- home
- Advanced Search
- Energy Research
- FR
- Soil Biology and Biochemistry
- Energy Research
- FR
- Soil Biology and Biochemistry
description Publicationkeyboard_double_arrow_right Article , Journal 2012 FrancePublisher:Elsevier BV C. Le Guillou; C. Le Guillou; C. Le Guillou; Pierre-Alain Maron; Philippe Leterme; Philippe Leterme; Philippe Leterme; Denis A. Angers; Safya Menasseri-Aubry; Safya Menasseri-Aubry; Safya Menasseri-Aubry;Abstract The dynamics of soil water-stable aggregation (WSA) following organic matter (OM) addition are controlled by microbial activity, which in turn is influenced by carbon substrate quality and mineral N availability. However, the role of microbial communities in determining WSA at different stages of OM decomposition remains largely unknown. This study aimed at evaluating the role of microbial communities in WSA during OM decomposition as affected by mineral N. In a 35-day incubation experiment, we studied the decomposition of two high-C/N crop residues (miscanthus, C/N = 311.3; and wheat, C/N = 125.6) applied at 4 g C kg−1 dry soil with or without mineral N addition (120 mg N kg−1 dry soil). Microbial characteristics were measured at day 0, 7, and 35 of the experiment, and related to previous results of WSA. Early increase in WSA (at 7 days) was related to an overall increase of the microbial biomass (MBC) with wheat residues showing higher values in MBC and WSA than miscanthus. In the intermediate stage of decomposition (from day 7 to 35), the dynamics of WSA were more associated with the dynamics of microbial polysaccharides and greatly influenced by mineral N addition. Mineral N addition resulted in a decrease or leveling off of WSA whereas it increased in its absence. We suggest that opportunistic bacterial populations stimulated by N addition may have consumed binding agents which decreased WSA or prevented its increase. To the contrary, microbial polysaccharide production was high when no mineral N was added which led to the higher WSA in the late stage of decomposition in this treatment. The late stage of decomposition was associated with a particular fungal community also influenced by the mineral N treatment. We suggest that WSA dynamics in the late stage of decomposition can be considered as a « narrow process³ where the structure of the microbial community plays a greater role than during the initial stages.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverSoil Biology and BiochemistryArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverSoil Biology and BiochemistryArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000 FrancePublisher:Elsevier BV Publicly fundedBottner, Pierre; Coûteaux, Marie-Madeleine; Anderson, Jonathan M.; Berg, Björn; Billès, Georges; Bolger, Tom; Casabianca, Hervé; Romanya, Joan; Rovira, Pere;Standard 13 C-labelled plant material was exposed over 2‐3 yr at 8 sites in a north‐south climatic gradient of coniferous forest soils, developed on acid and calcareous parent materials in Western Europe. In addition to soils exposed in their sites of origin, replicate units containing labelled material were translocated in a cascade sequence southwards along the transect, to simulate the eAects of climate warming on decomposition processes. The current Atlantic climate represented the most favourable soil temperature and moisture conditions for decomposition. Northward this climatic zone, where the soil processes are essentially temperature-limited, the prediction for a temperature increase of 38C estimated a probable increase of C mineralisation by 20‐ 25% for the boreal zone and 10% for the cool temperate zone. Southward the cool Atlantic climate zone, (the Mediterranean climate), where the processes are seasonally moisture-limited, the predicted increase of temperature by 1‐28C little aAected the soil organic matter dynamics, because of the higher water deficit. A significant decrease of C mineralisation rates was observed only in the superficial layers recognised in Mediterranean forest soils as ‘xeromoder’ and subject to frequent dry conditions. In the deeper Mediterranean soil organic horizons (the mull humus types), representing the major C storage in this zone, C mineralisation was not aAected by a simulated 28C temperature increase. The temperature eAect is probably counteracted by a higher water deficit. 7 2000 Elsevier Science Ltd. All rights reserved.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2000Data sources: INRIA a CCSD electronic archive serverSoil Biology and BiochemistryArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2000Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-0717(99)00182-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2000Data sources: INRIA a CCSD electronic archive serverSoil Biology and BiochemistryArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2000Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-0717(99)00182-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 FrancePublisher:Elsevier BV Domeignoz Horta, Luiz; Putz, M.; Spor, Aymé; Bru, David; Breuil, Marie-Christine; Hallin, S.; Philippot, Laurent;Abstract Nitrous oxide (N2O) is an important greenhouse gas and fundamental questions about the capacity of soil microbial communities to act not only as sources, but also as sinks for N2O remains unanswered. We evaluated the capacity of non-denitrifying N2O-reducers to mitigate the production of this greenhouse gas in soil. We showed experimentally that the addition of the non-denitrifying strain Dyadobacter fermentans, which possesses the previously unaccounted N2O reductase NosZII, to 11 different soils significantly reduced N2O production of up to 189% in more than 1/3 of the soils. The magnitude of this effect was significantly influenced by the soil pH and C/N ratio. Overall, our results provide unambiguous evidence that the overlooked non-denitrifying NosZII-type bacteria can contribute to N2O consumption in soil.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2016Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2016.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2016Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2016.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Denmark, FrancePublisher:Elsevier BV Françoise Binet; Barbara Le Bot; Claudia Wiegand; Claudia Wiegand; Claudia Wiegand; Fredérique Pallois; Stéphanie Llopis; Nicolas Givaudan; Nicolas Givaudan; Nicolas Givaudan; David Renault;Because earthworms sustain soil functioning and fertility, there is a need to advance the knowledge of their adaptation potential to chemicals in anthropogenic landscapes. Our hypothesis is that there is acclimation to organic chemicals (pesticides) in earthworms that durably persist under conventional farming in anthropogenic landscapes. The adaptation capability of two populations of earthworms (Aporectodea caliginosa) having a different chemical exposure history, – one originating from 20 years of organic farming (naive population) and another from 20 years of conventional farming (pre-exposed population) – to cope with soil organic pollutant (Opus®, epoxiconazole a worldwide used fungicide) were investigated. Several complementary metabolic and energetic endpoints were followed, and cast production was assessed as a behavioural biomarker related to earthworms ecological role for the soil. Basal metabolism reflected by respiration rate was increased in both fungicide-exposed worms compared to controls. Glycogen resources were decreased in the same proportion in the two populations but more rapidly for the naive (7 days) than for the pre-exposed population (28 days). Soluble protein and most amino-acids contents increased in the pre-exposed population only, suggesting a detoxification mechanism. Metabolomic profiles showed a cut-off between fungicide-exposed and control groups in the pre-exposed earthworms only, with an increase in most of the metabolites. Exposure to a low dose of epoxiconazole increased cast production of pre-exposed earthworms, and this resulted in an increase in pesticide disappearance. As far as we know, this is the first study which evidenced there is an acclimation to an agricultural chemical in earthworms derived from conventional farming that also relates to a change in their burrowing behaviour, and for which larger consequences for the soil ecosystem need to be addressed. This original finding is of major interest in the frame of ecosystem resilience to global changes. Whether this physiological adaptation is a general pattern of response against fungicides or other pesticides would need to be confirmed with other molecules and agricultural contexts.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverArchive Ouverte de l'Université Rennes (HAL)Article . 2014Full-Text: https://univ-rennes.hal.science/hal-01005821Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://univ-rennes.hal.science/hal-01005821Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Denmark Research OutputArticle . 2014Data sources: University of Southern Denmark Research OutputSoil Biology and BiochemistryArticle . 2014Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2014.01.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverArchive Ouverte de l'Université Rennes (HAL)Article . 2014Full-Text: https://univ-rennes.hal.science/hal-01005821Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://univ-rennes.hal.science/hal-01005821Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Denmark Research OutputArticle . 2014Data sources: University of Southern Denmark Research OutputSoil Biology and BiochemistryArticle . 2014Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2014.01.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Chao Li; Chunwang Xiao; Bertrand Guenet; Mingxu Li; Li Xu; Nianpeng He;It remains unclear how soil microbes respond to labile organic carbon (LOC) inputs and how temperature sensitivity ($Q_{10}$) of soil organic matter (SOM) decomposition is affected by LOC inputs in a short-term. In this study, $^{13}$C-labeled glucose was added to a pristine grassland soil at four temperatures (10, 15, 20, and 25 ◦C), and the immediate utilization of LOC and native SOM by microbes was measured minutely in a short-term. We found that the LOC addition stimulated the native SOM decomposition, and elevated temperature enhanced the intensity of microbial response to LOC addition. The ratio between microbial respiration derived from LOC and native SOM increased with higher temperature, and more LOC for respiration. Additionally, LOC addition increased the $Q_{10}$ of SOM decomposition, and the $Q_{10}$ of LOC decomposition is higher than that of native SOM. Overall, these findings emphasize the important role of temperature and LOC inputs in soil C cycles.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-04017529Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2022.108589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-04017529Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2022.108589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Kpemoua, Tchodjowiè P.I.; Leclerc, Sarah; Barré, Pierre; Houot, Sabine; Pouteau, Valérie; Plessis, Cédric; Chenu, Claire;<p>Global warming is leading to increased temperatures, accentuated evaporation of terrestrial water and increased the atmosphere moisture content, resulting in frequent droughts and heavy precipitation events. It necessary to assess the sensitivity of soil organic carbon (SOC) under storing practices in response to increasing soil moisture, temperature and frequent dry-wet cycles in order to anticipate future soil carbon losses. We evaluated the impact of these climatic events through an incubation experiment on temperate luvisols from conservation agriculture, organic agriculture, organic waste products applications, i.e. biowaste, residual municipal solid waste and farmyard manure composts compared with conventionally managemed soils. The alternative management options all have led to increased SOC stocks. Soil samples were incubated in the lab under different temperatures (20, 28 and 35&#176;C), different moisture conditions (pF1.5; 2.5 and 4.2) and under dry(pF4.2)-wet (pF1.5) cycles. Dry-wet cycles caused CO2 flushes but overall did not stimulate soil carbon mineralization relative to wet controls (pF1.5 and pF2.5). Overall the additional SOC stored under alternative management options was not more sensitive to climate change (temperature, moisture, dry-wet cycles) than the existing SOC.</p>
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.inrae.fr/hal-04330096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2023.109043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.inrae.fr/hal-04330096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2023.109043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Anke M. Herrmann; Thomas Z. Lerch; Thomas Z. Lerch; Elsa Coucheney; Elsa Coucheney;Abstract The development of the MicroResp™ approach ( Campbell et al., 2003 ) has allowed large-scale monitoring of community-level physiological profiles (CLPP). Here, we tested the sensitivity of this method to a carbon (C) substrate concentration gradient on 12 arable soils which had received contrasting long-term (53 years) managements. Irrespectively to the soil organic carbon (SOC), total activity and catabolic evenness were similar for C substrate addition above 10% C added of SOC, suggesting microbial respiratory metabolism saturation. Below this threshold, CLPP were significantly altered, especially when the amount of SOC was low. This threshold corresponded to 4 up to 10 mgC mL −1 soil water which is 66–87% lower than used in the original approach. Such C concentrations could be used in future MicroResp™ assaying when determining CLPP via multi-substrate induced respiration of the microbial biomass.
Hyper Article en Lig... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 ItalyPublisher:Elsevier BV Roberto Zampedri; Sandrine Salmon; Lorenzo Frizzera; Nadia Artuso; Nadia Artuso;handle: 10449/17196
This study investigated the responses of soil animal communities, soil functioning and humus forms to forest dynamics and solar radiation. We examined changes in invertebrate communities and soil features in two subalpine spruce forests (Eastern Italian Alps, Trento) growing on a calcareous bedrock, with different sun exposures (north and south), each forming a chronosequence of three developmental phases: clearing, regeneration stand (25-year-old trees) and mature stand (170-year-old trees). Our results indicate that the two forest sites differed in solar energy input, soil chemical properties and the relationships between forest dynamics and animal communities. In the north-facing site, soil fauna communities were very similar in the three forest developmental phases. Conversely, in the south-facing site, the composition of invertebrate communities and the diversity of zoological groups varied greatly among developmental phases. The highest abundance of total invertebrates, and mites in particular, occurred in the south-facing mature stands while the south-facing regeneration stand was characterised by higher densities of Collembola, Chilopoda, Symphyla, Protura and Aranea. The structure of communities in clearings was the same as in regeneration stands but with lower invertebrate abundance. Humus forms and soil features changed with developmental phases in both the south- and north-facing sites, although variations were more pronounced in the southern exposure. Mature stands were characterised by high levels of soil organic carbon and nitrogen, C/N values and low pH, the clearings and regeneration stands being characterised by a greater release of mineral nitrogen. The diversity of zoological groups (Shannon–Wiener index) was linearly correlated to soil pH, Humus Index, the amount of organic carbon and the species richness of herbaceous plants. Our results about the composition and the diversity of invertebrate communities are consistent with the observations of other authors studying south-exposed forests growing on different bedrock types, indicating that such relationships are widespread. The higher densities of invertebrates in the south-facing site may be attributed to higher solar radiation, and the positive correlation observed between total soil fauna abundance and solar energy supports the “more individuals” hypothesis that assumes a positive relationship between the number of individuals and energy availability. Possible ways by which forest dynamics control soil invertebrate communities are discussed.
Hyper Article en Lig... arrow_drop_down Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2008.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2008.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 Netherlands, France, France, DenmarkPublisher:Elsevier BV Birkhofer, Klaus; Bezemer, T. Martijn; Bloem, Jaap; Bonkowski, Michael; Christensen, Søren; Dubois, David; Ekelund, Fleming; Fliessbach, Andreas; Gunst, Lucie; Hedlund, Katarina; Mäder, Paul; Mikola, Juha; Robin, Christophe; Setälä, Heikki; Tatin-Froux, Fabienne; van Der Putten, Wim H.; Scheu, Stefan;Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences between “herbicide-free” bioorganic (BIOORG) and biodynamic (BIODYN) systems and conventional systems with (CONFYM) or without manure (CONMIN) and herbicide application within a long-term agricultural experiment (DOK trial, Switzerland). Soil carbon content was significantly higher in systems receiving farmyard manure and concomitantly microbial biomass (fungi and bacteria) was increased. Microbial activity parameters, such as microbial basal respiration and nitrogen mineralization, showed an opposite pattern, suggesting that soil carbon in the conventional system (CONFYM) was more easily accessible to microorganisms than in organic systems. Bacterivorous nematodes and earthworms were most abundant in systems that received farmyard manure, which is in line with the responses of their potential food sources (microbes and organic matter). Mineral fertilizer application detrimentally affected enchytraeids and Diptera larvae, whereas aphids benefited. Spider abundance was favoured by organic management, most likely a response to increased prey availability from the belowground subsystem or increased weed coverage. In contrast to most soil-based, bottom-up controlled interactions, the twofold higher abundance of this generalist predator group in organic systems likely contributed to the significantly lower abundance of aboveground herbivore pests (aphids) in these systems. Long-term organic farming and the application of farmyard manure promoted soil quality, microbial biomass and fostered natural enemies and ecosystem engineers, suggesting enhanced nutrient cycling and pest control. Mineral fertilizers and herbicide application, in contrast, affected the potential for top-down control of aboveground pests negatively and reduced the organic carbon levels. Our study indicates that the use of synthetic fertilizers and herbicide application changes interactions within and between below and aboveground components, ultimately promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological control. However, grain and straw yields were 23% higher in systems receiving mineral fertilizers and herbicides reflecting the trade-off between productivity and environmental responsibility.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2008Full-Text: https://hal.inrae.fr/hal-02667899/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2008Full-Text: https://hal.inrae.fr/hal-02667899/documentINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2008License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSoil Biology and BiochemistryArticle . 2008Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2008.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 457 citations 457 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2008Full-Text: https://hal.inrae.fr/hal-02667899/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2008Full-Text: https://hal.inrae.fr/hal-02667899/documentINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2008License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSoil Biology and BiochemistryArticle . 2008Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2008.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 01 Jan 2025 SwitzerlandPublisher:Elsevier BV Funded by:SNSF | MICROSERVICES: Predicting..., ANR | MICROSERVICESSNSF| MICROSERVICES: Predicting climate change impacts on the crop microbiome and cascading effects on ecosystem services delivery in agroecosystems ,ANR| MICROSERVICESAri Fina Bintarti; Elena Kost; Dominika Kundel; Rafaela Feola Conz; Paul Mäder; Hans-Martin Krause; Jochen Mayer; Laurent Philippot; Martin Hartmann;The severity of drought is predicted to increase across Europe due to climate change. Droughts can substantially impact terrestrial nitrogen (N) cycling and the corresponding microbial communities. Here, we investigated how ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox) as well as inorganic N pools and N2O fluxes respond to simulated drought under different cropping systems. A rain-out shelter experiment was conducted as part of a long-term field experiment comparing cropping systems that differed mainly in fertilization strategy (organic, mineral, or mixed mineral and organic) and plant protection management (biodynamic versus conventional pesticide use). We found that the effect of drought varied depending on the specific ammonia-oxidizing (AO) groups and the type of cropping system. Drought had the greatest impact on the structure of the AOA community compared to the other AO groups. The abundance of ammonia oxidizers was also affected by drought, with comammox clade B exhibiting the highest sensitivity. Additionally, drought had, overall, a stronger impact on the AO community structure in the biodynamic cropping system than in the mixed and mineral-fertilized conventional systems. The responses of ammonia-oxidizing communities to drought were comparable between bulk soil and rhizosphere. We observed a significant increase in NH4+ and NO3− pools during the drought period, which then decreased after rewetting, indicating a strong resilience. We further found that drought altered the complex relationships between AO communities and mineral N pools, as well as N2O fluxes. These results highlight the importance of agricultural management practices in influencing the response of nitrogen cycling guilds and their processes to drought. Soil Biology and Biochemistry, 201 ISSN:0038-0717 ISSN:1879-3428
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2024.109658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2024.109658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2012 FrancePublisher:Elsevier BV C. Le Guillou; C. Le Guillou; C. Le Guillou; Pierre-Alain Maron; Philippe Leterme; Philippe Leterme; Philippe Leterme; Denis A. Angers; Safya Menasseri-Aubry; Safya Menasseri-Aubry; Safya Menasseri-Aubry;Abstract The dynamics of soil water-stable aggregation (WSA) following organic matter (OM) addition are controlled by microbial activity, which in turn is influenced by carbon substrate quality and mineral N availability. However, the role of microbial communities in determining WSA at different stages of OM decomposition remains largely unknown. This study aimed at evaluating the role of microbial communities in WSA during OM decomposition as affected by mineral N. In a 35-day incubation experiment, we studied the decomposition of two high-C/N crop residues (miscanthus, C/N = 311.3; and wheat, C/N = 125.6) applied at 4 g C kg−1 dry soil with or without mineral N addition (120 mg N kg−1 dry soil). Microbial characteristics were measured at day 0, 7, and 35 of the experiment, and related to previous results of WSA. Early increase in WSA (at 7 days) was related to an overall increase of the microbial biomass (MBC) with wheat residues showing higher values in MBC and WSA than miscanthus. In the intermediate stage of decomposition (from day 7 to 35), the dynamics of WSA were more associated with the dynamics of microbial polysaccharides and greatly influenced by mineral N addition. Mineral N addition resulted in a decrease or leveling off of WSA whereas it increased in its absence. We suggest that opportunistic bacterial populations stimulated by N addition may have consumed binding agents which decreased WSA or prevented its increase. To the contrary, microbial polysaccharide production was high when no mineral N was added which led to the higher WSA in the late stage of decomposition in this treatment. The late stage of decomposition was associated with a particular fungal community also influenced by the mineral N treatment. We suggest that WSA dynamics in the late stage of decomposition can be considered as a « narrow process³ where the structure of the microbial community plays a greater role than during the initial stages.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverSoil Biology and BiochemistryArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu68 citations 68 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverSoil Biology and BiochemistryArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.03.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000 FrancePublisher:Elsevier BV Publicly fundedBottner, Pierre; Coûteaux, Marie-Madeleine; Anderson, Jonathan M.; Berg, Björn; Billès, Georges; Bolger, Tom; Casabianca, Hervé; Romanya, Joan; Rovira, Pere;Standard 13 C-labelled plant material was exposed over 2‐3 yr at 8 sites in a north‐south climatic gradient of coniferous forest soils, developed on acid and calcareous parent materials in Western Europe. In addition to soils exposed in their sites of origin, replicate units containing labelled material were translocated in a cascade sequence southwards along the transect, to simulate the eAects of climate warming on decomposition processes. The current Atlantic climate represented the most favourable soil temperature and moisture conditions for decomposition. Northward this climatic zone, where the soil processes are essentially temperature-limited, the prediction for a temperature increase of 38C estimated a probable increase of C mineralisation by 20‐ 25% for the boreal zone and 10% for the cool temperate zone. Southward the cool Atlantic climate zone, (the Mediterranean climate), where the processes are seasonally moisture-limited, the predicted increase of temperature by 1‐28C little aAected the soil organic matter dynamics, because of the higher water deficit. A significant decrease of C mineralisation rates was observed only in the superficial layers recognised in Mediterranean forest soils as ‘xeromoder’ and subject to frequent dry conditions. In the deeper Mediterranean soil organic horizons (the mull humus types), representing the major C storage in this zone, C mineralisation was not aAected by a simulated 28C temperature increase. The temperature eAect is probably counteracted by a higher water deficit. 7 2000 Elsevier Science Ltd. All rights reserved.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2000Data sources: INRIA a CCSD electronic archive serverSoil Biology and BiochemistryArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2000Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-0717(99)00182-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2000Data sources: INRIA a CCSD electronic archive serverSoil Biology and BiochemistryArticle . 2000 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2000Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0038-0717(99)00182-0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2016 FrancePublisher:Elsevier BV Domeignoz Horta, Luiz; Putz, M.; Spor, Aymé; Bru, David; Breuil, Marie-Christine; Hallin, S.; Philippot, Laurent;Abstract Nitrous oxide (N2O) is an important greenhouse gas and fundamental questions about the capacity of soil microbial communities to act not only as sources, but also as sinks for N2O remains unanswered. We evaluated the capacity of non-denitrifying N2O-reducers to mitigate the production of this greenhouse gas in soil. We showed experimentally that the addition of the non-denitrifying strain Dyadobacter fermentans, which possesses the previously unaccounted N2O reductase NosZII, to 11 different soils significantly reduced N2O production of up to 189% in more than 1/3 of the soils. The magnitude of this effect was significantly influenced by the soil pH and C/N ratio. Overall, our results provide unambiguous evidence that the overlooked non-denitrifying NosZII-type bacteria can contribute to N2O consumption in soil.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2016Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2016.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 112 citations 112 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2016Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2016License: CC BY SAData sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefHAL - Université de Bourgogne (HAL-uB)Other literature type . 2016Data sources: HAL - Université de Bourgogne (HAL-uB)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2016.09.010&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Denmark, FrancePublisher:Elsevier BV Françoise Binet; Barbara Le Bot; Claudia Wiegand; Claudia Wiegand; Claudia Wiegand; Fredérique Pallois; Stéphanie Llopis; Nicolas Givaudan; Nicolas Givaudan; Nicolas Givaudan; David Renault;Because earthworms sustain soil functioning and fertility, there is a need to advance the knowledge of their adaptation potential to chemicals in anthropogenic landscapes. Our hypothesis is that there is acclimation to organic chemicals (pesticides) in earthworms that durably persist under conventional farming in anthropogenic landscapes. The adaptation capability of two populations of earthworms (Aporectodea caliginosa) having a different chemical exposure history, – one originating from 20 years of organic farming (naive population) and another from 20 years of conventional farming (pre-exposed population) – to cope with soil organic pollutant (Opus®, epoxiconazole a worldwide used fungicide) were investigated. Several complementary metabolic and energetic endpoints were followed, and cast production was assessed as a behavioural biomarker related to earthworms ecological role for the soil. Basal metabolism reflected by respiration rate was increased in both fungicide-exposed worms compared to controls. Glycogen resources were decreased in the same proportion in the two populations but more rapidly for the naive (7 days) than for the pre-exposed population (28 days). Soluble protein and most amino-acids contents increased in the pre-exposed population only, suggesting a detoxification mechanism. Metabolomic profiles showed a cut-off between fungicide-exposed and control groups in the pre-exposed earthworms only, with an increase in most of the metabolites. Exposure to a low dose of epoxiconazole increased cast production of pre-exposed earthworms, and this resulted in an increase in pesticide disappearance. As far as we know, this is the first study which evidenced there is an acclimation to an agricultural chemical in earthworms derived from conventional farming that also relates to a change in their burrowing behaviour, and for which larger consequences for the soil ecosystem need to be addressed. This original finding is of major interest in the frame of ecosystem resilience to global changes. Whether this physiological adaptation is a general pattern of response against fungicides or other pesticides would need to be confirmed with other molecules and agricultural contexts.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverArchive Ouverte de l'Université Rennes (HAL)Article . 2014Full-Text: https://univ-rennes.hal.science/hal-01005821Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://univ-rennes.hal.science/hal-01005821Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Denmark Research OutputArticle . 2014Data sources: University of Southern Denmark Research OutputSoil Biology and BiochemistryArticle . 2014Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2014.01.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverArchive Ouverte de l'Université Rennes (HAL)Article . 2014Full-Text: https://univ-rennes.hal.science/hal-01005821Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2014Full-Text: https://univ-rennes.hal.science/hal-01005821Data sources: Bielefeld Academic Search Engine (BASE)INRIA a CCSD electronic archive serverArticle . 2014Data sources: INRIA a CCSD electronic archive serverINRIA a CCSD electronic archive serverArticle . 2014 . Peer-reviewedData sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)University of Southern Denmark Research OutputArticle . 2014Data sources: University of Southern Denmark Research OutputSoil Biology and BiochemistryArticle . 2014Data sources: University of Southern Denmark Research Outputadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2014.01.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Chao Li; Chunwang Xiao; Bertrand Guenet; Mingxu Li; Li Xu; Nianpeng He;It remains unclear how soil microbes respond to labile organic carbon (LOC) inputs and how temperature sensitivity ($Q_{10}$) of soil organic matter (SOM) decomposition is affected by LOC inputs in a short-term. In this study, $^{13}$C-labeled glucose was added to a pristine grassland soil at four temperatures (10, 15, 20, and 25 ◦C), and the immediate utilization of LOC and native SOM by microbes was measured minutely in a short-term. We found that the LOC addition stimulated the native SOM decomposition, and elevated temperature enhanced the intensity of microbial response to LOC addition. The ratio between microbial respiration derived from LOC and native SOM increased with higher temperature, and more LOC for respiration. Additionally, LOC addition increased the $Q_{10}$ of SOM decomposition, and the $Q_{10}$ of LOC decomposition is higher than that of native SOM. Overall, these findings emphasize the important role of temperature and LOC inputs in soil C cycles.
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-04017529Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2022.108589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2022Full-Text: https://hal.science/hal-04017529Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2022.108589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 FrancePublisher:Elsevier BV Kpemoua, Tchodjowiè P.I.; Leclerc, Sarah; Barré, Pierre; Houot, Sabine; Pouteau, Valérie; Plessis, Cédric; Chenu, Claire;<p>Global warming is leading to increased temperatures, accentuated evaporation of terrestrial water and increased the atmosphere moisture content, resulting in frequent droughts and heavy precipitation events. It necessary to assess the sensitivity of soil organic carbon (SOC) under storing practices in response to increasing soil moisture, temperature and frequent dry-wet cycles in order to anticipate future soil carbon losses. We evaluated the impact of these climatic events through an incubation experiment on temperate luvisols from conservation agriculture, organic agriculture, organic waste products applications, i.e. biowaste, residual municipal solid waste and farmyard manure composts compared with conventionally managemed soils. The alternative management options all have led to increased SOC stocks. Soil samples were incubated in the lab under different temperatures (20, 28 and 35&#176;C), different moisture conditions (pF1.5; 2.5 and 4.2) and under dry(pF4.2)-wet (pF1.5) cycles. Dry-wet cycles caused CO2 flushes but overall did not stimulate soil carbon mineralization relative to wet controls (pF1.5 and pF2.5). Overall the additional SOC stored under alternative management options was not more sensitive to climate change (temperature, moisture, dry-wet cycles) than the existing SOC.</p>
Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.inrae.fr/hal-04330096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2023.109043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institut national de... arrow_drop_down Institut national des sciences de l'Univers: HAL-INSUArticle . 2023Full-Text: https://hal.inrae.fr/hal-04330096Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2023.109043&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 FrancePublisher:Elsevier BV Anke M. Herrmann; Thomas Z. Lerch; Thomas Z. Lerch; Elsa Coucheney; Elsa Coucheney;Abstract The development of the MicroResp™ approach ( Campbell et al., 2003 ) has allowed large-scale monitoring of community-level physiological profiles (CLPP). Here, we tested the sensitivity of this method to a carbon (C) substrate concentration gradient on 12 arable soils which had received contrasting long-term (53 years) managements. Irrespectively to the soil organic carbon (SOC), total activity and catabolic evenness were similar for C substrate addition above 10% C added of SOC, suggesting microbial respiratory metabolism saturation. Below this threshold, CLPP were significantly altered, especially when the amount of SOC was low. This threshold corresponded to 4 up to 10 mgC mL −1 soil water which is 66–87% lower than used in the original approach. Such C concentrations could be used in future MicroResp™ assaying when determining CLPP via multi-substrate induced respiration of the microbial biomass.
Hyper Article en Lig... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Soil Biology and BiochemistryArticle . 2013 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2013Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2012.11.014&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 ItalyPublisher:Elsevier BV Roberto Zampedri; Sandrine Salmon; Lorenzo Frizzera; Nadia Artuso; Nadia Artuso;handle: 10449/17196
This study investigated the responses of soil animal communities, soil functioning and humus forms to forest dynamics and solar radiation. We examined changes in invertebrate communities and soil features in two subalpine spruce forests (Eastern Italian Alps, Trento) growing on a calcareous bedrock, with different sun exposures (north and south), each forming a chronosequence of three developmental phases: clearing, regeneration stand (25-year-old trees) and mature stand (170-year-old trees). Our results indicate that the two forest sites differed in solar energy input, soil chemical properties and the relationships between forest dynamics and animal communities. In the north-facing site, soil fauna communities were very similar in the three forest developmental phases. Conversely, in the south-facing site, the composition of invertebrate communities and the diversity of zoological groups varied greatly among developmental phases. The highest abundance of total invertebrates, and mites in particular, occurred in the south-facing mature stands while the south-facing regeneration stand was characterised by higher densities of Collembola, Chilopoda, Symphyla, Protura and Aranea. The structure of communities in clearings was the same as in regeneration stands but with lower invertebrate abundance. Humus forms and soil features changed with developmental phases in both the south- and north-facing sites, although variations were more pronounced in the southern exposure. Mature stands were characterised by high levels of soil organic carbon and nitrogen, C/N values and low pH, the clearings and regeneration stands being characterised by a greater release of mineral nitrogen. The diversity of zoological groups (Shannon–Wiener index) was linearly correlated to soil pH, Humus Index, the amount of organic carbon and the species richness of herbaceous plants. Our results about the composition and the diversity of invertebrate communities are consistent with the observations of other authors studying south-exposed forests growing on different bedrock types, indicating that such relationships are widespread. The higher densities of invertebrates in the south-facing site may be attributed to higher solar radiation, and the positive correlation observed between total soil fauna abundance and solar energy supports the “more individuals” hypothesis that assumes a positive relationship between the number of individuals and energy availability. Possible ways by which forest dynamics control soil invertebrate communities are discussed.
Hyper Article en Lig... arrow_drop_down Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2008.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefFondazione Edmund Mach: IRIS-OpenPubArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2008.02.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2008 Netherlands, France, France, DenmarkPublisher:Elsevier BV Birkhofer, Klaus; Bezemer, T. Martijn; Bloem, Jaap; Bonkowski, Michael; Christensen, Søren; Dubois, David; Ekelund, Fleming; Fliessbach, Andreas; Gunst, Lucie; Hedlund, Katarina; Mäder, Paul; Mikola, Juha; Robin, Christophe; Setälä, Heikki; Tatin-Froux, Fabienne; van Der Putten, Wim H.; Scheu, Stefan;Organic farming may contribute substantially to future agricultural production worldwide by improving soil quality and pest control, thereby reducing environmental impacts of conventional farming. We investigated in a comprehensive way soil chemical, as well as below and aboveground biological parameters of two organic and two conventional wheat farming systems that primarily differed in fertilization and weed management strategies. Contrast analyses identified management related differences between “herbicide-free” bioorganic (BIOORG) and biodynamic (BIODYN) systems and conventional systems with (CONFYM) or without manure (CONMIN) and herbicide application within a long-term agricultural experiment (DOK trial, Switzerland). Soil carbon content was significantly higher in systems receiving farmyard manure and concomitantly microbial biomass (fungi and bacteria) was increased. Microbial activity parameters, such as microbial basal respiration and nitrogen mineralization, showed an opposite pattern, suggesting that soil carbon in the conventional system (CONFYM) was more easily accessible to microorganisms than in organic systems. Bacterivorous nematodes and earthworms were most abundant in systems that received farmyard manure, which is in line with the responses of their potential food sources (microbes and organic matter). Mineral fertilizer application detrimentally affected enchytraeids and Diptera larvae, whereas aphids benefited. Spider abundance was favoured by organic management, most likely a response to increased prey availability from the belowground subsystem or increased weed coverage. In contrast to most soil-based, bottom-up controlled interactions, the twofold higher abundance of this generalist predator group in organic systems likely contributed to the significantly lower abundance of aboveground herbivore pests (aphids) in these systems. Long-term organic farming and the application of farmyard manure promoted soil quality, microbial biomass and fostered natural enemies and ecosystem engineers, suggesting enhanced nutrient cycling and pest control. Mineral fertilizers and herbicide application, in contrast, affected the potential for top-down control of aboveground pests negatively and reduced the organic carbon levels. Our study indicates that the use of synthetic fertilizers and herbicide application changes interactions within and between below and aboveground components, ultimately promoting negative environmental impacts of agriculture by reducing internal biological cycles and pest control. On the contrary, organic farming fosters microbial and faunal decomposers and this propagates into the aboveground system via generalist predators thereby increasing conservation biological control. However, grain and straw yields were 23% higher in systems receiving mineral fertilizers and herbicides reflecting the trade-off between productivity and environmental responsibility.
Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2008Full-Text: https://hal.inrae.fr/hal-02667899/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2008Full-Text: https://hal.inrae.fr/hal-02667899/documentINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2008License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSoil Biology and BiochemistryArticle . 2008Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2008.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 457 citations 457 popularity Top 0.1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Hyper Article en Lig... arrow_drop_down Hyper Article en LigneArticle . 2008Full-Text: https://hal.inrae.fr/hal-02667899/documentData sources: Hyper Article en LigneMémoires en Sciences de l'Information et de la CommunicationArticle . 2008Full-Text: https://hal.inrae.fr/hal-02667899/documentINRIA a CCSD electronic archive serverArticle . 2008Data sources: INRIA a CCSD electronic archive serverInstitut National de la Recherche Agronomique: ProdINRAArticle . 2008License: CC-BY-ND-NCData sources: Bielefeld Academic Search Engine (BASE)Soil Biology and BiochemistryArticle . 2008Data sources: DANS (Data Archiving and Networked Services)Soil Biology and BiochemistryArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefSoil Biology and BiochemistryArticle . 2008Data sources: DANS (Data Archiving and Networked Services)University of Copenhagen: ResearchArticle . 2008Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2008.05.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025Embargo end date: 01 Jan 2025 SwitzerlandPublisher:Elsevier BV Funded by:SNSF | MICROSERVICES: Predicting..., ANR | MICROSERVICESSNSF| MICROSERVICES: Predicting climate change impacts on the crop microbiome and cascading effects on ecosystem services delivery in agroecosystems ,ANR| MICROSERVICESAri Fina Bintarti; Elena Kost; Dominika Kundel; Rafaela Feola Conz; Paul Mäder; Hans-Martin Krause; Jochen Mayer; Laurent Philippot; Martin Hartmann;The severity of drought is predicted to increase across Europe due to climate change. Droughts can substantially impact terrestrial nitrogen (N) cycling and the corresponding microbial communities. Here, we investigated how ammonia-oxidizing bacteria (AOB), archaea (AOA), and complete ammonia oxidizers (comammox) as well as inorganic N pools and N2O fluxes respond to simulated drought under different cropping systems. A rain-out shelter experiment was conducted as part of a long-term field experiment comparing cropping systems that differed mainly in fertilization strategy (organic, mineral, or mixed mineral and organic) and plant protection management (biodynamic versus conventional pesticide use). We found that the effect of drought varied depending on the specific ammonia-oxidizing (AO) groups and the type of cropping system. Drought had the greatest impact on the structure of the AOA community compared to the other AO groups. The abundance of ammonia oxidizers was also affected by drought, with comammox clade B exhibiting the highest sensitivity. Additionally, drought had, overall, a stronger impact on the AO community structure in the biodynamic cropping system than in the mixed and mineral-fertilized conventional systems. The responses of ammonia-oxidizing communities to drought were comparable between bulk soil and rhizosphere. We observed a significant increase in NH4+ and NO3− pools during the drought period, which then decreased after rewetting, indicating a strong resilience. We further found that drought altered the complex relationships between AO communities and mineral N pools, as well as N2O fluxes. These results highlight the importance of agricultural management practices in influencing the response of nitrogen cycling guilds and their processes to drought. Soil Biology and Biochemistry, 201 ISSN:0038-0717 ISSN:1879-3428
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2024.109658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.soilbio.2024.109658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu