- home
- Advanced Search
- Energy Research
- FR
- Energy Research
- FR
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Feb 2022 France, SwitzerlandPublisher:MDPI AG Olga Beatrice Carcassi; Pietro Minotti; Guillaume Habert; Ingrid Paoletti; Sophie Claude; Francesco Pittau;This research explores the carbon removal of a novel bio-insulation composite, here called MycoBamboo, based on the combination of bamboo particles and mycelium as binder. First, an attributional life cycle assessment (LCA) was performed to define the carbon footprint of a European bamboo plantation and a bio-insulation composite, as well as its ability to remove CO2 along its lifecycle at a laboratory scale. Secondly, the Global Worming Potential (GWP) was estimated through a dynamic LCA with selected end-of-life and technical replacement scenarios. Finally, a building wall application was analyzed to measure the carbon saving potential of the MycoBamboo when compared with alternative insulation materials applied as an exterior thermal insulation composite system. The results demonstrate that despite the negative GWP values of the biogenic CO2, the final Net-GWP was positive. The technical replacement scenarios had an influence on the final Net-GWP values, and a longer storage period is preferred to more frequent insulation substitution. The type of energy source and the deactivation phase play important roles in the mitigation of climate change. Therefore, to make the MycoBamboo competitive as an insulation system at the industrial scale, it is fundamental to identify alternative low-energy deactivation modes and shift all energy-intensity activities during the production phase to renewable energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Funded by:SNSF | Paving the way toward sus...SNSF| Paving the way toward sustainable construction: Considering environmental and socio-economic constraints for resources and water use in the construction sectorGuido Sonnemann; Guido Sonnemann; Niko Heeren; Niko Heeren; Guillaume Habert; Dimitra Ioannidou; Dimitra Ioannidou;doi: 10.1111/jiec.12834
AbstractIn recent literature, the concept of criticality aspires to provide a multifaceted risk assessment of resource supply shortage. However, most existing methodologies for the criticality assessment of raw materials are restricted to a fixed temporal and spatial reference system. They provide a snapshot in time of the equilibrium between supply and demand/economic importance and do not account for temporal changes of their indicators. The static character of criticality assessments limits the use of criticality methodologies to short‐term policy making of raw materials. In the current paper, we argue for an enhancement of the criticality framework to account for three key dynamic characteristics, namely changes of social, technical, and economic features; consideration of the spatial dimension in site‐specific assessments; and impact of changing governance frameworks. We illustrate how these issues were addressed in studies outside of the field of criticality and identify the dynamic parameters that influence resource supply and demand based on a review of studies that belong to the general field of resource supply and demand. The parameters are grouped in seven categories: extraction, social, economic, technical, policy, market dynamics, and environmental. We explore how these parameters were considered in the reviewed studies and propose ways and specific examples of addressing the dynamic effects in the criticality indicators. Furthermore, we discuss the current work on future scenarios to provide reference points for indicator benchmarks. The insights and guidelines derived from the review and our recommendations for future research set the foundations for an enhanced dynamic and site‐specific criticality assessment framework.
Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022Embargo end date: 01 Feb 2022 SwitzerlandPublisher:MDPI AG Authors: Rafaela Tirado; Adélaïde Aublet; Sylvain Laurenceau; Guillaume Habert;The accelerated development of cities involves important inflows and outflows of resources. The construction sector is one of the main consumers of raw materials and producers of waste. Due to its quantity and potential for recovery, waste from the construction sector constitutes significant deposits and requires major action by bringing together different stakeholders to achieve the objectives of a circular economy. Consequently, it is crucial to understand the current knowledge of urban metabolism, deposits, and recovery practices. This article aims to investigate the role of local authorities in the planning of strategies to facilitate a circular economy; in particular, this article aims to answer how local authorities facilitate circular economy initiatives in the building sector and what opportunities and obstacles they encounter in the process. The strategy used for the study was to conduct semistructured interviews with those responsible for circular economy projects within local authorities that were pioneering circular economy projects in metropolitan France. The results highlight the importance of community involvement in the implementation of circular economy principles in the building sector. Thus, it is essential to identify the different stakeholders and their respective challenges to build an operational framework.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 15 Jun 2022 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Rodionova, Alina; id_orcid0000-0001-5281-7061; Moustapha, Maliki; id_orcid0000-0002-1138-4666; Hollberg, Alexander; id_orcid0000-0002-9756-2362; Padey, Pierryves; +3 AuthorsRodionova, Alina; id_orcid0000-0001-5281-7061; Moustapha, Maliki; id_orcid0000-0002-1138-4666; Hollberg, Alexander; id_orcid0000-0002-9756-2362; Padey, Pierryves; Lasvaux, Sébastien; Sudret, Bruno; id_orcid0000-0002-9501-7395; Habert, Guillaume;Boosting building renovation is urgently needed to achieve carbon neutrality by 2050. Building retrofit can be achieved by energy-efficient measures such as thermal insulation or replacement of a fossil heating system. Currently, conventional materials that are mostly used for envelope insulation raising the risk of a lock-in situation where measures to mitigate climate change are actually contributing to it. Bio-based materials are a promising alternative as they can be used to not only reduce the energy consumption of a building but also temporarily store carbon. To evaluate the potential benefits of such materials, life cycle assessment (LCA) and life cycle cost analysis (LCCA) are commonly used. Such assessment allows the analysis of a building over its whole life. However, considering that buildings are very long lasting systems, many associated uncertainties can affect the outcome of LCA and LCCA. To account for all the uncertainty sources and provide a robust solution for building renovation, uncertainty quantification can be applied. In this paper, we use robust optimization under uncertainties to define the most cost-effective and climate-friendly solution. We apply bio-based materials and include carbon storage calculation in the integrated LCA and LCCA. For the robust optimization, we use a novel methodology combining a well-known non-dominated sorting genetic algorithm II (NSGA-II) with surrogate modeling to lower computational cost. The methodology is applied for a case study located in Switzerland. The results show that bio-based materials provide a robust solution for building renovation but to achieve the highest reduction potential, bio-based envelope insulation should be combined with the replacement of the existing fossil heating system. Applied Energy, 316 ISSN:0306-2619 ISSN:1872-9118
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Switzerland, SwitzerlandPublisher:Elsevier BV Alina Galimshina; Maliki Moustapha; Alexander Hollberg; Pierryves Padey; Sébastien Lasvaux; Bruno Sudret; Guillaume Habert;Building renovation is urgently required to decrease the energy consumption of the existing building stock and reduce greenhouse gas emissions coming from the building sector. Selecting an appropriate renovation strategy is challenging due to the long building service life and consequent uncertainties. In this paper, we propose a new framework for the robust assessment of renovation strategies in terms of environmental and economic performance of the building's life cycle. First, we identify the possible renovation strategies and define the probability distributions for 74 uncertain parameters. Second, we create an integrated workflow for Life Cycle Assessment (LCA) and Life Cycle Cost analysis (LCC) and make use of Sobol’ indices to identify a prioritization strategy for the renovation. Finally, the selected renovation scenario is assessed by metamodeling techniques to calculate its robustness. The results of three case studies of residential buildings from different construction periods show that the priority in renovation should be given to the heating system replacement, which is followed by the exterior wall insulation and windows. This result is not in agreement with common renovation practices and this discrepancy is discussed at the end of the paper. Building and Environment, 183 ISSN:0360-1323 ISSN:0360-1323
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.107143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.107143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 FrancePublisher:Elsevier BV Authors: Habert, Guillaume; Castillo, Etienne; Vincens, Eric; Morel, Jean-Claude;Abstract To achieve a sustainable management of resources, political and economic decision-makers need indicators to quantify their technical choice in relation with resource consumption. In this study, a new indicator that reflects the power demand next to energy demand of systems such as buildings is developed. The relevance of the proposed power indicator is tested through two different kinds of systems: retaining walls for civil and agricultural engineering and residential houses. It enables to highlight a close relation between this indicator and the high power energy sources that may exist at different steps of a building's life cycle. This dependence is presented as a better indicator of sustainability than a traditional energy account as it reflects the ability for the system to rely on flow energies rather than on stock energies.
Ecological Indicator... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2012.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Indicator... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2012.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Embargo end date: 27 Nov 2021 SwitzerlandPublisher:MDPI AG Rafaela Tirado; Adélaïde Aublet; Sylvain Laurenceau; Mathieu Thorel; Mathilde Louërat; Guillaume Habert;Building demolition is one of the main sources of waste generation in urban areas and is a growing problem for cities due to the generated environmental impacts. To promote high levels of circular economy, it is necessary to better understand the waste-flow composition; nevertheless, material flow studies typically focus on low levels of detail. This article presents a model based on a bottom-up macro-component approach, which allows the multiscale characterization of construction materials and the estimation of demolition waste flows, a model that we call the BTP-flux model. Data mining, analytical techniques, and geographic information system (GIS) tools were used to assess different datasets available at the national level and develop a common database for French buildings: BDNB. Generic information for buildings in the BDNB is then enriched by coupling every building with a catalog of macro-components (TyPy), thus allowing the building’s physical description. Subsequently, stock and demolition flows are calculated by aggregation and classified into 32 waste categories. The BTP-flux model was applied in Île-de-France in a sample of 101,320 buildings for residential and non-residential uses, representative of the assessed population (1,968,242 buildings). In the case of Île-de-France, the building stock and the total demolition flows were estimated at 1382 Mt and 4065 kt, respectively. For its inter-regional areas—departments—, stock and demolition waste can vary between 85 and 138 tons/cap and 0.263 and 0.486 tons/cap/year, respectively. The mean of the total demolition wastes was estimated at 0.33 tons/cap/year for the region. Results could encourage scientists, planners, and stakeholders to develop pathways towards a circular economy in the construction sector by implementing strategies for better management of waste recovery and reintegrating in economic circuits, while preserving a maximum of their added value.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, SwitzerlandPublisher:Elsevier BV Hoxha, Endrit; Habert, Guillaume; Chevalier, Jacques; Bazzana, Manuel; Le Roy, Robert;The assessment of environmental performances of building is now commonly based on a life cycle approach. The current studies comparing such performances highlight the problems related to uncertainties in the Life Cycle Assessment (LCA) results. The aim of this study is to identify the sensitivity and robustness of LCA models to uncertainties related to building materials in order to strengthen comparisons which can be done between building projects and secure the assessment of the building environmental performance calculation. However, in this study, all uncertainties are not covered and we restricted our calculation to uncertainties related to the use of building materials during the life cycle of the whole building. We have considered that the relative contribution of each material to the environmental impact of building is sensitive to three key points which are submitted to uncertainties: the service life of the building component; the environmental impact of this building component's production and the amount of material used in the building. The assessments of the uncertainties are treated at two levels: the material or element level and the building level. A statistical method, based on Taylor series expansion is developed to identify the most sensitive and uncertain parameters, with standpoint to strengthen comparison between projects. The first results are promising, although further work remains to be done to better quantify the uncertainties at the material scale. ?? 2013 Elsevier Ltd. All rights reserved.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2014Full-Text: https://enpc.hal.science/hal-01157320Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2014Full-Text: https://enpc.hal.science/hal-01157320Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2013.10.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2014Full-Text: https://enpc.hal.science/hal-01157320Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2014Full-Text: https://enpc.hal.science/hal-01157320Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2013.10.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 15 Nov 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Rodionova, Alina; id_orcid0000-0001-5281-7061; Moustapha, Maliki; id_orcid0000-0002-1138-4666; Hollberg, Alexander; id_orcid0000-0002-9756-2362; Padey, Pierryves; +3 AuthorsRodionova, Alina; id_orcid0000-0001-5281-7061; Moustapha, Maliki; id_orcid0000-0002-1138-4666; Hollberg, Alexander; id_orcid0000-0002-9756-2362; Padey, Pierryves; Lasvaux, Sébastien; Sudret, Bruno; id_orcid0000-0002-9501-7395; Habert, Guillaume;Buildings are responsible for a large share of CO2 emissions in the world. Building renovation is crucial to decrease the environmental impact and meet the United Nations climate action goals. However, due to buildings’ long service lives, there are many uncertainties that might cause a deviation in the results of a predicted retrofit outcome. In this paper, we determine climate-friendly and cost-effective renovation scenarios for two typical buildings with low and high energy performance in Switzerland using a methodology of robust optmization. First, we create an integrated model for life cycle assessment (LCA) and life cycle cost analysis (LCCA). Second, we define possible renovation measures and possible levels of renovation. Third, we identify and describe the uncertain parameters related to the production, replacement and dismantling of building elements as well as the operational energy use in LCCA and LCA. Afterwards, we carry out a robust multi-objective optimization to identify optimal renovation solutions. The results show that the replacement of the heating system in the building retrofit process is crucial to decrease the environmental impact. They also show that for a building with already good energy performance, the investments are not paid off by the operational savings. The optimal solution for the building with low energy performance includes the building envelope renovation in combination with the heating system replacement. For both buildings, the optimal robust cost-effective and climate-friendly solution is different from the deep renovation practice promoted to decrease the energy consumption of a building. Energy and Buildings, 251 ISSN:0378-7788 ISSN:1872-6178
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 02 Aug 2024 SwitzerlandPublisher:MDPI AG Authors: Marin Pellan; Denise Almeida; Mathilde Louërat; Guillaume Habert;Climate policies such as sectoral carbon budgets use national greenhouse gas emissions inventories to track the decarbonization of sectors. While they provide an important compass to guide climate action, the accounting framework in which they are embedded lacks flexibility for activities that are international and at the crossroads of different sectors. The building activities, being largely linked with important upstream emitters such as energy production or industrial activities, which can take place outside of national borders, are such an example. As legislation increasingly addresses the whole-life carbon emissions of buildings, it is vital to develop cross-sectoral accounting methods that effectively measure and monitor the overall impact of buildings. Such methods are essential for creating sound and holistic decarbonization pathways that align with sustainability policies. This article aims to provide a consistent approach for depicting the life-cycle emissions of buildings at the national level, using France as a case study. By integrating the different emission scopes with decarbonization pathways, this approach also enables the creation of comprehensive whole-life carbon budgets. The results show that the French building stock footprint reached 162 MtCO2eq in 2019, with 64% attributed to operational emissions, primarily from fossil fuel combustion, and the remainder to embodied emissions, mainly from upstream industrial and energy sectors. Overall, 20% of the emissions occurred outside the national borders. Under various global decarbonization pathways, the significance of embodied emissions is projected to increase, potentially comprising 78% of the life-cycle emissions by 2050 under the current policies. This underscores the necessity for climate policies to address emissions beyond territorial and operational boundaries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16166762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16166762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 01 Feb 2022 France, SwitzerlandPublisher:MDPI AG Olga Beatrice Carcassi; Pietro Minotti; Guillaume Habert; Ingrid Paoletti; Sophie Claude; Francesco Pittau;This research explores the carbon removal of a novel bio-insulation composite, here called MycoBamboo, based on the combination of bamboo particles and mycelium as binder. First, an attributional life cycle assessment (LCA) was performed to define the carbon footprint of a European bamboo plantation and a bio-insulation composite, as well as its ability to remove CO2 along its lifecycle at a laboratory scale. Secondly, the Global Worming Potential (GWP) was estimated through a dynamic LCA with selected end-of-life and technical replacement scenarios. Finally, a building wall application was analyzed to measure the carbon saving potential of the MycoBamboo when compared with alternative insulation materials applied as an exterior thermal insulation composite system. The results demonstrate that despite the negative GWP values of the biogenic CO2, the final Net-GWP was positive. The technical replacement scenarios had an influence on the final Net-GWP values, and a longer storage period is preferred to more frequent insulation substitution. The type of energy source and the deactivation phase play important roles in the mitigation of climate change. Therefore, to make the MycoBamboo competitive as an insulation system at the industrial scale, it is fundamental to identify alternative low-energy deactivation modes and shift all energy-intensity activities during the production phase to renewable energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031384&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Wiley Funded by:SNSF | Paving the way toward sus...SNSF| Paving the way toward sustainable construction: Considering environmental and socio-economic constraints for resources and water use in the construction sectorGuido Sonnemann; Guido Sonnemann; Niko Heeren; Niko Heeren; Guillaume Habert; Dimitra Ioannidou; Dimitra Ioannidou;doi: 10.1111/jiec.12834
AbstractIn recent literature, the concept of criticality aspires to provide a multifaceted risk assessment of resource supply shortage. However, most existing methodologies for the criticality assessment of raw materials are restricted to a fixed temporal and spatial reference system. They provide a snapshot in time of the equilibrium between supply and demand/economic importance and do not account for temporal changes of their indicators. The static character of criticality assessments limits the use of criticality methodologies to short‐term policy making of raw materials. In the current paper, we argue for an enhancement of the criticality framework to account for three key dynamic characteristics, namely changes of social, technical, and economic features; consideration of the spatial dimension in site‐specific assessments; and impact of changing governance frameworks. We illustrate how these issues were addressed in studies outside of the field of criticality and identify the dynamic parameters that influence resource supply and demand based on a review of studies that belong to the general field of resource supply and demand. The parameters are grouped in seven categories: extraction, social, economic, technical, policy, market dynamics, and environmental. We explore how these parameters were considered in the reviewed studies and propose ways and specific examples of addressing the dynamic effects in the criticality indicators. Furthermore, we discuss the current work on future scenarios to provide reference points for indicator benchmarks. The insights and guidelines derived from the review and our recommendations for future research set the foundations for an enhanced dynamic and site‐specific criticality assessment framework.
Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of Industria... arrow_drop_down Journal of Industrial EcologyArticle . 2019 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12834&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object 2022Embargo end date: 01 Feb 2022 SwitzerlandPublisher:MDPI AG Authors: Rafaela Tirado; Adélaïde Aublet; Sylvain Laurenceau; Guillaume Habert;The accelerated development of cities involves important inflows and outflows of resources. The construction sector is one of the main consumers of raw materials and producers of waste. Due to its quantity and potential for recovery, waste from the construction sector constitutes significant deposits and requires major action by bringing together different stakeholders to achieve the objectives of a circular economy. Consequently, it is crucial to understand the current knowledge of urban metabolism, deposits, and recovery practices. This article aims to investigate the role of local authorities in the planning of strategies to facilitate a circular economy; in particular, this article aims to answer how local authorities facilitate circular economy initiatives in the building sector and what opportunities and obstacles they encounter in the process. The strategy used for the study was to conduct semistructured interviews with those responsible for circular economy projects within local authorities that were pioneering circular economy projects in metropolitan France. The results highlight the importance of community involvement in the implementation of circular economy principles in the building sector. Thus, it is essential to identify the different stakeholders and their respective challenges to build an operational framework.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14031569&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 15 Jun 2022 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Rodionova, Alina; id_orcid0000-0001-5281-7061; Moustapha, Maliki; id_orcid0000-0002-1138-4666; Hollberg, Alexander; id_orcid0000-0002-9756-2362; Padey, Pierryves; +3 AuthorsRodionova, Alina; id_orcid0000-0001-5281-7061; Moustapha, Maliki; id_orcid0000-0002-1138-4666; Hollberg, Alexander; id_orcid0000-0002-9756-2362; Padey, Pierryves; Lasvaux, Sébastien; Sudret, Bruno; id_orcid0000-0002-9501-7395; Habert, Guillaume;Boosting building renovation is urgently needed to achieve carbon neutrality by 2050. Building retrofit can be achieved by energy-efficient measures such as thermal insulation or replacement of a fossil heating system. Currently, conventional materials that are mostly used for envelope insulation raising the risk of a lock-in situation where measures to mitigate climate change are actually contributing to it. Bio-based materials are a promising alternative as they can be used to not only reduce the energy consumption of a building but also temporarily store carbon. To evaluate the potential benefits of such materials, life cycle assessment (LCA) and life cycle cost analysis (LCCA) are commonly used. Such assessment allows the analysis of a building over its whole life. However, considering that buildings are very long lasting systems, many associated uncertainties can affect the outcome of LCA and LCCA. To account for all the uncertainty sources and provide a robust solution for building renovation, uncertainty quantification can be applied. In this paper, we use robust optimization under uncertainties to define the most cost-effective and climate-friendly solution. We apply bio-based materials and include carbon storage calculation in the integrated LCA and LCCA. For the robust optimization, we use a novel methodology combining a well-known non-dominated sorting genetic algorithm II (NSGA-II) with surrogate modeling to lower computational cost. The methodology is applied for a case study located in Switzerland. The results show that bio-based materials provide a robust solution for building renovation but to achieve the highest reduction potential, bio-based envelope insulation should be combined with the replacement of the existing fossil heating system. Applied Energy, 316 ISSN:0306-2619 ISSN:1872-9118
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 35 citations 35 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119102&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Embargo end date: 01 Jan 2020 Switzerland, SwitzerlandPublisher:Elsevier BV Alina Galimshina; Maliki Moustapha; Alexander Hollberg; Pierryves Padey; Sébastien Lasvaux; Bruno Sudret; Guillaume Habert;Building renovation is urgently required to decrease the energy consumption of the existing building stock and reduce greenhouse gas emissions coming from the building sector. Selecting an appropriate renovation strategy is challenging due to the long building service life and consequent uncertainties. In this paper, we propose a new framework for the robust assessment of renovation strategies in terms of environmental and economic performance of the building's life cycle. First, we identify the possible renovation strategies and define the probability distributions for 74 uncertain parameters. Second, we create an integrated workflow for Life Cycle Assessment (LCA) and Life Cycle Cost analysis (LCC) and make use of Sobol’ indices to identify a prioritization strategy for the renovation. Finally, the selected renovation scenario is assessed by metamodeling techniques to calculate its robustness. The results of three case studies of residential buildings from different construction periods show that the priority in renovation should be given to the heating system replacement, which is followed by the exterior wall insulation and windows. This result is not in agreement with common renovation practices and this discrepancy is discussed at the end of the paper. Building and Environment, 183 ISSN:0360-1323 ISSN:0360-1323
Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.107143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.buildenv.2020.107143&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 FrancePublisher:Elsevier BV Authors: Habert, Guillaume; Castillo, Etienne; Vincens, Eric; Morel, Jean-Claude;Abstract To achieve a sustainable management of resources, political and economic decision-makers need indicators to quantify their technical choice in relation with resource consumption. In this study, a new indicator that reflects the power demand next to energy demand of systems such as buildings is developed. The relevance of the proposed power indicator is tested through two different kinds of systems: retaining walls for civil and agricultural engineering and residential houses. It enables to highlight a close relation between this indicator and the high power energy sources that may exist at different steps of a building's life cycle. This dependence is presented as a better indicator of sustainability than a traditional energy account as it reflects the ability for the system to rely on flow energies rather than on stock energies.
Ecological Indicator... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2012.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 15 citations 15 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Ecological Indicator... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ecolind.2012.03.016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2021Embargo end date: 27 Nov 2021 SwitzerlandPublisher:MDPI AG Rafaela Tirado; Adélaïde Aublet; Sylvain Laurenceau; Mathieu Thorel; Mathilde Louërat; Guillaume Habert;Building demolition is one of the main sources of waste generation in urban areas and is a growing problem for cities due to the generated environmental impacts. To promote high levels of circular economy, it is necessary to better understand the waste-flow composition; nevertheless, material flow studies typically focus on low levels of detail. This article presents a model based on a bottom-up macro-component approach, which allows the multiscale characterization of construction materials and the estimation of demolition waste flows, a model that we call the BTP-flux model. Data mining, analytical techniques, and geographic information system (GIS) tools were used to assess different datasets available at the national level and develop a common database for French buildings: BDNB. Generic information for buildings in the BDNB is then enriched by coupling every building with a catalog of macro-components (TyPy), thus allowing the building’s physical description. Subsequently, stock and demolition flows are calculated by aggregation and classified into 32 waste categories. The BTP-flux model was applied in Île-de-France in a sample of 101,320 buildings for residential and non-residential uses, representative of the assessed population (1,968,242 buildings). In the case of Île-de-France, the building stock and the total demolition flows were estimated at 1382 Mt and 4065 kt, respectively. For its inter-regional areas—departments—, stock and demolition waste can vary between 85 and 138 tons/cap and 0.263 and 0.486 tons/cap/year, respectively. The mean of the total demolition wastes was estimated at 0.33 tons/cap/year for the region. Results could encourage scientists, planners, and stakeholders to develop pathways towards a circular economy in the construction sector by implementing strategies for better management of waste recovery and reintegrating in economic circuits, while preserving a maximum of their added value.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132313159&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, SwitzerlandPublisher:Elsevier BV Hoxha, Endrit; Habert, Guillaume; Chevalier, Jacques; Bazzana, Manuel; Le Roy, Robert;The assessment of environmental performances of building is now commonly based on a life cycle approach. The current studies comparing such performances highlight the problems related to uncertainties in the Life Cycle Assessment (LCA) results. The aim of this study is to identify the sensitivity and robustness of LCA models to uncertainties related to building materials in order to strengthen comparisons which can be done between building projects and secure the assessment of the building environmental performance calculation. However, in this study, all uncertainties are not covered and we restricted our calculation to uncertainties related to the use of building materials during the life cycle of the whole building. We have considered that the relative contribution of each material to the environmental impact of building is sensitive to three key points which are submitted to uncertainties: the service life of the building component; the environmental impact of this building component's production and the amount of material used in the building. The assessments of the uncertainties are treated at two levels: the material or element level and the building level. A statistical method, based on Taylor series expansion is developed to identify the most sensitive and uncertain parameters, with standpoint to strengthen comparison between projects. The first results are promising, although further work remains to be done to better quantify the uncertainties at the material scale. ?? 2013 Elsevier Ltd. All rights reserved.
Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2014Full-Text: https://enpc.hal.science/hal-01157320Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2014Full-Text: https://enpc.hal.science/hal-01157320Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2013.10.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Université Savoie Mo... arrow_drop_down Université Savoie Mont Blanc: HALArticle . 2014Full-Text: https://enpc.hal.science/hal-01157320Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2014Full-Text: https://enpc.hal.science/hal-01157320Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jclepro.2013.10.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 15 Nov 2021 Switzerland, SwitzerlandPublisher:Elsevier BV Authors: Rodionova, Alina; id_orcid0000-0001-5281-7061; Moustapha, Maliki; id_orcid0000-0002-1138-4666; Hollberg, Alexander; id_orcid0000-0002-9756-2362; Padey, Pierryves; +3 AuthorsRodionova, Alina; id_orcid0000-0001-5281-7061; Moustapha, Maliki; id_orcid0000-0002-1138-4666; Hollberg, Alexander; id_orcid0000-0002-9756-2362; Padey, Pierryves; Lasvaux, Sébastien; Sudret, Bruno; id_orcid0000-0002-9501-7395; Habert, Guillaume;Buildings are responsible for a large share of CO2 emissions in the world. Building renovation is crucial to decrease the environmental impact and meet the United Nations climate action goals. However, due to buildings’ long service lives, there are many uncertainties that might cause a deviation in the results of a predicted retrofit outcome. In this paper, we determine climate-friendly and cost-effective renovation scenarios for two typical buildings with low and high energy performance in Switzerland using a methodology of robust optmization. First, we create an integrated model for life cycle assessment (LCA) and life cycle cost analysis (LCCA). Second, we define possible renovation measures and possible levels of renovation. Third, we identify and describe the uncertain parameters related to the production, replacement and dismantling of building elements as well as the operational energy use in LCCA and LCA. Afterwards, we carry out a robust multi-objective optimization to identify optimal renovation solutions. The results show that the replacement of the heating system in the building retrofit process is crucial to decrease the environmental impact. They also show that for a building with already good energy performance, the investments are not paid off by the operational savings. The optimal solution for the building with low energy performance includes the building envelope renovation in combination with the heating system replacement. For both buildings, the optimal robust cost-effective and climate-friendly solution is different from the deep renovation practice promoted to decrease the energy consumption of a building. Energy and Buildings, 251 ISSN:0378-7788 ISSN:1872-6178
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2021.111329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Embargo end date: 02 Aug 2024 SwitzerlandPublisher:MDPI AG Authors: Marin Pellan; Denise Almeida; Mathilde Louërat; Guillaume Habert;Climate policies such as sectoral carbon budgets use national greenhouse gas emissions inventories to track the decarbonization of sectors. While they provide an important compass to guide climate action, the accounting framework in which they are embedded lacks flexibility for activities that are international and at the crossroads of different sectors. The building activities, being largely linked with important upstream emitters such as energy production or industrial activities, which can take place outside of national borders, are such an example. As legislation increasingly addresses the whole-life carbon emissions of buildings, it is vital to develop cross-sectoral accounting methods that effectively measure and monitor the overall impact of buildings. Such methods are essential for creating sound and holistic decarbonization pathways that align with sustainability policies. This article aims to provide a consistent approach for depicting the life-cycle emissions of buildings at the national level, using France as a case study. By integrating the different emission scopes with decarbonization pathways, this approach also enables the creation of comprehensive whole-life carbon budgets. The results show that the French building stock footprint reached 162 MtCO2eq in 2019, with 64% attributed to operational emissions, primarily from fossil fuel combustion, and the remainder to embodied emissions, mainly from upstream industrial and energy sectors. Overall, 20% of the emissions occurred outside the national borders. Under various global decarbonization pathways, the significance of embodied emissions is projected to increase, potentially comprising 78% of the life-cycle emissions by 2050 under the current policies. This underscores the necessity for climate policies to address emissions beyond territorial and operational boundaries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16166762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su16166762&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu