ecosystems. Human-directed applications of fungi extend from leavened bread, alcoholic beverages and biofuels to pharmaceuticals, including antibiotics and psychoactive compounds. Conversely, fungal infections pose risks to ecosystems ranging from crops to wildlife to humans; these risks are driven, in part, by human and animal movement, and might be accelerating with climate change. Genomic surveys are expanding our knowledge of the true biodiversity of the fungal kingdom, and genome-editing tools make it possible to imagine harnessing these organisms to fuel the bioeconomy. Here, we examine the fungal threats facing civilization and investigate opportunities to use fungi to combat these threats.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08419-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-024-08419-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 FrancePublisher:Elsevier BV Sadeh, Elaheh; Farhadian, Abdolreza; Maddah, Mina; Semenov, Matvei E.; Son, Evgeniy R.; Heydari, Atousa; Mirzakimov, Ulukbek Zh.; Valiullin, Lenar R.; Varfolomeev, Mikhail A.;The development of efficient, non-foaming promoters is essential for advancing the industrial applications of solidified gas hydrates in carbon capture, natural gas storage, and transportation. In this study, a novel surfactant, containing sulfonate, amide, and carboxyl groups (SSAC), was introduced as a promoter for methane hydrate formation. SSAC was synthesized by integrating the chemistries of amino acids and sodium dodecyl sulfate (SDS), distinguishing it from existing promoters. High-pressure autoclave experiments demonstrated that SSAC significantly enhanced the kinetics of methane hydrate formation, at a low concentration of 5 ppm, achieving a maximum water-to-hydrate conversion of 85.2 %, equivalent to a storage capacity of 163.5 v/v in deionized water. Increasing the SSAC concentration to 500 ppm resulted in an impressive conversion rate of 94.6 % and a storage capacity of 181.6 v/v. Methane recovery was accomplished without foaming within 15 min during hydrate dissociation at room temperature, addressing a critical challenge in current hydrate-based storage systems. Molecular dynamics simulations further revealed that SSAC molecules act as collectors for methane molecules in solution, thereby enhancing the rate of hydrate growth and increasing the number of hydrate cavities. Notably, SSAC exhibited a biodegradation level of 41 % after 28 days, indicating its potential for natural degradation and environmental compatibility. This combination of low concentration efficiency, foam-free formation, environmental sustainability, and enhanced methane collection is unprecedented in the current literature, highlighting the innovative nature of this work. These findings suggest that the integration of amino acid structures with anionic surfactants offers a promising strategy for designing effective promoters, with significant implications for energy storage, seawater desalination, and carbon capture technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.124924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Publisher:Elsevier BV Jessica Barichello; Barbara Paci; Paolo Moras; Javid Hajhemati; Amanda Generosi; Flavia Righi Riva; Stefania Cacovich; Farshad Jafarzadeh; Francesca Brunetti; Aldo Di Carlo; Fabio Matteocci;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.113237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2024.113237&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu