- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- Open Source
- 11. Sustainability
- DE
- FR
- Energy Research
- Open Access
- Closed Access
- Open Source
- 11. Sustainability
- DE
- FR
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, NetherlandsPublisher:Elsevier BV Authors: Allaoui, Hamid; Guo, Yuhan; Choudhary, Alok; Bloemhof-Ruwaard, J.M.;Sustainability of agro-food supply chains has recently become the subject of greater interest from consumers, firms, governmental organizations and academia as the environment continues to deteriorate. One of the most critical factors influencing the sustainability of an agro-food supply chain is its network design. A particularly challenging aspect in this context is the broad range of influencing indicators associated with the Triple Bottom Line (TBL) of sustainability that need to be considered. However, many of these indicators could not be fully integrated or measured by single-step optimization problems. This paper presents a critical literature review of operational research methods for the design of sustainable supply chains. A novel two-stage hybrid solution methodology is proposed. In the first stage, a partner selection is performed using a hybrid multi criteria decision making based on Analytic Hierarchy Process (AHP) method and the Ordered Weighted Averaging (OWA) aggregation method. The result obtained in the first stage is used in the second stage to develop a multi-objective mathematical model to optimize the design of the supply chain network. This approach allows the simultaneous consideration of all three dimensions of sustainability including carbon footprint, water footprint, number of jobs created and the total cost of the supply chain design. The proposed approach generates a Pareto frontier to aid users in making decisions. Numerical experiments are completed utilizing data from an agro-food company to demonstrate the efficiency and effectiveness of the proposed solution methodology. The analyzes of the numerical results provide important organizational, practical and policy insights on (1) the impact of financial and environmental sustainability on supply chain network design (2) the tradeoff analysis between environmental emission, water footprint, societal implications and associated cost for making informed decision on supply chain investment.
Computers & Operatio... arrow_drop_down Computers & Operations ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Computers & Operatio... arrow_drop_down Computers & Operations ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, NetherlandsPublisher:Elsevier BV Authors: Allaoui, Hamid; Guo, Yuhan; Choudhary, Alok; Bloemhof-Ruwaard, J.M.;Sustainability of agro-food supply chains has recently become the subject of greater interest from consumers, firms, governmental organizations and academia as the environment continues to deteriorate. One of the most critical factors influencing the sustainability of an agro-food supply chain is its network design. A particularly challenging aspect in this context is the broad range of influencing indicators associated with the Triple Bottom Line (TBL) of sustainability that need to be considered. However, many of these indicators could not be fully integrated or measured by single-step optimization problems. This paper presents a critical literature review of operational research methods for the design of sustainable supply chains. A novel two-stage hybrid solution methodology is proposed. In the first stage, a partner selection is performed using a hybrid multi criteria decision making based on Analytic Hierarchy Process (AHP) method and the Ordered Weighted Averaging (OWA) aggregation method. The result obtained in the first stage is used in the second stage to develop a multi-objective mathematical model to optimize the design of the supply chain network. This approach allows the simultaneous consideration of all three dimensions of sustainability including carbon footprint, water footprint, number of jobs created and the total cost of the supply chain design. The proposed approach generates a Pareto frontier to aid users in making decisions. Numerical experiments are completed utilizing data from an agro-food company to demonstrate the efficiency and effectiveness of the proposed solution methodology. The analyzes of the numerical results provide important organizational, practical and policy insights on (1) the impact of financial and environmental sustainability on supply chain network design (2) the tradeoff analysis between environmental emission, water footprint, societal implications and associated cost for making informed decision on supply chain investment.
Computers & Operatio... arrow_drop_down Computers & Operations ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Computers & Operatio... arrow_drop_down Computers & Operations ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingMinasny, Budiman; Malone, Brendan P.; Mcbratney, Alex B.; Angers, Denis A.; Arrouays, Dominique; Chambers, Adam; Chaplot, Vincent; Chen, Zueng-Sang; Cheng, Kun; Das, Bhabani S.; Field, Damien J.; Gimona, Alessandro; Hedley, Carolyn B.; Hong, Suk Young; Mandal, Biswapati; Marchant, Ben P.; Martin, Manuel; Mcconkey, Brian G.; Mulder, Vera Leatitia; O'Rourke, Sharon; Richer-De-Forges, Anne C; Odeh, Inakwu; Padarian, José; Paustian, Keith; Pan, Genxing; Poggio, Laura; Savin, Igor; Stolbovoy, Vladimir; Stockmann, Uta; Sulaeman, Yiyi; Tsui, Chun-Chih; Vågen, Tor-Gunnar; van Wesemael, Bas; Winowiecki, Leigh;The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingMinasny, Budiman; Malone, Brendan P.; Mcbratney, Alex B.; Angers, Denis A.; Arrouays, Dominique; Chambers, Adam; Chaplot, Vincent; Chen, Zueng-Sang; Cheng, Kun; Das, Bhabani S.; Field, Damien J.; Gimona, Alessandro; Hedley, Carolyn B.; Hong, Suk Young; Mandal, Biswapati; Marchant, Ben P.; Martin, Manuel; Mcconkey, Brian G.; Mulder, Vera Leatitia; O'Rourke, Sharon; Richer-De-Forges, Anne C; Odeh, Inakwu; Padarian, José; Paustian, Keith; Pan, Genxing; Poggio, Laura; Savin, Igor; Stolbovoy, Vladimir; Stockmann, Uta; Sulaeman, Yiyi; Tsui, Chun-Chih; Vågen, Tor-Gunnar; van Wesemael, Bas; Winowiecki, Leigh;The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Authors: Ma, J.; Li, Q.; Kühn, M.; Nakaten, N.;Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Authors: Ma, J.; Li, Q.; Kühn, M.; Nakaten, N.;Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Alexander Janz; Stefanie Roth; Lothar Mennicken;Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-6641-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-6641-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Alexander Janz; Stefanie Roth; Lothar Mennicken;Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-6641-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-6641-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Eliudi S. Eliakimu; Linda Mans;Sustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Eliudi S. Eliakimu; Linda Mans;Sustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Hannes Koch; Stefan Lechner; Sebastian Erdmann; Martin Hofmann;doi: 10.3390/en15196991
In recent years, prices for photovoltaics have fallen steadily and the demand for sustainable energy has increased. Consequentially, the assessment of roof surfaces in terms of their suitability for PV (Photovoltaic) installations has continuously gained in importance. Several types of assessment approaches have been established, ranging from sampling to complete census or aerial image analysis methodologies. Assessments of rooftop photovoltaic potential are multi-stage processes. The sub-task of examining the photovoltaic potential of individual rooftops is crucial for exact case study results. However, this step is often time-consuming and requires lots of computational effort especially when some form of intelligent classification algorithm needs to be trained. This often leads to the use of sampled rooftop utilization factors when investigating large-scale areas of interest, as data-driven approaches usually are not well-scalable. In this paper, a novel neighbourhood-based filtering approach is introduced that can analyse large amounts of irradiation data in a vectorised manner. It is tested in an application to the city of Giessen, Germany, and its surrounding area. The results show that it outperforms state-of-the-art image filtering techniques. The algorithm is able to process high-resolution data covering 1 km2 within roughly 2.5 s. It successfully classifies rooftop segments which are feasible for PV installations while omitting small, obstructed or insufficiently exposed segments. Apart from minor shortcomings, the approach presented in this work is capable of generating per-rooftop PV potential assessments at low computational cost and is well scalable to large scale areas.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Hannes Koch; Stefan Lechner; Sebastian Erdmann; Martin Hofmann;doi: 10.3390/en15196991
In recent years, prices for photovoltaics have fallen steadily and the demand for sustainable energy has increased. Consequentially, the assessment of roof surfaces in terms of their suitability for PV (Photovoltaic) installations has continuously gained in importance. Several types of assessment approaches have been established, ranging from sampling to complete census or aerial image analysis methodologies. Assessments of rooftop photovoltaic potential are multi-stage processes. The sub-task of examining the photovoltaic potential of individual rooftops is crucial for exact case study results. However, this step is often time-consuming and requires lots of computational effort especially when some form of intelligent classification algorithm needs to be trained. This often leads to the use of sampled rooftop utilization factors when investigating large-scale areas of interest, as data-driven approaches usually are not well-scalable. In this paper, a novel neighbourhood-based filtering approach is introduced that can analyse large amounts of irradiation data in a vectorised manner. It is tested in an application to the city of Giessen, Germany, and its surrounding area. The results show that it outperforms state-of-the-art image filtering techniques. The algorithm is able to process high-resolution data covering 1 km2 within roughly 2.5 s. It successfully classifies rooftop segments which are feasible for PV installations while omitting small, obstructed or insufficiently exposed segments. Apart from minor shortcomings, the approach presented in this work is capable of generating per-rooftop PV potential assessments at low computational cost and is well scalable to large scale areas.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:Wiley Qi Li; Hejuan Liu; Zhengmeng Hou; Zhengmeng Hou; Patrick Were; Yang Gou; Yang Gou;doi: 10.1155/2017/6126505
Carbon capture, utilization, and storage (CCUS) is a gas injection technology that enables the storage of CO2 underground. The aims are twofold, on one hand to reduce the emissions of CO2 into the atmosphere and on the other hand to increase oil/gas/heat recovery. Different types of CCUS technologies and related engineering projects have a long history of research and operation in the USA. However, in China they have a short development period ca. 10 years. Unlike CO2 capture and CO2-EOR technologies that are already operating on a commercial scale in China, research into other CCUS technologies is still in its infancy or at the pilot-scale. This paper first reviews the status and development of the different types of CCUS technologies and related engineering projects worldwide. Then it focuses on their developments in China in the last decade. The main research projects, international cooperation, and pilot-scale engineering projects in China are summarized and compared. Finally, the paper examines the challenges and prospects to be experienced through the industrialization of CCUS engineering projects in China. It can be concluded that the CCUS technologies have still large potential in China. It can only be unlocked by overcoming the technical and social challenges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:Wiley Qi Li; Hejuan Liu; Zhengmeng Hou; Zhengmeng Hou; Patrick Were; Yang Gou; Yang Gou;doi: 10.1155/2017/6126505
Carbon capture, utilization, and storage (CCUS) is a gas injection technology that enables the storage of CO2 underground. The aims are twofold, on one hand to reduce the emissions of CO2 into the atmosphere and on the other hand to increase oil/gas/heat recovery. Different types of CCUS technologies and related engineering projects have a long history of research and operation in the USA. However, in China they have a short development period ca. 10 years. Unlike CO2 capture and CO2-EOR technologies that are already operating on a commercial scale in China, research into other CCUS technologies is still in its infancy or at the pilot-scale. This paper first reviews the status and development of the different types of CCUS technologies and related engineering projects worldwide. Then it focuses on their developments in China in the last decade. The main research projects, international cooperation, and pilot-scale engineering projects in China are summarized and compared. Finally, the paper examines the challenges and prospects to be experienced through the industrialization of CCUS engineering projects in China. It can be concluded that the CCUS technologies have still large potential in China. It can only be unlocked by overcoming the technical and social challenges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, NetherlandsPublisher:Elsevier BV Authors: Allaoui, Hamid; Guo, Yuhan; Choudhary, Alok; Bloemhof-Ruwaard, J.M.;Sustainability of agro-food supply chains has recently become the subject of greater interest from consumers, firms, governmental organizations and academia as the environment continues to deteriorate. One of the most critical factors influencing the sustainability of an agro-food supply chain is its network design. A particularly challenging aspect in this context is the broad range of influencing indicators associated with the Triple Bottom Line (TBL) of sustainability that need to be considered. However, many of these indicators could not be fully integrated or measured by single-step optimization problems. This paper presents a critical literature review of operational research methods for the design of sustainable supply chains. A novel two-stage hybrid solution methodology is proposed. In the first stage, a partner selection is performed using a hybrid multi criteria decision making based on Analytic Hierarchy Process (AHP) method and the Ordered Weighted Averaging (OWA) aggregation method. The result obtained in the first stage is used in the second stage to develop a multi-objective mathematical model to optimize the design of the supply chain network. This approach allows the simultaneous consideration of all three dimensions of sustainability including carbon footprint, water footprint, number of jobs created and the total cost of the supply chain design. The proposed approach generates a Pareto frontier to aid users in making decisions. Numerical experiments are completed utilizing data from an agro-food company to demonstrate the efficiency and effectiveness of the proposed solution methodology. The analyzes of the numerical results provide important organizational, practical and policy insights on (1) the impact of financial and environmental sustainability on supply chain network design (2) the tradeoff analysis between environmental emission, water footprint, societal implications and associated cost for making informed decision on supply chain investment.
Computers & Operatio... arrow_drop_down Computers & Operations ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Computers & Operatio... arrow_drop_down Computers & Operations ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, NetherlandsPublisher:Elsevier BV Authors: Allaoui, Hamid; Guo, Yuhan; Choudhary, Alok; Bloemhof-Ruwaard, J.M.;Sustainability of agro-food supply chains has recently become the subject of greater interest from consumers, firms, governmental organizations and academia as the environment continues to deteriorate. One of the most critical factors influencing the sustainability of an agro-food supply chain is its network design. A particularly challenging aspect in this context is the broad range of influencing indicators associated with the Triple Bottom Line (TBL) of sustainability that need to be considered. However, many of these indicators could not be fully integrated or measured by single-step optimization problems. This paper presents a critical literature review of operational research methods for the design of sustainable supply chains. A novel two-stage hybrid solution methodology is proposed. In the first stage, a partner selection is performed using a hybrid multi criteria decision making based on Analytic Hierarchy Process (AHP) method and the Ordered Weighted Averaging (OWA) aggregation method. The result obtained in the first stage is used in the second stage to develop a multi-objective mathematical model to optimize the design of the supply chain network. This approach allows the simultaneous consideration of all three dimensions of sustainability including carbon footprint, water footprint, number of jobs created and the total cost of the supply chain design. The proposed approach generates a Pareto frontier to aid users in making decisions. Numerical experiments are completed utilizing data from an agro-food company to demonstrate the efficiency and effectiveness of the proposed solution methodology. The analyzes of the numerical results provide important organizational, practical and policy insights on (1) the impact of financial and environmental sustainability on supply chain network design (2) the tradeoff analysis between environmental emission, water footprint, societal implications and associated cost for making informed decision on supply chain investment.
Computers & Operatio... arrow_drop_down Computers & Operations ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 215 citations 215 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert Computers & Operatio... arrow_drop_down Computers & Operations ResearchArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Computers & Operations ResearchArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cor.2016.10.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingMinasny, Budiman; Malone, Brendan P.; Mcbratney, Alex B.; Angers, Denis A.; Arrouays, Dominique; Chambers, Adam; Chaplot, Vincent; Chen, Zueng-Sang; Cheng, Kun; Das, Bhabani S.; Field, Damien J.; Gimona, Alessandro; Hedley, Carolyn B.; Hong, Suk Young; Mandal, Biswapati; Marchant, Ben P.; Martin, Manuel; Mcconkey, Brian G.; Mulder, Vera Leatitia; O'Rourke, Sharon; Richer-De-Forges, Anne C; Odeh, Inakwu; Padarian, José; Paustian, Keith; Pan, Genxing; Poggio, Laura; Savin, Igor; Stolbovoy, Vladimir; Stockmann, Uta; Sulaeman, Yiyi; Tsui, Chun-Chih; Vågen, Tor-Gunnar; van Wesemael, Bas; Winowiecki, Leigh;The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 France, France, France, United Kingdom, France, Netherlands, Russian Federation, France, France, France, France, France, FrancePublisher:Elsevier BV Publicly fundedFunded by:RSF | Large-scale digital soil ..., ARC | Dynamic soil landscape ca...RSF| Large-scale digital soil mapping based on remote sensing data ,ARC| Dynamic soil landscape carbon modellingMinasny, Budiman; Malone, Brendan P.; Mcbratney, Alex B.; Angers, Denis A.; Arrouays, Dominique; Chambers, Adam; Chaplot, Vincent; Chen, Zueng-Sang; Cheng, Kun; Das, Bhabani S.; Field, Damien J.; Gimona, Alessandro; Hedley, Carolyn B.; Hong, Suk Young; Mandal, Biswapati; Marchant, Ben P.; Martin, Manuel; Mcconkey, Brian G.; Mulder, Vera Leatitia; O'Rourke, Sharon; Richer-De-Forges, Anne C; Odeh, Inakwu; Padarian, José; Paustian, Keith; Pan, Genxing; Poggio, Laura; Savin, Igor; Stolbovoy, Vladimir; Stockmann, Uta; Sulaeman, Yiyi; Tsui, Chun-Chih; Vågen, Tor-Gunnar; van Wesemael, Bas; Winowiecki, Leigh;The ‘4 per mille Soils for Food Security and Climate’ was launched at the COP21 with an aspiration to increase global soil organic matter stocks by 4 per 1000 (or 0.4 %) per year as a compensation for the global emissions of greenhouse gases by anthropogenic sources. This paper surveyed the soil organic carbon (SOC) stock estimates and sequestration potentials from 20 regions in the world (New Zealand, Chile, South Africa, Australia, Tanzania, Indonesia, Kenya, Nigeria, India, China Taiwan, South Korea, China Mainland, United States of America, France, Canada, Belgium, England & Wales, Ireland, Scotland, and Russia). We asked whether the 4 per mille initiative is feasible for the region. The outcomes highlight region specific efforts and scopes for soil carbon sequestration. Reported soil C sequestration rates globally show that under best management practices, 4 per mille or even higher sequestration rates can be accomplished. High C sequestration rates (up to 10 per mille) can be achieved for soils with low initial SOC stock (topsoil less than 30 t C ha− 1), and at the first twenty years after implementation of best management practices. In addition, areas which have reached equilibrium will not be able to further increase their sequestration. We found that most studies on SOC sequestration only consider topsoil (up to 0.3 m depth), as it is considered to be most affected by management techniques. The 4 per mille number was based on a blanket calculation of the whole global soil profile C stock, however the potential to increase SOC is mostly on managed agricultural lands. If we consider 4 per mille in the top 1m of global agricultural soils, SOC sequestration is between 2-3 Gt C year− 1, which effectively offset 20–35% of global anthropogenic greenhouse gas emissions. As a strategy for climate change mitigation, soil carbon sequestration buys time over the next ten to twenty years while other effective sequestration and low carbon technologies become viable. The challenge for cropping farmers is to find disruptive technologies that will further improve soil condition and deliver increased soil carbon. Progress in 4 per mille requires collaboration and communication between scientists, farmers, policy makers, and marketeers.
NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 2K citations 1,540 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2017License: CC BY NDFull-Text: https://hal.science/hal-01480573Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2017Data sources: INRIA a CCSD electronic archive serverWageningen Staff PublicationsArticle . 2017License: CC BY NC NDData sources: Wageningen Staff PublicationsInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017License: CC BY NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.geoderma.2017.01.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Md. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; +2 AuthorsMd. Abdullah-Al-Mahbub; Abu Reza Md. Towfiqul Islam; Hussein Almohamad; Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry; Hazem Ghassan Abdo;doi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Authors: Ma, J.; Li, Q.; Kühn, M.; Nakaten, N.;Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 GermanyPublisher:Elsevier BV Authors: Ma, J.; Li, Q.; Kühn, M.; Nakaten, N.;Abstract The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.
GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 67 citations 67 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert GFZ German Research ... arrow_drop_down GFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesGFZ German Research Centre for GeosciencesArticle . 2018Data sources: GFZ German Research Centre for GeosciencesRenewable and Sustainable Energy ReviewsArticle . 2018 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2018.08.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Alexander Janz; Stefanie Roth; Lothar Mennicken;Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-6641-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-6641-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2016Publisher:Springer Science and Business Media LLC Authors: Alexander Janz; Stefanie Roth; Lothar Mennicken;Carbon capture and utilization (CCU) is a field of key emerging technologies. CCU can support the economy to decrease the dependency on fossil carbon raw materials, to stabilize electricity grids and markets with respect to a growing share of fluctuating renewable energy. Furthermore, it can contribute to mitigate anthropogenic CO2 emissions. The German Federal Ministry of Education and Research has provided substantial financial support for research and development projects, stimulating research, development, and innovations in the field of CO2 utilization. This review provides an overview over the most relevant funding measures in this field. Examples of successful projects demonstrate that CCU technologies are already economically viable or technologically ready for industrial application. CCU technologies as elements of a future "green economy" can contribute to reach the ambitious German sustainability targets with regard to climate protection as well as raw material productivity.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-6641-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 63 citations 63 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2016 . Peer-reviewedLicense: CC BYData sources: CrossrefEnvironmental Science and Pollution ResearchArticleLicense: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s11356-016-6641-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2017Publisher:Springer Science and Business Media LLC Authors: Ingo Karschin; Alex G. Berg; Jutta Geldermann;Cogeneration of heat and electricity is an important pillar of energy and climate policy. To plan the production and distribution system of combined heat and power (CHP) systems for residential heating, suitable methods for decision support are needed. For a comprehensive feasibility analysis, the integration of the location and capacity planning of the power plants, the choice of customers, and the network planning of the heating network into one optimization model are necessary. Thus, we develop an optimization model for electricity generation and heat supply. This mixed integer linear program (MILP) is based on graph theory for network flow problems. We apply the network location model for the optimization of district heating systems in the City of Osorno in Chile, which exhibits the “checkerboard layout” typically found in many South American cities. The network location model can support the strategic planning of investments in renewable energy projects because it permits the analysis of changing energy prices, calculation of break-even prices for heat and electricity, and estimation of greenhouse gas emission savings.
Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Zeitschrift für Ener... arrow_drop_down Zeitschrift für EnergiewirtschaftArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniversitätsbibliographie, Universität Duisburg-EssenArticle . 2018Data sources: Universitätsbibliographie, Universität Duisburg-Essenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12398-017-0216-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Eliudi S. Eliakimu; Linda Mans;Sustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:Frontiers Media SA Authors: Eliudi S. Eliakimu; Linda Mans;Sustainable development goals (SDGs) adopted in 2015 are geared toward sustainable development through various pathways, one being reducing inequality as covered in SDG 10. Inequalities are a threat to health and wellbeing of populations and a planet Earth in which we live. This rapid review aims to identify key issues that are likely to exacerbate inequalities around the six SDGs directly related to One Health, which are SDG 3, 6, 11, 13, 14 and 15, and suggest some actions that may help to address them using inclusive governance taking into account the coronavirus disease of 2019 (COVID-19) pandemic. Informed by the literature on SDGs and using the “inclusive development concept” by Gupta and Vegelin, literature search was done in Google Scholar, PubMed Central, as well as, searching of references in the relevant articles identified using search terms from the six SDGs that are directly related to One Health. In the context of the SDGs, in order to achieve One Health through inclusive governance, and tackle inequalities, the following needs to be considered and addressed: increasing number of armed conflicts; ongoing COVID-19 pandemic; ensuring availability of water and sanitation facilities; improving city and urban areas planning to cope with climate change; improving governance arrangements for addressing climate change factoring gender and human rights; multisectoral planning for conservation of oceans, seas, and marine resources; balancing trade regulation of wildlife trade with conservation efforts; need for a research collaborative involving experts from environmental sciences, wildlife, agriculture and human health to study and develop scientific evidence on contribution of changes in land use practices to occurrence of zoonotic diseases; and need of a legislation for promoting animal welfare to protect public health. Also, inclusion of people with disabilities in the use of digital technologies is critical.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fpubh.2021.755285&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Hannes Koch; Stefan Lechner; Sebastian Erdmann; Martin Hofmann;doi: 10.3390/en15196991
In recent years, prices for photovoltaics have fallen steadily and the demand for sustainable energy has increased. Consequentially, the assessment of roof surfaces in terms of their suitability for PV (Photovoltaic) installations has continuously gained in importance. Several types of assessment approaches have been established, ranging from sampling to complete census or aerial image analysis methodologies. Assessments of rooftop photovoltaic potential are multi-stage processes. The sub-task of examining the photovoltaic potential of individual rooftops is crucial for exact case study results. However, this step is often time-consuming and requires lots of computational effort especially when some form of intelligent classification algorithm needs to be trained. This often leads to the use of sampled rooftop utilization factors when investigating large-scale areas of interest, as data-driven approaches usually are not well-scalable. In this paper, a novel neighbourhood-based filtering approach is introduced that can analyse large amounts of irradiation data in a vectorised manner. It is tested in an application to the city of Giessen, Germany, and its surrounding area. The results show that it outperforms state-of-the-art image filtering techniques. The algorithm is able to process high-resolution data covering 1 km2 within roughly 2.5 s. It successfully classifies rooftop segments which are feasible for PV installations while omitting small, obstructed or insufficiently exposed segments. Apart from minor shortcomings, the approach presented in this work is capable of generating per-rooftop PV potential assessments at low computational cost and is well scalable to large scale areas.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Publisher:MDPI AG Authors: Hannes Koch; Stefan Lechner; Sebastian Erdmann; Martin Hofmann;doi: 10.3390/en15196991
In recent years, prices for photovoltaics have fallen steadily and the demand for sustainable energy has increased. Consequentially, the assessment of roof surfaces in terms of their suitability for PV (Photovoltaic) installations has continuously gained in importance. Several types of assessment approaches have been established, ranging from sampling to complete census or aerial image analysis methodologies. Assessments of rooftop photovoltaic potential are multi-stage processes. The sub-task of examining the photovoltaic potential of individual rooftops is crucial for exact case study results. However, this step is often time-consuming and requires lots of computational effort especially when some form of intelligent classification algorithm needs to be trained. This often leads to the use of sampled rooftop utilization factors when investigating large-scale areas of interest, as data-driven approaches usually are not well-scalable. In this paper, a novel neighbourhood-based filtering approach is introduced that can analyse large amounts of irradiation data in a vectorised manner. It is tested in an application to the city of Giessen, Germany, and its surrounding area. The results show that it outperforms state-of-the-art image filtering techniques. The algorithm is able to process high-resolution data covering 1 km2 within roughly 2.5 s. It successfully classifies rooftop segments which are feasible for PV installations while omitting small, obstructed or insufficiently exposed segments. Apart from minor shortcomings, the approach presented in this work is capable of generating per-rooftop PV potential assessments at low computational cost and is well scalable to large scale areas.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/19/6991/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15196991&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:Wiley Qi Li; Hejuan Liu; Zhengmeng Hou; Zhengmeng Hou; Patrick Were; Yang Gou; Yang Gou;doi: 10.1155/2017/6126505
Carbon capture, utilization, and storage (CCUS) is a gas injection technology that enables the storage of CO2 underground. The aims are twofold, on one hand to reduce the emissions of CO2 into the atmosphere and on the other hand to increase oil/gas/heat recovery. Different types of CCUS technologies and related engineering projects have a long history of research and operation in the USA. However, in China they have a short development period ca. 10 years. Unlike CO2 capture and CO2-EOR technologies that are already operating on a commercial scale in China, research into other CCUS technologies is still in its infancy or at the pilot-scale. This paper first reviews the status and development of the different types of CCUS technologies and related engineering projects worldwide. Then it focuses on their developments in China in the last decade. The main research projects, international cooperation, and pilot-scale engineering projects in China are summarized and compared. Finally, the paper examines the challenges and prospects to be experienced through the industrialization of CCUS engineering projects in China. It can be concluded that the CCUS technologies have still large potential in China. It can only be unlocked by overcoming the technical and social challenges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 CanadaPublisher:Wiley Qi Li; Hejuan Liu; Zhengmeng Hou; Zhengmeng Hou; Patrick Were; Yang Gou; Yang Gou;doi: 10.1155/2017/6126505
Carbon capture, utilization, and storage (CCUS) is a gas injection technology that enables the storage of CO2 underground. The aims are twofold, on one hand to reduce the emissions of CO2 into the atmosphere and on the other hand to increase oil/gas/heat recovery. Different types of CCUS technologies and related engineering projects have a long history of research and operation in the USA. However, in China they have a short development period ca. 10 years. Unlike CO2 capture and CO2-EOR technologies that are already operating on a commercial scale in China, research into other CCUS technologies is still in its infancy or at the pilot-scale. This paper first reviews the status and development of the different types of CCUS technologies and related engineering projects worldwide. Then it focuses on their developments in China in the last decade. The main research projects, international cooperation, and pilot-scale engineering projects in China are summarized and compared. Finally, the paper examines the challenges and prospects to be experienced through the industrialization of CCUS engineering projects in China. It can be concluded that the CCUS technologies have still large potential in China. It can only be unlocked by overcoming the technical and social challenges.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 79 citations 79 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1155/2017/6126505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu