- home
- Advanced Search
- Energy Research
- FR
- Energy Research
- FR
description Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 07 Oct 2022 Switzerland, Netherlands, Netherlands, FrancePublisher:Springer Science and Business Media LLC Funded by:NWO | Biomass-burning radiative..., NWO | Why do global models unde...NWO| Biomass-burning radiative forcing ,NWO| Why do global models underestimate biomass burning aerosol?Authors:Qirui Zhong;
Qirui Zhong
Qirui Zhong in OpenAIRENick Schutgens;
Nick Schutgens
Nick Schutgens in OpenAIREGuido R. van der Werf;
Guido R. van der Werf
Guido R. van der Werf in OpenAIRETwan van Noije;
+16 AuthorsTwan van Noije
Twan van Noije in OpenAIREQirui Zhong;
Qirui Zhong
Qirui Zhong in OpenAIRENick Schutgens;
Nick Schutgens
Nick Schutgens in OpenAIREGuido R. van der Werf;
Guido R. van der Werf
Guido R. van der Werf in OpenAIRETwan van Noije;
Susanne E. Bauer;Twan van Noije
Twan van Noije in OpenAIREKostas Tsigaridis;
Tero Mielonen;Kostas Tsigaridis
Kostas Tsigaridis in OpenAIRERamiro Checa-Garcia;
Ramiro Checa-Garcia
Ramiro Checa-Garcia in OpenAIREDavid Neubauer;
David Neubauer
David Neubauer in OpenAIREZak Kipling;
Alf Kirkevåg; Dirk J. L. Olivié;Zak Kipling
Zak Kipling in OpenAIREHarri Kokkola;
Harri Kokkola
Harri Kokkola in OpenAIREHitoshi Matsui;
Paul Ginoux;Hitoshi Matsui
Hitoshi Matsui in OpenAIREToshihiko Takemura;
Toshihiko Takemura
Toshihiko Takemura in OpenAIREPhilippe Le Sager;
Samuel Rémy; Huisheng Bian;Philippe Le Sager
Philippe Le Sager in OpenAIREMian Chin;
Mian Chin
Mian Chin in OpenAIREpmid: 36207322
pmc: PMC9547058
AbstractBiomass burning (BB) is a major source of aerosols that remain the most uncertain components of the global radiative forcing. Current global models have great difficulty matching observed aerosol optical depth (AOD) over BB regions. A common solution to address modelled AOD biases is scaling BB emissions. Using the relationship from an ensemble of aerosol models and satellite observations, we show that the bias in aerosol modelling results primarily from incorrect lifetimes and underestimated mass extinction coefficients. In turn, these biases seem to be related to incorrect precipitation and underestimated particle sizes. We further show that boosting BB emissions to correct AOD biases over the source region causes an overestimation of AOD in the outflow from Africa by 48%, leading to a double warming effect compared with when biases are simultaneously addressed for both aforementioned factors. Such deviations are particularly concerning in a warming future with increasing emissions from fires.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03993097Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-33680-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2022Full-Text: https://insu.hal.science/insu-03993097Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Nature CommunicationsArticle . 2022add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-022-33680-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Other literature type 2013Publisher:OpenAlex Authors: Philippe Ciais;Han Dolman;
Han Dolman
Han Dolman in OpenAIREAntonio Bombelli;
Antonio Bombelli
Antonio Bombelli in OpenAIRERiley Duren;
+53 AuthorsRiley Duren
Riley Duren in OpenAIREPhilippe Ciais;Han Dolman;
Han Dolman
Han Dolman in OpenAIREAntonio Bombelli;
Antonio Bombelli
Antonio Bombelli in OpenAIRERiley Duren;
Riley Duren
Riley Duren in OpenAIREAnna Peregon;
Anna Peregon
Anna Peregon in OpenAIREP. J. Rayner;
P. J. Rayner
P. J. Rayner in OpenAIRECharles E. Miller;
Charles E. Miller
Charles E. Miller in OpenAIRENadine Gobron;
G. Kinderman;Nadine Gobron
Nadine Gobron in OpenAIREGregg Marland;
Gregg Marland
Gregg Marland in OpenAIRENicolas Gruber;
Nicolas Gruber
Nicolas Gruber in OpenAIREFrédéric Chevallier;
Frédéric Chevallier
Frédéric Chevallier in OpenAIRER. J. Andres;
R. J. Andres
R. J. Andres in OpenAIREGianpaolo Balsamo;
Gianpaolo Balsamo
Gianpaolo Balsamo in OpenAIRELaurent Bopp;
Laurent Bopp
Laurent Bopp in OpenAIREFrançois‐Marie Bréon;
François‐Marie Bréon
François‐Marie Bréon in OpenAIREGrégoire Broquet;
Grégoire Broquet
Grégoire Broquet in OpenAIRERoger Dargaville;
Roger Dargaville
Roger Dargaville in OpenAIRETom J. Battin;
Tom J. Battin
Tom J. Battin in OpenAIREAlberto Borges;
Alberto Borges
Alberto Borges in OpenAIREH. Bovensmann;
H. Bovensmann
H. Bovensmann in OpenAIREMichael Buchwitz;
Michael Buchwitz
Michael Buchwitz in OpenAIREJ. H. Butler;
J. H. Butler
J. H. Butler in OpenAIREJosep G. Canadell;
Robert B. Cook;Josep G. Canadell
Josep G. Canadell in OpenAIRERuth DeFries;
Ruth DeFries
Ruth DeFries in OpenAIRERichard Engelen;
Richard Engelen
Richard Engelen in OpenAIREK. R. Gurney;
K. R. Gurney
K. R. Gurney in OpenAIREChristoph Heinze;
Christoph Heinze
Christoph Heinze in OpenAIREMartin Heimann;
A. Held; Matieu Henry;Martin Heimann
Martin Heimann in OpenAIREB. E. Law;
B. E. Law
B. E. Law in OpenAIRESebastiaan Luyssaert;
Sebastiaan Luyssaert
Sebastiaan Luyssaert in OpenAIREJ. B. Miller;
Takashi Moriyama; C. Moulin; Ranga B. Myneni; C. Nussli;J. B. Miller
J. B. Miller in OpenAIREMichael Obersteiner;
Dennis S. Ojima;Michael Obersteiner
Michael Obersteiner in OpenAIREYude Pan;
Yude Pan
Yude Pan in OpenAIREJean-Daniel Paris;
Jean-Daniel Paris
Jean-Daniel Paris in OpenAIREShilong Piao;
Shilong Piao
Shilong Piao in OpenAIREBenjamin Poulter;
Benjamin Poulter
Benjamin Poulter in OpenAIREStephen Plummer;
Stephen Plummer
Stephen Plummer in OpenAIRES. Quegan;
S. Quegan
S. Quegan in OpenAIREPeter Raymond;
Peter Raymond
Peter Raymond in OpenAIREMarkus Reichstein;
Léonard Rivier;Markus Reichstein
Markus Reichstein in OpenAIREChristopher L. Sabine;
Christopher L. Sabine
Christopher L. Sabine in OpenAIREDavid Schimel;
David Schimel
David Schimel in OpenAIREOksana Tarasova;
Oksana Tarasova
Oksana Tarasova in OpenAIREGuido R. van der Werf;
D. E. Wickland;Guido R. van der Werf
Guido R. van der Werf in OpenAIREMike Williams;
Claus Zehner;Mike Williams
Mike Williams in OpenAIRERésumé. Un système d'observation et d'analyse du carbone intégré à l'échelle mondiale est nécessaire pour améliorer la compréhension fondamentale du cycle mondial du carbone, pour améliorer notre capacité à projeter les changements futurs et pour vérifier l'efficacité des politiques visant à réduire les émissions de gaz à effet de serre et à augmenter la séquestration du carbone. La construction d'un système intégré d'observation du carbone nécessite des avancées transformationnelles du cadre exploratoire clairsemé existant vers un système dense, robuste et durable dans toutes ses composantes : les émissions anthropiques, l'atmosphère, l'océan et la biosphère terrestre. L'objectif de cette étude est d'identifier l'état actuel des observations de carbone et les besoins d'un système mondial intégré d'observation du carbone qui peut être construit au cours de la prochaine décennie. Une conclusion clé est l'expansion substantielle (de plusieurs ordres de grandeur) des réseaux d'observation au sol nécessaires pour atteindre la haute résolution spatiale pour les flux de CO2 et de CH4 et pour les stocks de carbone afin de répondre aux objectifs politiques pertinents et d'attribuer les changements de flux aux processus sous-jacents dans chaque région. Afin d'établir des diagnostics de flux et de stocks sur des zones éloignées telles que les océans du sud, les forêts tropicales et l'Arctique, les observations in situ devront être complétées par des mesures de télédétection. La télédétection offre l'avantage d'une couverture spatiale dense et de revisites fréquentes. Un défi clé consiste à amener les mesures de télédétection à un niveau de cohérence et de précision à long terme afin qu'elles puissent être efficacement combinées dans des modèles pour réduire les incertitudes, en synergie avec les données au sol. Apporter des contraintes d'observation strictes sur les émissions de combustibles fossiles et de changement d'affectation des terres sera le plus grand défi pour le déploiement d'un système intégré d'observation du carbone pertinent pour les politiques. Cela nécessitera des données in situ et de télédétection à une résolution et une densité beaucoup plus élevées que celles actuellement atteintes pour les flux naturels, bien que sur une petite superficie (villes, sites industriels, centrales électriques), ainsi que l'inclusion de mesures indirectes de CO2 de combustibles fossiles telles que le radiocarbone dans les traceurs de combustion de CO2 et de carbone. En outre, un système de surveillance du carbone pertinent pour les politiques devrait également fournir des mécanismes pour concilier les estimations des flux régionaux descendants (basés sur l'atmosphère) et ascendants (basés sur la surface) sur toute la gamme des échelles spatiales et temporelles pertinentes pour les politiques d'atténuation. Le succès du système reposera sur des engagements à long terme en matière de suivi, sur une meilleure collaboration internationale pour combler les lacunes dans les observations actuelles, sur des efforts soutenus pour améliorer l'accès aux différents flux de données et rendre les bases de données interopérables, et sur l'étalonnage de chaque composante du système à des échelles internationales convenues. Resumen. Se necesita un sistema de observación y análisis de carbono integrado a nivel mundial para mejorar la comprensión fundamental del ciclo global del carbono, para mejorar nuestra capacidad de proyectar cambios futuros y para verificar la efectividad de las políticas destinadas a reducir las emisiones de gases de efecto invernadero y aumentar el secuestro de carbono. Construir un sistema integrado de observación de carbono requiere avances transformacionales desde el marco exploratorio escaso existente hacia un sistema denso, robusto y sostenido en todos los componentes: las emisiones antropogénicas, la atmósfera, el océano y la biosfera terrestre. El objetivo de este estudio es identificar el estado actual de las emisiones de carbono y las necesidades de un sistema global integrado de emisiones de carbono que pueda construirse en la próxima década. Una conclusión clave es la expansión sustancial (en varios órdenes de magnitud) de las redes de observación terrestres necesarias para alcanzar la alta resolución espacial para los flujos de CO2 y CH4, y para las reservas de carbono para abordar los objetivos relevantes para las políticas y atribuir los cambios de flujo a los procesos subyacentes en cada región. Para establecer diagnósticos de flujo y stock en áreas remotas como los océanos del sur, los bosques tropicales y el Ártico, las observaciones in situ deberán complementarse con mediciones de teledetección. La teledetección ofrece la ventaja de una cobertura espacial densa y una revisión frecuente. Un desafío clave es llevar las mediciones de teledetección a un nivel de consistencia y precisión a largo plazo para que puedan combinarse de manera eficiente en modelos para reducir las incertidumbres, en sinergia con los datos basados en tierra. Traer restricciones observacionales estrictas sobre las emisiones de combustibles fósiles y el cambio en el uso de la tierra será el mayor desafío para el despliegue de un sistema integrado de observación de carbono relevante para las políticas. Esto requerirá datos in situ y teledetectados con una resolución y densidad mucho más altas que las que se logran actualmente para los flujos naturales, aunque en una pequeña superficie de tierra (ciudades, sitios industriales, centrales eléctricas), así como la inclusión de mediciones indirectas de CO2 de combustibles fósiles, como el radiocarbono en CO2 y los trazadores de combustión de combustibles de carbono. Además, un sistema de monitoreo de carbono relevante para las políticas también debe proporcionar mecanismos para conciliar las estimaciones regionales de flujo de arriba hacia abajo (basadas en la atmósfera) y de abajo hacia arriba (basadas en la superficie) en toda la gama de escalas espaciales y temporales relevantes para las políticas de mitigación. El éxito del sistema dependerá de los compromisos a largo plazo con el monitoreo, de una mejor colaboración internacional para llenar los vacíos en las observaciones actuales, de esfuerzos sostenidos para mejorar el acceso a los diferentes flujos de datos y hacer que las bases de datos sean interoperables, y de la calibración de cada componente del sistema a escalas internacionales acordadas. Abstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales. الخلاصة. هناك حاجة إلى نظام متكامل عالميًا لمراقبة الكربون وتحليله لتحسين الفهم الأساسي لدورة الكربون العالمية، وتحسين قدرتنا على توقع التغييرات المستقبلية، والتحقق من فعالية السياسات التي تهدف إلى الحد من انبعاثات غازات الدفيئة وزيادة عزل الكربون. يتطلب بناء نظام متكامل لمراقبة الكربون تقدمًا تحويليًا من الإطار الاستكشافي المتناثر الحالي نحو نظام كثيف وقوي ومستدام في جميع المكونات: الانبعاثات البشرية المنشأ والغلاف الجوي والمحيطات والمحيط الحيوي الأرضي. الهدف من هذه الدراسة هو تحديد الوضع الحالي لملاحظات الكربون والاحتياجات لنظام عالمي متكامل لمراقبة الكربون يمكن بناؤه في العقد المقبل. الاستنتاج الرئيسي هو التوسع الكبير (بعدة مرات من حيث الحجم) لشبكات المراقبة الأرضية المطلوبة للوصول إلى الاستبانة المكانية العالية لتدفقات ثاني أكسيد الكربون والميثان، ولمخزونات الكربون لمعالجة الأهداف ذات الصلة بالسياسات، وعزو تغييرات التدفق إلى العمليات الأساسية في كل منطقة. من أجل إنشاء تشخيصات التدفق والأرصدة في المناطق النائية مثل المحيطات الجنوبية والغابات الاستوائية والقطب الشمالي، يجب استكمال الملاحظات في الموقع بقياسات الاستشعار عن بعد. يوفر الاستشعار عن بعد ميزة التغطية المكانية الكثيفة وإعادة الزيارة المتكررة. ويتمثل أحد التحديات الرئيسية في الوصول بقياسات الاستشعار عن بعد إلى مستوى من الاتساق والدقة على المدى الطويل بحيث يمكن دمجها بكفاءة في نماذج للحد من أوجه عدم اليقين، بالتآزر مع البيانات الأرضية. سيكون فرض قيود صارمة على مراقبة الوقود الأحفوري وانبعاثات تغير استخدام الأراضي هو التحدي الأكبر أمام نشر نظام متكامل لمراقبة الكربون ذي صلة بالسياسات. وسيتطلب ذلك بيانات في الموقع ومستشعرة عن بعد بدقة وكثافة أعلى بكثير مما هو متحقق حاليًا للتدفقات الطبيعية، على الرغم من أنها على مساحة أرض صغيرة (المدن والمواقع الصناعية ومحطات الطاقة)، بالإضافة إلى تضمين قياسات وكيل ثاني أكسيد الكربون للوقود الأحفوري مثل الكربون المشع في ثاني أكسيد الكربون وتتبع احتراق الوقود الكربوني. بالإضافة إلى ذلك، يجب أن يوفر نظام رصد الكربون ذي الصلة بالسياسة أيضًا آليات للتوفيق بين تقديرات التدفق الإقليمية من أعلى إلى أسفل (القائمة على الغلاف الجوي) ومن أسفل إلى أعلى (السطحية) عبر نطاق المقاييس المكانية والزمنية ذات الصلة بسياسات التخفيف. سيعتمد نجاح النظام على الالتزامات طويلة الأجل بالرصد، وعلى تحسين التعاون الدولي لسد الثغرات في الملاحظات الحالية، وعلى الجهود المستمرة لتحسين الوصول إلى تدفقات البيانات المختلفة وجعل قواعد البيانات قابلة للتشغيل المتبادل، وعلى معايرة كل مكون من مكونات النظام وفقًا للنطاقات الدولية المتفق عليها.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/qfvx3-wd180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.60692/qfvx3-wd180&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2011 Australia, France, France, Netherlands, FrancePublisher:Elsevier BV Funded by:EC | AMAZALERT, EC | COCOSEC| AMAZALERT ,EC| COCOSAuthors:van Der Molen, M.K.;
van Der Molen, M.K.
van Der Molen, M.K. in OpenAIREDolman, A.J.;
Dolman, A.J.
Dolman, A.J. in OpenAIRECiais, Philippe;
Eglin, T.; +22 AuthorsCiais, Philippe
Ciais, Philippe in OpenAIREvan Der Molen, M.K.;
van Der Molen, M.K.
van Der Molen, M.K. in OpenAIREDolman, A.J.;
Dolman, A.J.
Dolman, A.J. in OpenAIRECiais, Philippe;
Eglin, T.; Gobron, N.;Ciais, Philippe
Ciais, Philippe in OpenAIRELaw, B.E.;
Meir, P.;Law, B.E.
Law, B.E. in OpenAIREPeters, W.;
Peters, W.
Peters, W. in OpenAIREPhillips, O.L.;
Phillips, O.L.
Phillips, O.L. in OpenAIREReichstein, M.;
Chen, T.;Reichstein, M.
Reichstein, M. in OpenAIREDekker, S.C.;
Doubková, M.; Friedl, M.A.; Jung, M.; van den Hurk, B.J.J.M.; de Jeu, R.A.M.;Dekker, S.C.
Dekker, S.C. in OpenAIREKruijt, B.;
Ohta, T.; Rebel, K.T.; Plummer, S.;Kruijt, B.
Kruijt, B. in OpenAIRESeneviratne, S.I.;
Seneviratne, S.I.
Seneviratne, S.I. in OpenAIRESitch, S.;
Sitch, S.
Sitch, S. in OpenAIRETeuling, A.J.;
Teuling, A.J.
Teuling, A.J. in OpenAIREvan Der Werf, G.R.;
van Der Werf, G.R.
van Der Werf, G.R. in OpenAIREWang, G.;
Wang, G.
Wang, G. in OpenAIREhandle: 1871/46686 , 1885/84873
Drought as an intermittent disturbance of the water cycle interacts with the carbon cycle differently than the ‘gradual’ climate change. During drought plants respond physiologically and structurally to prevent excessive water loss according to species-specific water use strategies. This has consequences for carbon uptake by photosynthesis and release by total ecosystem respiration. After a drought the disturbances in the reservoirs of moisture, organic matter and nutrients in the soil and carbohydrates in plants lead to longer-term effects in plant carbon cycling, and potentially mortality. Direct and carry-over effects, mortality and consequently species competition in response to drought are strongly related to the survival strategies of species. Here we review the state of the art of the understanding of the relation between soil moisture drought and the interactions with the carbon cycle of the terrestrial ecosystems. We argue that plant strategies must be given an adequate role in global vegetation models if the effects of drought on the carbon cycle are to be described in a way that justifies the interacting processes.
Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/84873Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011Data sources: SESAM Publication Database - FP7 ENVAgricultural and Forest MeteorologyArticle . 2011http://dx.doi.org/10.1016/j.ag...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2011.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 491 citations 491 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Australian National ... arrow_drop_down Australian National University: ANU Digital CollectionsArticleFull-Text: http://hdl.handle.net/1885/84873Data sources: Bielefeld Academic Search Engine (BASE)Agricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAgricultural and Forest MeteorologyArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Agricultural and Forest MeteorologyArticle . 2011Data sources: SESAM Publication Database - FP7 ENVAgricultural and Forest MeteorologyArticle . 2011http://dx.doi.org/10.1016/j.ag...Other literature typeData sources: European Union Open Data PortalUniversité de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2011Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.agrformet.2011.01.018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2006 Netherlands, France, United States, NetherlandsPublisher:Copernicus GmbH G. J. Collatz; Louis Giglio; James T. Randerson; Prasad S. Kasibhatla;G. R. van der Werf;
G. R. van der Werf
G. R. van der Werf in OpenAIREAvelino F. Arellano;
Avelino F. Arellano;Avelino F. Arellano
Avelino F. Arellano in OpenAIREhandle: 1871/21390
Abstract. Biomass burning represents an important source of atmospheric aerosols and greenhouse gases, yet little is known about its interannual variability or the underlying mechanisms regulating this variability at continental to global scales. Here we investigated fire emissions during the 8 year period from 1997 to 2004 using satellite data and the CASA biogeochemical model. Burned area from 2001–2004 was derived using newly available active fire and 500 m. burned area datasets from MODIS following the approach described by Giglio et al. (2006). ATSR and VIRS satellite data were used to extend the burned area time series back in time through 1997. In our analysis we estimated fuel loads, including organic soil layer and peatland fuels, and the net flux from terrestrial ecosystems as the balance between net primary production (NPP), heterotrophic respiration (Rh), and biomass burning, using time varying inputs of precipitation (PPT), temperature, solar radiation, and satellite-derived fractional absorbed photosynthetically active radiation (fAPAR). For the 1997–2004 period, we found that on average approximately 58 Pg C year−1 was fixed by plants as NPP, and approximately 95% of this was returned back to the atmosphere via Rh. Another 4%, or 2.5 Pg C year−1 was emitted by biomass burning; the remainder consisted of losses from fuel wood collection and subsequent burning. At a global scale, burned area and total fire emissions were largely decoupled from year to year. Total carbon emissions tracked burning in forested areas (including deforestation fires in the tropics), whereas burned area was largely controlled by savanna fires that responded to different environmental and human factors. Biomass burning emissions showed large interannual variability with a range of more than 1 Pg C year−1, with a maximum in 1998 (3.2 Pg C year−1) and a minimum in 2000 (2.0 Pg C year−1).
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverUniversity of California: eScholarshipArticle . 2006License: CC BYFull-Text: https://escholarship.org/uc/item/2sp2s94xData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2006 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.5194/acpd-6...Article . 2006 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2006Data sources: DANS (Data Archiving and Networked Services)Atmospheric Chemistry and Physics (ACP)Article . 2006INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-6-3423-2006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1K citations 1,443 popularity Top 0.1% influence Top 0.1% impulse Top 0.1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverUniversity of California: eScholarshipArticle . 2006License: CC BYFull-Text: https://escholarship.org/uc/item/2sp2s94xData sources: Bielefeld Academic Search Engine (BASE)Atmospheric Chemistry and Physics (ACP)Article . 2006 . Peer-reviewedLicense: CC BY NC SAData sources: Crossrefhttps://doi.org/10.5194/acpd-6...Article . 2006 . Peer-reviewedLicense: CC BY NC SAData sources: CrossrefAtmospheric Chemistry and Physics (ACP)Article . 2006Data sources: DANS (Data Archiving and Networked Services)Atmospheric Chemistry and Physics (ACP)Article . 2006INRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2006Data sources: INRIA a CCSD electronic archive servereScholarship - University of CaliforniaArticle . 2006Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/acp-6-3423-2006&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 France, Netherlands, United States, FrancePublisher:Proceedings of the National Academy of Sciences Authors:van der Werf, G. R;
Dempewolf, J.; Trigg, S. N; Randerson, J. T; +8 Authorsvan der Werf, G. R
van der Werf, G. R in OpenAIREvan der Werf, G. R;
Dempewolf, J.; Trigg, S. N; Randerson, J. T;van der Werf, G. R
van der Werf, G. R in OpenAIREKasibhatla, P. S;
Kasibhatla, P. S
Kasibhatla, P. S in OpenAIREGiglio, L.;
Murdiyarso, D.;Giglio, L.
Giglio, L. in OpenAIREPeters, W.;
Morton, D. C; Collatz, G. J;Peters, W.
Peters, W. in OpenAIREDolman, A. J;
DeFries, R. S;Dolman, A. J
Dolman, A. J in OpenAIREpmid: 19075224
pmc: PMC2629304
Drainage of peatlands and deforestation have led to large-scale fires in equatorial Asia, affecting regional air quality and global concentrations of greenhouse gases. Here we used several sources of satellite data with biogeochemical and atmospheric modeling to better understand and constrain fire emissions from Indonesia, Malaysia, and Papua New Guinea during 2000–2006. We found that average fire emissions from this region [128 ± 51 (1σ) Tg carbon (C) year −1 , T = 10 12 ] were comparable to fossil fuel emissions. In Borneo, carbon emissions from fires were highly variable, fluxes during the moderate 2006 El Niño more than 30 times greater than those during the 2000 La Niña (and with a 2000–2006 mean of 74 ± 33 Tg C yr −1 ). Higher rates of forest loss and larger areas of peatland becoming vulnerable to fire in drought years caused a strong nonlinear relation between drought and fire emissions in southern Borneo. Fire emissions from Sumatra showed a positive linear trend, increasing at a rate of 8 Tg C year −2 (approximately doubling during 2000–2006). These results highlight the importance of including deforestation in future climate agreements. They also imply that land manager responses to expected shifts in tropical precipitation may critically determine the strength of climate–carbon cycle feedbacks during the 21st century.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2012Full-Text: https://hdl.handle.net/10568/20043Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2008License: CC BYFull-Text: https://escholarship.org/uc/item/9f78s26sData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2008Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2008Proceedings of the National Academy of SciencesArticle . 2008Data sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0803375105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 312 citations 312 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2012Full-Text: https://hdl.handle.net/10568/20043Data sources: Bielefeld Academic Search Engine (BASE)University of California: eScholarshipArticle . 2008License: CC BYFull-Text: https://escholarship.org/uc/item/9f78s26sData sources: Bielefeld Academic Search Engine (BASE)Proceedings of the National Academy of SciencesArticle . 2008Data sources: DANS (Data Archiving and Networked Services)eScholarship - University of CaliforniaArticle . 2008Data sources: eScholarship - University of CaliforniaProceedings of the National Academy of SciencesArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Proceedings of the National Academy of SciencesArticle . 2008 . Peer-reviewedData sources: CrossrefProceedings of the National Academy of SciencesArticle . 2008Proceedings of the National Academy of SciencesArticle . 2008Data sources: University of Groningen Research Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1073/pnas.0803375105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal , Preprint 2020Embargo end date: 11 Dec 2020 Germany, United Kingdom, United Kingdom, Australia, Norway, Netherlands, Netherlands, Australia, Norway, Germany, Switzerland, France, Norway, Austria, United Kingdom, Germany, Switzerland, Netherlands, Norway, Germany, NetherlandsPublisher:Copernicus GmbH Funded by:NSF | INFEWS: U.S.-China: Integ..., SNSF | Climate and Environmental..., EC | CONSTRAIN +9 projectsNSF| INFEWS: U.S.-China: Integrated systems modeling for sustainable FEW nexus under multi-factor global changes: Innovative comparison between Yellow River and Mississippi River Basins ,SNSF| Climate and Environmental Physics: Modeling Global Biogeochemical Cycles in the Earth System (bgcCEP) ,EC| CONSTRAIN ,RCN| Integrated Carbon Observation System (ICOS)-Norway and Ocean Thematic Centre (OTC) ,UKRI| Marine LTSS: Climate Linked Atlantic Sector Science ,UKRI| Ocean Regulation of Climate by Heat and Carbon Sequestration and Transports (ORCHESTRA) ,EC| VERIFY ,UKRI| Southern OceaN optimal Approach To Assess the carbon state, variability and climatic drivers (SONATA) ,RCN| Infrastructure for Norwegian Earth System modelling ,EC| 4C ,EC| CRESCENDO ,UKRI| NCEO LTS-SAuthors:P. Friedlingstein;
P. Friedlingstein; M. O'Sullivan;P. Friedlingstein
P. Friedlingstein in OpenAIREM. W. Jones;
+99 AuthorsM. W. Jones
M. W. Jones in OpenAIREP. Friedlingstein;
P. Friedlingstein; M. O'Sullivan;P. Friedlingstein
P. Friedlingstein in OpenAIREM. W. Jones;
M. W. Jones
M. W. Jones in OpenAIRER. M. Andrew;
R. M. Andrew
R. M. Andrew in OpenAIREJ. Hauck;
J. Hauck
J. Hauck in OpenAIREA. Olsen;
A. Olsen;A. Olsen
A. Olsen in OpenAIREG. P. Peters;
W. Peters; W. Peters;G. P. Peters
G. P. Peters in OpenAIREJ. Pongratz;
J. Pongratz; S. Sitch; C. Le Quéré; J. G. Canadell; P. Ciais;J. Pongratz
J. Pongratz in OpenAIRER. B. Jackson;
R. B. Jackson
R. B. Jackson in OpenAIRES. Alin;
L. E. O. C. Aragão; L. E. O. C. Aragão; A. Arneth; V. Arora; N. R. Bates; N. R. Bates; M. Becker; M. Becker; A. Benoit-Cattin;H. C. Bittig;
H. C. Bittig
H. C. Bittig in OpenAIREL. Bopp;
S. Bultan;
S. Bultan
S. Bultan in OpenAIREN. Chandra;
N. Chandra;N. Chandra
N. Chandra in OpenAIREF. Chevallier;
L. P. Chini;F. Chevallier
F. Chevallier in OpenAIREW. Evans;
W. Evans
W. Evans in OpenAIREL. Florentie;
L. Florentie
L. Florentie in OpenAIREP. M. Forster;
P. M. Forster
P. M. Forster in OpenAIRET. Gasser;
M. Gehlen; D. Gilfillan; T. Gkritzalis; L. Gregor; N. Gruber;T. Gasser
T. Gasser in OpenAIREI. Harris;
I. Harris
I. Harris in OpenAIREK. Hartung;
K. Hartung; V. Haverd; R. A. Houghton; T. Ilyina;K. Hartung
K. Hartung in OpenAIREA. K. Jain;
E. Joetzjer; K. Kadono;A. K. Jain
A. K. Jain in OpenAIREE. Kato;
V. Kitidis;J. I. Korsbakken;
J. I. Korsbakken
J. I. Korsbakken in OpenAIREP. Landschützer;
N. Lefèvre; A. Lenton; S. Lienert; Z. Liu; D. Lombardozzi; G. Marland; G. Marland;P. Landschützer
P. Landschützer in OpenAIREN. Metzl;
D. R. Munro; D. R. Munro; J. E. M. S. Nabel;N. Metzl
N. Metzl in OpenAIRES.-I. Nakaoka;
Y. Niwa; Y. Niwa;S.-I. Nakaoka
S.-I. Nakaoka in OpenAIREK. O'Brien;
K. O'Brien; T. Ono; P. I. Palmer; P. I. Palmer; D. Pierrot; B. Poulter;K. O'Brien
K. O'Brien in OpenAIREL. Resplandy;
E. Robertson; C. Rödenbeck;L. Resplandy
L. Resplandy in OpenAIREJ. Schwinger;
J. Schwinger; R. Séférian;J. Schwinger
J. Schwinger in OpenAIREI. Skjelvan;
I. Skjelvan;I. Skjelvan
I. Skjelvan in OpenAIREA. J. P. Smith;
A. J. P. Smith
A. J. P. Smith in OpenAIREA. J. Sutton;
T. Tanhua; P. P. Tans;A. J. Sutton
A. J. Sutton in OpenAIREH. Tian;
B. Tilbrook;
B. Tilbrook;B. Tilbrook
B. Tilbrook in OpenAIREG. van der Werf;
G. van der Werf
G. van der Werf in OpenAIREN. Vuichard;
N. Vuichard
N. Vuichard in OpenAIREA. P. Walker;
R. Wanninkhof;A. P. Walker
A. P. Walker in OpenAIREA. J. Watson;
D. Willis; A. J. Wiltshire; W. Yuan; X. Yue; S. Zaehle;A. J. Watson
A. J. Watson in OpenAIREAbstract. Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere in a changing climate – the “global carbon budget” – is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe and synthesize data sets and methodology to quantify the five major components of the global carbon budget and their uncertainties. Fossil CO2 emissions (EFOS) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on land use and land-use change data and bookkeeping models. Atmospheric CO2 concentration is measured directly and its growth rate (GATM) is computed from the annual changes in concentration. The ocean CO2 sink (SOCEAN) and terrestrial CO2 sink (SLAND) are estimated with global process models constrained by observations. The resulting carbon budget imbalance (BIM), the difference between the estimated total emissions and the estimated changes in the atmosphere, ocean, and terrestrial biosphere, is a measure of imperfect data and understanding of the contemporary carbon cycle. All uncertainties are reported as ±1σ. For the last decade available (2010–2019), EFOS was 9.6 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.4 ± 0.5 GtC yr−1 when the cement carbonation sink is included), and ELUC was 1.6 ± 0.7 GtC yr−1. For the same decade, GATM was 5.1 ± 0.02 GtC yr−1 (2.4 ± 0.01 ppm yr−1), SOCEAN 2.5 ± 0.6 GtC yr−1, and SLAND 3.4 ± 0.9 GtC yr−1, with a budget imbalance BIM of −0.1 GtC yr−1 indicating a near balance between estimated sources and sinks over the last decade. For the year 2019 alone, the growth in EFOS was only about 0.1 % with fossil emissions increasing to 9.9 ± 0.5 GtC yr−1 excluding the cement carbonation sink (9.7 ± 0.5 GtC yr−1 when cement carbonation sink is included), and ELUC was 1.8 ± 0.7 GtC yr−1, for total anthropogenic CO2 emissions of 11.5 ± 0.9 GtC yr−1 (42.2 ± 3.3 GtCO2). Also for 2019, GATM was 5.4 ± 0.2 GtC yr−1 (2.5 ± 0.1 ppm yr−1), SOCEAN was 2.6 ± 0.6 GtC yr−1, and SLAND was 3.1 ± 1.2 GtC yr−1, with a BIM of 0.3 GtC. The global atmospheric CO2 concentration reached 409.85 ± 0.1 ppm averaged over 2019. Preliminary data for 2020, accounting for the COVID-19-induced changes in emissions, suggest a decrease in EFOS relative to 2019 of about −7 % (median estimate) based on individual estimates from four studies of −6 %, −7 %, −7 % (−3 % to −11 %), and −13 %. Overall, the mean and trend in the components of the global carbon budget are consistently estimated over the period 1959–2019, but discrepancies of up to 1 GtC yr−1 persist for the representation of semi-decadal variability in CO2 fluxes. Comparison of estimates from diverse approaches and observations shows (1) no consensus in the mean and trend in land-use change emissions over the last decade, (2) a persistent low agreement between the different methods on the magnitude of the land CO2 flux in the northern extra-tropics, and (3) an apparent discrepancy between the different methods for the ocean sink outside the tropics, particularly in the Southern Ocean. This living data update documents changes in the methods and data sets used in this new global carbon budget and the progress in understanding of the global carbon cycle compared with previous publications of this data set (Friedlingstein et al., 2019; Le Quéré et al., 2018b, a, 2016, 2015b, a, 2014, 2013). The data presented in this work are available at https://doi.org/10.18160/gcp-2020 (Friedlingstein et al., 2020).
CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/126892Data sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020Earth System Science Data (ESSD)Article . 2020License: CC BYData sources: University of Groningen Research PortalMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2K citations 1,706 popularity Top 0.01% influence Top 0.1% impulse Top 0.01% Powered by BIP!
more_vert CORE arrow_drop_down University of East Anglia digital repositoryArticle . 2020 . Peer-reviewedLicense: CC BYData sources: University of East Anglia digital repositoryBern Open Repository and Information System (BORIS)Article . 2020 . Peer-reviewedData sources: Bern Open Repository and Information System (BORIS)Open Research ExeterArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10871/126892Data sources: Bielefeld Academic Search Engine (BASE)NORCE vitenarkiv (Norwegian Research Centre)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2723621Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Bergen: Bergen Open Research Archive (BORA-UiB)Article . 2020License: CC BYFull-Text: https://hdl.handle.net/11250/2738463Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2020Full-Text: https://hal.science/hal-03058972Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefEarth System Science Data (ESSD)Article . 2020Earth System Science Data (ESSD)Article . 2020License: CC BYData sources: University of Groningen Research PortalMémoires en Sciences de l'Information et de la CommunicationPreprint . 2020Wageningen Staff PublicationsArticle . 2020License: CC BYData sources: Wageningen Staff PublicationsElectronic Publication Information CenterArticle . 2020Data sources: Electronic Publication Information CenterBergen Open Research Archive - UiBArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Bergen Open Research Archive - UiBArchiMer - Institutional Archive of IfremerOther literature type . 2020Data sources: ArchiMer - Institutional Archive of IfremerEarth System Science Data (ESSD)Article . 2020 . Peer-reviewedData sources: European Union Open Data PortalUniversity of Tasmania: UTas ePrintsArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2020-286&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Review , Journal 2018 United Kingdom, Netherlands, Spain, Italy, Australia, United Kingdom, United Kingdom, United Kingdom, Netherlands, France, South AfricaPublisher:IOP Publishing Funded by:ARC | Origin and evolution of p...ARC| Origin and evolution of plant functional traits in relation to fireAuthors:William A. Hoffmann;
William A. Hoffmann
William A. Hoffmann in OpenAIREOwen Price;
Owen Price
Owen Price in OpenAIRESally Archibald;
Sally Archibald; +24 AuthorsSally Archibald
Sally Archibald in OpenAIREWilliam A. Hoffmann;
William A. Hoffmann
William A. Hoffmann in OpenAIREOwen Price;
Owen Price
Owen Price in OpenAIRESally Archibald;
Sally Archibald; Merritt R. Turetsky; Elisabeth J. Forrestel;Sally Archibald
Sally Archibald in OpenAIREMarcelo F. Simon;
Daniel J. McGlinn;Marcelo F. Simon
Marcelo F. Simon in OpenAIREKyle G. Dexter;
Kyle G. Dexter;Kyle G. Dexter
Kyle G. Dexter in OpenAIREGlenn R. Moncrieff;
Glenn R. Moncrieff
Glenn R. Moncrieff in OpenAIRECaroline E. R. Lehmann;
Caroline E. R. Lehmann;Caroline E. R. Lehmann
Caroline E. R. Lehmann in OpenAIREMichelle Greve;
Michelle Greve
Michelle Greve in OpenAIREBrad S. Ripley;
William J. Bond; Amy E. Zanne; Colin P. Osborne;Brad S. Ripley
Brad S. Ripley in OpenAIREJuli G. Pausas;
Byron B. Lamont; Ross A. Bradstock;Juli G. Pausas
Juli G. Pausas in OpenAIREAnne-Laure Daniau;
Anne-Laure Daniau
Anne-Laure Daniau in OpenAIREG. R. van der Werf;
Dylan W. Schwilk;G. R. van der Werf
G. R. van der Werf in OpenAIRETianhua He;
Steven I. Higgins; Claire M. Belcher; Brendan M. Rogers;Tianhua He
Tianhua He in OpenAIRERoughly 3% of the Earth's land surface burns annually, representing a critical exchange of energy and matter between the land and atmosphere via combustion. Fires range from slow smouldering peat fires, to low-intensity surface fires, to intense crown fires, depending on vegetation structure, fuel moisture, prevailing climate, and weather conditions. While the links between biogeochemistry, climate and fire are widely studied within Earth system science, these relationships are also mediated by fuels-namely plants and their litter-that are the product of evolutionary and ecological processes. Fire is a powerful selective force and, over their evolutionary history, plants have evolved traits that both tolerate and promote fire numerous times and across diverse clades. Here we outline a conceptual framework of how plant traits determine the flammability of ecosystems and interact with climate and weather to influence fire regimes. We explore how these evolutionary and ecological processes scale to impact biogeochemical and Earth system processes. Finally, we outline several research challenges that, when resolved, will improve our understanding of the role of plant evolution in mediating the fire feedbacks driving Earth system processes. Understanding current patterns of fire and vegetation, as well as patterns of fire over geological time, requires research that incorporates evolutionary biology, ecology, biogeography, and the biogeosciences.
CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: https://eprints.whiterose.ac.uk/129537/1/Archibald_2018_Environ._Res._Lett._13_033003.pdfData sources: COREOpen Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32088Data sources: Bielefeld Academic Search Engine (BASE)Curtin University: espaceArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/20.500.11937/66647Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Research LettersReview . 2018University of Western Sydney (UWS): Research DirectArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa9ead&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 242 citations 242 popularity Top 0.1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 56visibility views 56 download downloads 115 Powered bymore_vert CORE arrow_drop_down COREArticle . 2018License: CC BYFull-Text: https://eprints.whiterose.ac.uk/129537/1/Archibald_2018_Environ._Res._Lett._13_033003.pdfData sources: COREOpen Research ExeterArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/10871/32088Data sources: Bielefeld Academic Search Engine (BASE)Curtin University: espaceArticle . 2018License: CC BYFull-Text: http://hdl.handle.net/20.500.11937/66647Data sources: Bielefeld Academic Search Engine (BASE)Environmental Research LettersOther literature type . 2018Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2018 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAEnvironmental Research LettersReview . 2018University of Western Sydney (UWS): Research DirectArticle . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of Wollongong, Australia: Research OnlineArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1088/1748-9326/aa9ead&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024 United Kingdom, United StatesPublisher:Copernicus GmbH Funded by:UKRI | IDEAL UK FIRE: Toward Inf..., UKRI | ARIES: ADVANCED RESEARCH ..., UKRI | TerraFIRMA: Future Impact... +6 projectsUKRI| IDEAL UK FIRE: Toward Informed Decisions on Ecologically Adaptive Land management for mitigating UK FIRE ,UKRI| ARIES: ADVANCED RESEARCH AND INNOVATION IN ENVIRONMENTAL SCIENCES ,UKRI| TerraFIRMA: Future Impacts Risks and Mitigation Actions ,FCT| CITAB ,UKRI| Options for Net Zero Plus and Climate Change Adaptation ,EC| ASPIRe ,EC| FireIce ,EC| FirEUrisk ,UKRI| Climate change impacts on global wildfire ignitions by lightning and the safe management of landscape fuelsAuthors: Matthew W. Jones;Douglas I. Kelley;
Douglas I. Kelley
Douglas I. Kelley in OpenAIREChantelle A. Burton;
Chantelle A. Burton
Chantelle A. Burton in OpenAIREFrancesca Di Giuseppe;
+40 AuthorsFrancesca Di Giuseppe
Francesca Di Giuseppe in OpenAIREMatthew W. Jones;Douglas I. Kelley;
Douglas I. Kelley
Douglas I. Kelley in OpenAIREChantelle A. Burton;
Chantelle A. Burton
Chantelle A. Burton in OpenAIREFrancesca Di Giuseppe;
Francesca Di Giuseppe
Francesca Di Giuseppe in OpenAIREMaria Lucia F. Barbosa;
Maria Lucia F. Barbosa
Maria Lucia F. Barbosa in OpenAIREEsther Brambleby;
Esther Brambleby
Esther Brambleby in OpenAIREAndrew J. Hartley;
Anna Lombardi;Andrew J. Hartley
Andrew J. Hartley in OpenAIREGuilherme Mataveli;
Joe R. McNorton;Guilherme Mataveli
Guilherme Mataveli in OpenAIREFiona R. Spuler;
Jakob B. Wessel; John T. Abatzoglou;Fiona R. Spuler
Fiona R. Spuler in OpenAIRELiana O. Anderson;
Niels Andela;Liana O. Anderson
Liana O. Anderson in OpenAIRESally Archibald;
Sally Archibald
Sally Archibald in OpenAIREDolors Armenteras;
Dolors Armenteras
Dolors Armenteras in OpenAIREEleanor Burke;
Rachel Carmenta;Eleanor Burke
Eleanor Burke in OpenAIREEmilio Chuvieco;
Emilio Chuvieco
Emilio Chuvieco in OpenAIREHamish Clarke;
Hamish Clarke
Hamish Clarke in OpenAIREStefan H. Doerr;
Stefan H. Doerr
Stefan H. Doerr in OpenAIREPaulo M. Fernandes;
Louis Giglio; Douglas S. Hamilton;Paulo M. Fernandes
Paulo M. Fernandes in OpenAIREStijn Hantson;
Stijn Hantson
Stijn Hantson in OpenAIRESarah Harris;
Piyush Jain; Crystal A. Kolden; Tiina Kurvits;Sarah Harris
Sarah Harris in OpenAIRESeppe Lampe;
Sarah Meier;Seppe Lampe
Seppe Lampe in OpenAIREStacey New;
Stacey New
Stacey New in OpenAIREMark Parrington;
Morgane M. G. Perron;Mark Parrington
Mark Parrington in OpenAIREYuquan Qu;
Natasha S. Ribeiro; Bambang H. Saharjo; Jesus San-Miguel-Ayanz; Jacquelyn K. Shuman; Veerachai Tanpipat;Yuquan Qu
Yuquan Qu in OpenAIREGuido R. van der Werf;
Guido R. van der Werf
Guido R. van der Werf in OpenAIRESander Veraverbeke;
Gavriil Xanthopoulos;Sander Veraverbeke
Sander Veraverbeke in OpenAIREAbstract. Climate change is increasing the frequency and intensity of wildfires globally, with significant impacts on society and the environment. However, our understanding of the global distribution of extreme fires remains skewed, primarily influenced by media coverage and regional research concentration. This inaugural State of Wildfires report systematically analyses fire activity worldwide, identifying extreme events from the March 2023–February 2024 fire season. We assess the causes, predictability, and attribution of these events to climate change and land use, and forecast future risks under different climate scenarios. During the 2023–24 fire season, 3.9 million km2 burned globally, slightly below the average of previous seasons, but fire carbon (C) emissions were 16 % above average, totaling 2.4 Pg C. This was driven by record emissions in Canadian boreal forests (over 9 times the average) and dampened by reduced activity in African savannahs. Notable events included record-breaking wildfire extent and emissions in Canada, the largest recorded wildfire in the European Union (Greece), drought-driven fires in western Amazonia and northern parts of South America, and deadly fires in Hawai’i (100 deaths) and Chile (131 deaths). Over 232,000 people were evacuated in Canada alone, highlighting the severity of human impact. Our analyses revealed that multiple drivers were needed to cause areas of extreme fire activity. In Canada and Greece a combination of high fire weather and an abundance of dry fuels increased the probability of fires by 4.5-fold and 1.9–4.1-fold, respectively, whereas fuel load and direct human suppression often modulated areas with anomalous burned area. The fire season in Canada was predictable three months in advance based on the fire weather index, whereas events in Greece and Amazonia had shorter predictability horizons. Formal attribution analyses indicated that the probability of extreme events has increased significantly due to anthropogenic climate change, with a 2.9–3.6-fold increase in likelihood of high fire weather in Canada and a 20.0–28.5-fold increase in Amazonia. By the end of the century, events of similar magnitude are projected to occur 2.22–9.58 times more frequently in Canada under high emission scenarios. Without mitigation, regions like Western Amazonia could see up to a 2.9-fold increase in extreme fire events. For the 2024–25 fire season, seasonal forecasts highlight moderate positive anomalies in fire weather for parts of western Canada and South America, but no clear signal for extreme anomalies is present in the forecast. This report represents our first annual effort to catalogue extreme wildfire events, explain their occurrence, and predict future risks. By consolidating state-of-the-art wildfire science and delivering key insights relevant to policymakers, disaster management services, firefighting agencies, and land managers, we aim to enhance society’s resilience to wildfires and promote advances in preparedness, mitigation, and adaptation.
NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/0sg8w6gpData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2024-218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert NERC Open Research A... arrow_drop_down University of California: eScholarshipArticle . 2024License: CC BYFull-Text: https://escholarship.org/uc/item/0sg8w6gpData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.5194/essd-2...Article . 2024 . Peer-reviewedLicense: CC BYData sources: CrossrefeScholarship - University of CaliforniaArticle . 2024Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/essd-2024-218&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Research 2013Embargo end date: 10 Jul 2013 Switzerland, Netherlands, NetherlandsPublisher:Copernicus GmbH Funded by:ARC | Assimilation of trace atm...ARC| Assimilation of trace atmospheric constituents for climate (ATACC): Linking chemical weather and climateAuthors: Philippe Ciais;Han Dolman;
Han Dolman
Han Dolman in OpenAIREAntonio Bombelli;
Antonio Bombelli
Antonio Bombelli in OpenAIRERiley Duren;
+54 AuthorsRiley Duren
Riley Duren in OpenAIREPhilippe Ciais;Han Dolman;
Han Dolman
Han Dolman in OpenAIREAntonio Bombelli;
Antonio Bombelli
Antonio Bombelli in OpenAIRERiley Duren;
Riley Duren
Riley Duren in OpenAIREAnna Peregon;
Anna Peregon
Anna Peregon in OpenAIREP. J. Rayner;
P. J. Rayner
P. J. Rayner in OpenAIRECharles E. Miller;
Charles E. Miller
Charles E. Miller in OpenAIRENadine Gobron;
G. Kinderman;Nadine Gobron
Nadine Gobron in OpenAIREGregg Marland;
Gregg Marland
Gregg Marland in OpenAIRENicolas Gruber;
Nicolas Gruber
Nicolas Gruber in OpenAIREFrédéric Chevallier;
Frédéric Chevallier
Frédéric Chevallier in OpenAIRER. J. Andres;
R. J. Andres
R. J. Andres in OpenAIREGianpaolo Balsamo;
Gianpaolo Balsamo
Gianpaolo Balsamo in OpenAIRELaurent Bopp;
François Marie Bréon;Laurent Bopp
Laurent Bopp in OpenAIREGrégoire Broquet;
Grégoire Broquet
Grégoire Broquet in OpenAIRERoger Dargaville;
Roger Dargaville
Roger Dargaville in OpenAIRETom J. Battin;
Tom J. Battin
Tom J. Battin in OpenAIREAlberto Borges;
Alberto Borges
Alberto Borges in OpenAIREH. Bovensmann;
H. Bovensmann
H. Bovensmann in OpenAIREMichael Buchwitz;
Michael Buchwitz
Michael Buchwitz in OpenAIREJ. H. Butler;
J. H. Butler
J. H. Butler in OpenAIREJosep G. Canadell;
R.B. Cook;Josep G. Canadell
Josep G. Canadell in OpenAIRERuth DeFries;
Ruth DeFries
Ruth DeFries in OpenAIRERichard Engelen;
Richard Engelen
Richard Engelen in OpenAIREK. R. Gurney;
K. R. Gurney
K. R. Gurney in OpenAIREChristoph Heinze;
Christoph Heinze
Christoph Heinze in OpenAIREMartin Heimann;
A. Held; Matieu Henry;Martin Heimann
Martin Heimann in OpenAIREB. E. Law;
B. E. Law
B. E. Law in OpenAIRESebastiaan Luyssaert;
Sebastiaan Luyssaert
Sebastiaan Luyssaert in OpenAIREJ. B. Miller;
Takashi Moriyama; C. Moulin; Ranga B. Myneni; C. Nussli;J. B. Miller
J. B. Miller in OpenAIREMichael Obersteiner;
Dennis S. Ojima;Michael Obersteiner
Michael Obersteiner in OpenAIREYude Pan;
Yude Pan
Yude Pan in OpenAIREJean-Daniel Paris;
Jean-Daniel Paris
Jean-Daniel Paris in OpenAIREShilong Piao;
Shilong Piao
Shilong Piao in OpenAIREBenjamin Poulter;
Benjamin Poulter
Benjamin Poulter in OpenAIREStephen Plummer;
Stephen Plummer
Stephen Plummer in OpenAIRES. Quegan;
Peter A. Raymond;S. Quegan
S. Quegan in OpenAIREMarkus Reichstein;
Léonard Rivier;Markus Reichstein
Markus Reichstein in OpenAIREChristopher L. Sabine;
Christopher L. Sabine
Christopher L. Sabine in OpenAIREDavid Schimel;
David Schimel
David Schimel in OpenAIREOksana Tarasova;
R. Wang;Oksana Tarasova
Oksana Tarasova in OpenAIREGuido R. van der Werf;
D. E. Wickland;Guido R. van der Werf
Guido R. van der Werf in OpenAIREMathew Williams;
Claus Zehner;Mathew Williams
Mathew Williams in OpenAIREAbstract. A globally integrated carbon observation and analysis system is needed to improve the fundamental understanding of the global carbon cycle, to improve our ability to project future changes, and to verify the effectiveness of policies aiming to reduce greenhouse gas emissions and increase carbon sequestration. Building an integrated carbon observation system requires transformational advances from the existing sparse, exploratory framework towards a dense, robust, and sustained system in all components: anthropogenic emissions, the atmosphere, the ocean, and the terrestrial biosphere. The goal of this study is to identify the current state of carbon observations and needs for a global integrated carbon observation system that can be built in the next decade. A key conclusion is the substantial expansion (by several orders of magnitude) of the ground-based observation networks required to reach the high spatial resolution for CO2 and CH4 fluxes, and for carbon stocks for addressing policy relevant objectives, and attributing flux changes to underlying processes in each region. In order to establish flux and stock diagnostics over remote areas such as the southern oceans, tropical forests and the Arctic, in situ observations will have to be complemented with remote-sensing measurements. Remote sensing offers the advantage of dense spatial coverage and frequent revisit. A key challenge is to bring remote sensing measurements to a level of long-term consistency and accuracy so that they can be efficiently combined in models to reduce uncertainties, in synergy with ground-based data. Bringing tight observational constraints on fossil fuel and land use change emissions will be the biggest challenge for deployment of a policy-relevant integrated carbon observation system. This will require in-situ and remotely sensed data at much higher resolution and density than currently achieved for natural fluxes, although over a small land area (cities, industrial sites, power plants), as well as the inclusion of fossil fuel CO2 proxy measurements such as radiocarbon in CO2 and carbon-fuel combustion tracers. Additionally, a policy relevant carbon monitoring system should also provide mechanisms for reconciling regional top-down (atmosphere-based) and bottom-up (surface-based) flux estimates across the range of spatial and temporal scales relevant to mitigation policies. The success of the system will rely on long-term commitments to monitoring, on improved international collaboration to fill gaps in the current observations, on sustained efforts to improve access to the different data streams and make databases inter-operable, and on the calibration of each component of the system to agreed-upon international scales.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-10...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefBiogeosciences DiscussionsArticle . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-10-11447-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 9 citations 9 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/bgd-10...Article . 2013 . Peer-reviewedLicense: CC BYData sources: CrossrefBiogeosciences DiscussionsArticle . 2013add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/bgd-10-11447-2013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2019 Netherlands, Spain, Spain, Netherlands, FrancePublisher:Elsevier BV Authors:Emilio Chuvieco;
Emilio Chuvieco
Emilio Chuvieco in OpenAIREFlorent Mouillot;
Florent Mouillot
Florent Mouillot in OpenAIREGuido R. van der Werf;
Jesús San Miguel; +9 AuthorsGuido R. van der Werf
Guido R. van der Werf in OpenAIREEmilio Chuvieco;
Emilio Chuvieco
Emilio Chuvieco in OpenAIREFlorent Mouillot;
Florent Mouillot
Florent Mouillot in OpenAIREGuido R. van der Werf;
Jesús San Miguel; Mihai Tanase;Guido R. van der Werf
Guido R. van der Werf in OpenAIRENikos Koutsias;
Mariano García;Nikos Koutsias
Nikos Koutsias in OpenAIREMarta Yebra;
Marta Yebra
Marta Yebra in OpenAIREMarc Padilla;
Marc Padilla
Marc Padilla in OpenAIREIoannis Gitas;
Angelika Heil; Todd J. Hawbaker;Ioannis Gitas
Ioannis Gitas in OpenAIRELouis Giglio;
Louis Giglio
Louis Giglio in OpenAIREFire has a diverse range of impacts on Earth's physical and social systems. Accurate and up to date information on areas affected by fire is critical to better understand drivers of fire activity, as well as its relevance for biogeochemical cycles, climate, air quality, and to aid fire management. Mapping burned areas was traditionally done from field sketches. With the launch of the first Earth observation satellites, remote sensing quickly became a more practical alternative to detect burned areas, as they provide timely regional and global coverage of fire occurrence. This review paper explores the physical basis to detect burned area from satellite observations, describes the historical trends of using satellite sensors to monitor burned areas, summarizes the most recent approaches to map burned areas and evaluates the existing burned area products (both at global and regional scales). Finally, it identifies potential future opportunities to further improve burned area detection from Earth observation satellites.
Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC SAData sources: Biblioteca Digital de la Universidad de AlcaláRemote Sensing of EnvironmentArticle . 2019Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2019.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 384 citations 384 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
visibility 173visibility views 173 download downloads 58 Powered bymore_vert Remote Sensing of En... arrow_drop_down Remote Sensing of EnvironmentArticle . 2019 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRemote Sensing of EnvironmentArticle . 2019Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2019License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTABiblioteca Digital de la Universidad de AlcaláArticle . 2019License: CC BY NC SAData sources: Biblioteca Digital de la Universidad de AlcaláRemote Sensing of EnvironmentArticle . 2019Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rse.2019.02.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu