- home
- Advanced Search
- Energy Research
- engineering and technology
- 7. Clean energy
- 12. Responsible consumption
- FR
- Energy Research
- engineering and technology
- 7. Clean energy
- 12. Responsible consumption
- FR
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV T. Fasquelle; Q. Falcoz; P. Neveu; F. Lecat; G. Flamant;Abstract This work aims to predict the general performances of a pilot parabolic trough collector during transient periods. To do so, a one-dimensional thermal model has been developed. It has been validated with experimental results from two different experimental setups, in steady-state conditions, with a transmitted power maximum error of 3.4%. Since the model only predicts the collector's thermal behavior, the parabolic trough collector has been first optically qualified. Then, optical efficiencies were used as input for the model. Experimental results were obtained in steady-state conditions and compared to the model. Then, experimental and numerical results were compared during two period of time with varying inlet conditions (i.e. dynamic condition tests): the first one with stable conditions, and the other one with harsh conditions. The developed model showed a good capability of predicting the thermal behavior of the parabolic trough collector with unstable environment (DNI, mass flow, inlet temperature), with a 9.6% relative standard error in the worst case. As a conclusion, while previous studies only focused on steady-state conditions, it has been showed that this kind of model can be used to precisely predict the dynamic behavior of large power plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2016Publisher:IEEE Authors: M. Abdou Tankari; Gilles Lefebvre; A. Seidou Maiga; Z. Nouhou Bako;This paper deals the study of the lead-acid behavior and its modelling based on the Kinetic Battery Model. Results of experimental tests are used to realize the analysis and to estimate the model parameters. These last can serve for prediction and estimation of the battery lifetime according to the actual operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icrera.2016.7884419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icrera.2016.7884419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Authors: Li, Jun; Colombier, Michel; Giraud, Pierre-Noël;Abstract This paper investigates the optimal choice of building energy efficiency (BEE) standard in the context of centralised urban district heating system in northern China. By employing a techno-economic analysis approach, we demonstrate that the current BEE standard implemented in the Chinese cities should be tightened further in order to achieve a socially optimal level. Without considering the externality costs associated with carbon dioxide (CO2) emissions, current BEE standards need to be upgraded to the equivalent level of French RT2005 standard coupled with a properly designed district coal-fired Combined Heat and Power (CHP). In contrast, the equivalent efficiency standard of Swedish building code is preferably to be implemented in the case of explicit carbon emission restriction as long as the marginal cost of carbon emission (carbon price) is sufficiently high. The fuel-switching policy (from coal to natural gas) in the urban district heating system would result in significant increase in overall costs if the BEE upgrade is not taken into account simultaneously. It is also found that BEE improvements in northern Chinese cities are more cost-effective than investing in low-carbon technologies such as wind power or Carbon Capture and storage in the EU and US with regard to CO2 emissions mitigation.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverMINES ParisTech: Open Archive (HAL)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverMINES ParisTech: Open Archive (HAL)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Ouhsaine, Lahoucine; Ramenah, Harry; El Ganaoui, Mohammed; Mimet, Abdelaziz;Abstract Building-based active envelopes play an important role to reduce active heating supplies. Several techniques are developed to enhance the energy performances of active building envelopes; meanwhile, numerous numerical and mathematical models are also developed to conduct the performance analysis of these techniques. In this paper, we propose a state-space model for solar active wall-based Phase Change Materials (PCM). The advantage of this method remains in its simplicity to provide details of internal nodes and input/output parameters. The low-cost calculation is a supplementary advantage versus a heavy numerical method. The proposed numerical model is applied for a multi-layer wall with PCM Wallboards (PCMW) embedded between indoor and outdoor environments. The results show the ability of the state-space model to estimate the thermal behavior of the system, as well as the thermal characteristics of embedding PCM in the internal face of the wall. It significantly contributes to stabilize the indoor temperature and to ensure the thermal comfort.
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2020.100401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2020.100401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Publicly fundedFunded by:IRCIRCAuthors: Edgar Galván-López; Tom Curran; James McDermott; Paula Carroll;Demand-Side Management systems aim to modulate energy consumption at the customer side of the meter using price incentives. Current incentive schemes allow consumers to reduce their costs, and from the point of view of the supplier play a role in load balancing, but do not lead to optimal demand patterns. In the context of charging fleets of electric vehicles, we propose a centralised method for setting overnight charging schedules. This method uses evolutionary algorithms to automatically search for optimal plans, representing both the charging schedule and the energy drawn from the grid at each time-step. In successive experiments, we optimise for increased state of charge, reduced peak demand, and reduced consumer costs. In simulations, the centralised method achieves improvements in performance relative to simple models of non-centralised consumer behaviour.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neucom.2015.03.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neucom.2015.03.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:IEEE Authors: Mohamed Amine Bettouche; Kaci Ghedamsi; Mohamed Fouad Benkhoris; Mourad Ait Ahmed; +2 AuthorsMohamed Amine Bettouche; Kaci Ghedamsi; Mohamed Fouad Benkhoris; Mourad Ait Ahmed; Djamal Aouzellag; Jean-Claude Le Claire;This paper presents the direct power control (DPC) of asymmetrical six-phase permanent magnet synchronous generator (A6PMSG) which supplied the isolated load via two PWM rectifiers. The study concerns the method of control by the converter (DPC). The proposed method is around two hysteresis controllers that enable the adjustment of active and reactive power. The research in this paper is verified by MATLAB SIMULINK software. It has been demonstrated through the simulation results that the proposed strategy can be an attractive and practical solution to multi-phase machines applications.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icsres...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icsresa49121.2019.9182334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icsres...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icsresa49121.2019.9182334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Sophie Thiebaud-Roux; Sophie Thiebaud-Roux; Laurent E. Prat; Laurent E. Prat; Brigitte Dubreuil; Brigitte Dubreuil; Romain Richard;Biodiesel can be produced from vegetable oils, animal fats, and waste cooking oils by transesterification with ethanol (also called ethanolysis) in order to substitute fossil fuels. In this work, the batch ethanolysis of high oleic sunflower oil was transferred into a continuous microstructured device, which induces a better control of heat and mass transfers. Various parameters were studied, notably the initial ethanol to oil molar ratio. An innovative method using NIR spectroscopy was also developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol in microreactors (circular PFA tube 1/1600 OD, 0.0200 ID). The reactions were monitored directly in the microreactors through sequential scans of the reaction medium by the means of an adequate probe. The asset of the method is that no sample collection or preparation is necessary. Partial Least Squares regression was used to develop calibration and prediction models between NIR spectral data and analytical data obtained by a reference method (gas chromatography with flame ionization detection, GC–FID). This method is fast, safe, reliable, nondestructive and inexpensive contrary to conventional procedures, such as gas chromatography and high performance liquid chromatography generally used to determine the composition of crude transesterification medium.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2013 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 70 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2013 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Sheng-Chung Tzeng; Wei-Chuan Chang; Wei-Ping Ma; K. David Huang;Abstract The hybrid pneumatic power system (HPPS) proposed in this research replaces the battery’s electric-chemical energy with flow work and optimizes the management and utilization of the energy. This power system is able to keep the internal-combustion engine working at its optimal condition and turn its waste energy into effective mechanical energy and so enhance the thermal efficiency of the whole system. Using computer simulation software ITI-SIM, this study simulates the overall dynamic characteristics of the system in accordance with the regulated running-vehicle test-mode ECE47, and, with experimental verification and analysis, proves that this system can meet the requirements of the standard running-car mode. As for recycling the waste energy, the experimental results show that this design could offset the shortcomings of the low-density of pneumatic power and so effectively enhance the efficiency of the whole system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2004.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2004.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2007Publisher:IEEE Authors: C. Ortiz; Pierre Bénard; M. Lavoie; Adam Skorek;In this paper, we present the conjugate heat transfer analysis in a 167-kVA dry-type transformer using the parallel version of the computational fluid dynamics code Fluent 6.0. The renormalization group kappa-epsiv model is proposed to compute the turbulent aspect of the convective airflow inside the transformer metal tank for Air Natural/Air Natural cooling conditions. An experimental approach was used to assess Joule losses in the low-/high-voltage windings and eddy-current losses in the magnetic core. The resulting mathematical model was solved using 14 compute nodes on a distributed machine.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2009 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ias.2007.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2009 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ias.2007.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Journal , Other literature type 1984Publisher:SPIE Authors: Gilles Flamant; C. Combesure; G. Olalde; D. Schwander;Abstract Theoretical analysis of the interaction between concentrated solar radiation and a honeycomb matrix or a bed of particles cooled by a gas is presented. The computation and the experimental results show evidence of overheating of the solid near the irradiated surface. To prevent the upper surface from this phenomenon and to reduce the radiative heat losses, we propose to use selective semi-transparent porous absorbers. The first results about coatings on silica are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.944788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.944788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Elsevier BV T. Fasquelle; Q. Falcoz; P. Neveu; F. Lecat; G. Flamant;Abstract This work aims to predict the general performances of a pilot parabolic trough collector during transient periods. To do so, a one-dimensional thermal model has been developed. It has been validated with experimental results from two different experimental setups, in steady-state conditions, with a transmitted power maximum error of 3.4%. Since the model only predicts the collector's thermal behavior, the parabolic trough collector has been first optically qualified. Then, optical efficiencies were used as input for the model. Experimental results were obtained in steady-state conditions and compared to the model. Then, experimental and numerical results were compared during two period of time with varying inlet conditions (i.e. dynamic condition tests): the first one with stable conditions, and the other one with harsh conditions. The developed model showed a good capability of predicting the thermal behavior of the parabolic trough collector with unstable environment (DNI, mass flow, inlet temperature), with a 9.6% relative standard error in the worst case. As a conclusion, while previous studies only focused on steady-state conditions, it has been showed that this kind of model can be used to precisely predict the dynamic behavior of large power plants.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.energy.2017.09.063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2016Publisher:IEEE Authors: M. Abdou Tankari; Gilles Lefebvre; A. Seidou Maiga; Z. Nouhou Bako;This paper deals the study of the lead-acid behavior and its modelling based on the Kinetic Battery Model. Results of experimental tests are used to realize the analysis and to estimate the model parameters. These last can serve for prediction and estimation of the battery lifetime according to the actual operating conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icrera.2016.7884419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu4 citations 4 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icrera.2016.7884419&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 FrancePublisher:Elsevier BV Authors: Li, Jun; Colombier, Michel; Giraud, Pierre-Noël;Abstract This paper investigates the optimal choice of building energy efficiency (BEE) standard in the context of centralised urban district heating system in northern China. By employing a techno-economic analysis approach, we demonstrate that the current BEE standard implemented in the Chinese cities should be tightened further in order to achieve a socially optimal level. Without considering the externality costs associated with carbon dioxide (CO2) emissions, current BEE standards need to be upgraded to the equivalent level of French RT2005 standard coupled with a properly designed district coal-fired Combined Heat and Power (CHP). In contrast, the equivalent efficiency standard of Swedish building code is preferably to be implemented in the case of explicit carbon emission restriction as long as the marginal cost of carbon emission (carbon price) is sufficiently high. The fuel-switching policy (from coal to natural gas) in the urban district heating system would result in significant increase in overall costs if the BEE upgrade is not taken into account simultaneously. It is also found that BEE improvements in northern Chinese cities are more cost-effective than investing in low-carbon technologies such as wind power or Carbon Capture and storage in the EU and US with regard to CO2 emissions mitigation.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverMINES ParisTech: Open Archive (HAL)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2009Data sources: INRIA a CCSD electronic archive serverMINES ParisTech: Open Archive (HAL)Article . 2009Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2009.01.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Ouhsaine, Lahoucine; Ramenah, Harry; El Ganaoui, Mohammed; Mimet, Abdelaziz;Abstract Building-based active envelopes play an important role to reduce active heating supplies. Several techniques are developed to enhance the energy performances of active building envelopes; meanwhile, numerous numerical and mathematical models are also developed to conduct the performance analysis of these techniques. In this paper, we propose a state-space model for solar active wall-based Phase Change Materials (PCM). The advantage of this method remains in its simplicity to provide details of internal nodes and input/output parameters. The low-cost calculation is a supplementary advantage versus a heavy numerical method. The proposed numerical model is applied for a multi-layer wall with PCM Wallboards (PCMW) embedded between indoor and outdoor environments. The results show the ability of the state-space model to estimate the thermal behavior of the system, as well as the thermal characteristics of embedding PCM in the internal face of the wall. It significantly contributes to stabilize the indoor temperature and to ensure the thermal comfort.
Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2020.100401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 5 citations 5 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Sustainable Energy G... arrow_drop_down Sustainable Energy Grids and NetworksArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.segan.2020.100401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Publicly fundedFunded by:IRCIRCAuthors: Edgar Galván-López; Tom Curran; James McDermott; Paula Carroll;Demand-Side Management systems aim to modulate energy consumption at the customer side of the meter using price incentives. Current incentive schemes allow consumers to reduce their costs, and from the point of view of the supplier play a role in load balancing, but do not lead to optimal demand patterns. In the context of charging fleets of electric vehicles, we propose a centralised method for setting overnight charging schedules. This method uses evolutionary algorithms to automatically search for optimal plans, representing both the charging schedule and the energy drawn from the grid at each time-step. In successive experiments, we optimise for increased state of charge, reduced peak demand, and reduced consumer costs. In simulations, the centralised method achieves improvements in performance relative to simple models of non-centralised consumer behaviour.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neucom.2015.03.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.neucom.2015.03.093&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2019Publisher:IEEE Authors: Mohamed Amine Bettouche; Kaci Ghedamsi; Mohamed Fouad Benkhoris; Mourad Ait Ahmed; +2 AuthorsMohamed Amine Bettouche; Kaci Ghedamsi; Mohamed Fouad Benkhoris; Mourad Ait Ahmed; Djamal Aouzellag; Jean-Claude Le Claire;This paper presents the direct power control (DPC) of asymmetrical six-phase permanent magnet synchronous generator (A6PMSG) which supplied the isolated load via two PWM rectifiers. The study concerns the method of control by the converter (DPC). The proposed method is around two hysteresis controllers that enable the adjustment of active and reactive power. The research in this paper is verified by MATLAB SIMULINK software. It has been demonstrated through the simulation results that the proposed strategy can be an attractive and practical solution to multi-phase machines applications.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icsres...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icsresa49121.2019.9182334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1109/icsres...Conference object . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/icsresa49121.2019.9182334&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Sophie Thiebaud-Roux; Sophie Thiebaud-Roux; Laurent E. Prat; Laurent E. Prat; Brigitte Dubreuil; Brigitte Dubreuil; Romain Richard;Biodiesel can be produced from vegetable oils, animal fats, and waste cooking oils by transesterification with ethanol (also called ethanolysis) in order to substitute fossil fuels. In this work, the batch ethanolysis of high oleic sunflower oil was transferred into a continuous microstructured device, which induces a better control of heat and mass transfers. Various parameters were studied, notably the initial ethanol to oil molar ratio. An innovative method using NIR spectroscopy was also developed to on-line monitor the transesterification reaction of high oleic sunflower oil with ethanol in microreactors (circular PFA tube 1/1600 OD, 0.0200 ID). The reactions were monitored directly in the microreactors through sequential scans of the reaction medium by the means of an adequate probe. The asset of the method is that no sample collection or preparation is necessary. Partial Least Squares regression was used to develop calibration and prediction models between NIR spectral data and analytical data obtained by a reference method (gas chromatography with flame ionization detection, GC–FID). This method is fast, safe, reliable, nondestructive and inexpensive contrary to conventional procedures, such as gas chromatography and high performance liquid chromatography generally used to determine the composition of crude transesterification medium.
Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2013 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 91visibility views 91 download downloads 70 Powered bymore_vert Open Archive Toulous... arrow_drop_down Open Archive Toulouse Archive OuverteArticle . 2013 . Peer-reviewedData sources: Open Archive Toulouse Archive OuverteINRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverOATAO (Open Archive Toulouse Archive Ouverte - Université de Toulouse)Article . 2013Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2013Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2013 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2012.07.054&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: Sheng-Chung Tzeng; Wei-Chuan Chang; Wei-Ping Ma; K. David Huang;Abstract The hybrid pneumatic power system (HPPS) proposed in this research replaces the battery’s electric-chemical energy with flow work and optimizes the management and utilization of the energy. This power system is able to keep the internal-combustion engine working at its optimal condition and turn its waste energy into effective mechanical energy and so enhance the thermal efficiency of the whole system. Using computer simulation software ITI-SIM, this study simulates the overall dynamic characteristics of the system in accordance with the regulated running-vehicle test-mode ECE47, and, with experimental verification and analysis, proves that this system can meet the requirements of the standard running-car mode. As for recycling the waste energy, the experimental results show that this design could offset the shortcomings of the low-density of pneumatic power and so effectively enhance the efficiency of the whole system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2004.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 34 citations 34 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2004.10.006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2007Publisher:IEEE Authors: C. Ortiz; Pierre Bénard; M. Lavoie; Adam Skorek;In this paper, we present the conjugate heat transfer analysis in a 167-kVA dry-type transformer using the parallel version of the computational fluid dynamics code Fluent 6.0. The renormalization group kappa-epsiv model is proposed to compute the turbulent aspect of the convective airflow inside the transformer metal tank for Air Natural/Air Natural cooling conditions. An experimental approach was used to assess Joule losses in the low-/high-voltage windings and eddy-current losses in the magnetic core. The resulting mathematical model was solved using 14 compute nodes on a distributed machine.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2009 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ias.2007.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu32 citations 32 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Industry ApplicationsArticle . 2009 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/ias.2007.152&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Journal , Other literature type 1984Publisher:SPIE Authors: Gilles Flamant; C. Combesure; G. Olalde; D. Schwander;Abstract Theoretical analysis of the interaction between concentrated solar radiation and a honeycomb matrix or a bed of particles cooled by a gas is presented. The computation and the experimental results show evidence of overheating of the solid near the irradiated surface. To prevent the upper surface from this phenomenon and to reduce the radiative heat losses, we propose to use selective semi-transparent porous absorbers. The first results about coatings on silica are presented.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.944788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1117/12.944788&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu