- home
- Advanced Search
- Energy Research
- FR
- Geosciences
- Energy Research
- FR
- Geosciences
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, France, ItalyPublisher:MDPI AG Funded by:UKRI | Drone Swarm for Unmanned ..., ANR | Université de ParisUKRI| Drone Swarm for Unmanned Inspection of Wind Turbines (Dr-SUIT): Battery Health Management, Hybrid Comms Systems and Operational Platform for Autonomous Offshore Windfarm Inspection ,ANR| Université de ParisMoretti, Roberto; Moune, Séverine; Jessop, David; Glynn, Chagnon; Robert, Vincent; Deroussi, Sébastien;handle: 11591/493989
The volcanic-hydrothermal geo-diversity of the Basse-Terre Island of Guadeloupe archipelago (Eastern Caribbean, France) is a major asset of the Caribbean bio-geoheritage. In this paper, we use Guadeloupe as a representative of many small island developing states (SIDS), to show that the volcanic-hydrothermal geodiversity is a major resource and strategic thread for resilience and sustainability. These latter are related to the specific richness of Guadeloupe’s volcanic-geothermal diversity, which is de facto inalienable even in the wake of climate change and natural risks that are responsible for this diversity, i.e., volcanic eruptions. We propose the interweaving the specificity of volcanic-geothermal diversity into planning initiatives for resilience and sustainability. Among these initiatives research and development programs focused on the knowledge of geodiversity, biodiversity and related resources and risks are central for the long-term management of the water resource, lato sensu. Such a management should include a comprehensive scientific observatory for the characterization, exploration, and sustainable exploitation of the volcanic-hydrothermal geodiversity alongside planning for and mitigating geophysical risks related to sudden volcanic-induced phenomena and long-term systemic drifts due to climate change. The results of this exercise for Guadeloupe could typify innovative paths for similar SIDS around their own volcanic-hydrothermal geodiversity.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/454/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.uca.fr/hal-03412797Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/454/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.uca.fr/hal-03412797Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, France, ItalyPublisher:MDPI AG Funded by:UKRI | Drone Swarm for Unmanned ..., ANR | Université de ParisUKRI| Drone Swarm for Unmanned Inspection of Wind Turbines (Dr-SUIT): Battery Health Management, Hybrid Comms Systems and Operational Platform for Autonomous Offshore Windfarm Inspection ,ANR| Université de ParisMoretti, Roberto; Moune, Séverine; Jessop, David; Glynn, Chagnon; Robert, Vincent; Deroussi, Sébastien;handle: 11591/493989
The volcanic-hydrothermal geo-diversity of the Basse-Terre Island of Guadeloupe archipelago (Eastern Caribbean, France) is a major asset of the Caribbean bio-geoheritage. In this paper, we use Guadeloupe as a representative of many small island developing states (SIDS), to show that the volcanic-hydrothermal geodiversity is a major resource and strategic thread for resilience and sustainability. These latter are related to the specific richness of Guadeloupe’s volcanic-geothermal diversity, which is de facto inalienable even in the wake of climate change and natural risks that are responsible for this diversity, i.e., volcanic eruptions. We propose the interweaving the specificity of volcanic-geothermal diversity into planning initiatives for resilience and sustainability. Among these initiatives research and development programs focused on the knowledge of geodiversity, biodiversity and related resources and risks are central for the long-term management of the water resource, lato sensu. Such a management should include a comprehensive scientific observatory for the characterization, exploration, and sustainable exploitation of the volcanic-hydrothermal geodiversity alongside planning for and mitigating geophysical risks related to sudden volcanic-induced phenomena and long-term systemic drifts due to climate change. The results of this exercise for Guadeloupe could typify innovative paths for similar SIDS around their own volcanic-hydrothermal geodiversity.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/454/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.uca.fr/hal-03412797Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/454/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.uca.fr/hal-03412797Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FrancePublisher:MDPI AG Authors: Menendez, Beatriz;Changes induced by climate change in salt weathering of built cultural heritage are estimated in different ways, but generally as a function of phase changes phenomena of two common salts, sodium chloride and sodium sulfate. We propose to use not only these salts, but also other common salts as calcium sulfate, or mixtures of chlorides, sulfates, and nitrates of sodium, calcium, magnesium, and potassium. Comparisons between the predicted changes in salt weathering obtained for single salts and for combinations of different salts are presented. We applied the proposed methodology to 41 locations uniformly distributed in France. The results show that estimations of actual and evolution of future weathering depend on the selected salt or combination of salts. According to our results, when using a combination of different salts, weathering evolution is less favorable (more damage in the future) than when using a single salt.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/11/401/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8110401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/11/401/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8110401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FrancePublisher:MDPI AG Authors: Menendez, Beatriz;Changes induced by climate change in salt weathering of built cultural heritage are estimated in different ways, but generally as a function of phase changes phenomena of two common salts, sodium chloride and sodium sulfate. We propose to use not only these salts, but also other common salts as calcium sulfate, or mixtures of chlorides, sulfates, and nitrates of sodium, calcium, magnesium, and potassium. Comparisons between the predicted changes in salt weathering obtained for single salts and for combinations of different salts are presented. We applied the proposed methodology to 41 locations uniformly distributed in France. The results show that estimations of actual and evolution of future weathering depend on the selected salt or combination of salts. According to our results, when using a combination of different salts, weathering evolution is less favorable (more damage in the future) than when using a single salt.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/11/401/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8110401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/11/401/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8110401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 CroatiaPublisher:MDPI AG Funded by:EC | MEETEC| MEETAuthors: Hranić, Josipa; Raos, Sara; Leoutre, Eric; Rajšl, Ivan;There are numerous oil fields that are approaching the end of their lifetime and that have great geothermal potential considering temperature and water cut. On the other hand, the oil industry is facing challenges due to increasingly stringent environmental regulations. An example of this is the case of France where oil extraction will be forbidden starting from the year 2035. Therefore, some oil companies are considering switching from the oil business to investing in geothermal projects conducted on existing oil wells. The proposed methodology and developed conversions present the evaluation of existing geothermal potentials for each oil field in terms of water temperature and flow rate. An additional important aspect is also the spatial distribution of existing oil wells related to the specific oil field. This paper proposes a two-stage clustering approach for grouping similar wells in terms of their temperature properties. Once grouped on a temperature basis, these clusters should be clustered once more with respect to their spatial arrangement in order to optimize the location of production facilities. The outputs regarding production quantities and economic and environmental aspects will provide insight into the optimal scenario for oil-to-water conversion. The scenarios differ in terms of produced energy and technology used. A case study has been developed where the comparison of overall fields and clustered fields is shown, together with the formed scenarios that can further determine the possible conversion of petroleum assets to a geothermal assets.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/470/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/11/470/pdfData sources: SygmaCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 7 Powered bymore_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/470/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/11/470/pdfData sources: SygmaCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 CroatiaPublisher:MDPI AG Funded by:EC | MEETEC| MEETAuthors: Hranić, Josipa; Raos, Sara; Leoutre, Eric; Rajšl, Ivan;There are numerous oil fields that are approaching the end of their lifetime and that have great geothermal potential considering temperature and water cut. On the other hand, the oil industry is facing challenges due to increasingly stringent environmental regulations. An example of this is the case of France where oil extraction will be forbidden starting from the year 2035. Therefore, some oil companies are considering switching from the oil business to investing in geothermal projects conducted on existing oil wells. The proposed methodology and developed conversions present the evaluation of existing geothermal potentials for each oil field in terms of water temperature and flow rate. An additional important aspect is also the spatial distribution of existing oil wells related to the specific oil field. This paper proposes a two-stage clustering approach for grouping similar wells in terms of their temperature properties. Once grouped on a temperature basis, these clusters should be clustered once more with respect to their spatial arrangement in order to optimize the location of production facilities. The outputs regarding production quantities and economic and environmental aspects will provide insight into the optimal scenario for oil-to-water conversion. The scenarios differ in terms of produced energy and technology used. A case study has been developed where the comparison of overall fields and clustered fields is shown, together with the formed scenarios that can further determine the possible conversion of petroleum assets to a geothermal assets.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/470/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/11/470/pdfData sources: SygmaCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 7 Powered bymore_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/470/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/11/470/pdfData sources: SygmaCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FrancePublisher:MDPI AG Funded by:ANR | LA PACHAMAMAANR| LA PACHAMAMAAchá, Darío; Guédron, Stéphane; Amouroux, David; Point, David; Lazzaro, Xavier; Fernandez, Pablo Edgar; Sarret, Geraldine;Algal blooms occurrence is increasing around the globe. However, algal blooms are uncommon in dominantly oligotrophic high-altitude lakes. Lake Titicaca, the largest freshwater lake in South America, located at 3809 m above the sea level, experienced its first recorded algal bloom covering a large fraction of its southern shallow basin in March–April 2015. The dominant algae involved in the bloom was Carteria sp. Water geochemistry changed during the bloom with a simultaneous alkalinization in heterotrophic parts of the lake and acidification in eutrophic shallow areas. A decrease in oxygen saturation (from 105 to 51%), and a dramatic increase in hydrogen sulfide (H2S) concentrations (from <0.02 to up to 155 µg∙L−1) resulted in the massive death of pelagic organisms. Such changes were brought by the exacerbated activity of sulfate-reducing bacteria (SRB) in this sulfate-rich lake. Although levels in total mercury remained stable during the event, MMHg % rose, highlighting higher conservation of produced MMHg in the water. Such an increase on MMHg % has the potential to produce exponential changes on MMHg concentrations at the end food web due to the biomagnification process. Our physicochemical and climatological data suggest that unusually intense rain events released large amounts of nutrients from the watershed and triggered the bloom. The observed bloom offers a hint for possible scenarios for the lake if pollution and climate change continue to follow the same trend. Such a scenario may have significant impacts on the most valuable fish source in the Andean region and the largest freshwater Lake in South America. Furthermore, the event illustrates a possible fate of high altitude environments subjected to eutrophication.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/12/438/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/12/438/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FrancePublisher:MDPI AG Funded by:ANR | LA PACHAMAMAANR| LA PACHAMAMAAchá, Darío; Guédron, Stéphane; Amouroux, David; Point, David; Lazzaro, Xavier; Fernandez, Pablo Edgar; Sarret, Geraldine;Algal blooms occurrence is increasing around the globe. However, algal blooms are uncommon in dominantly oligotrophic high-altitude lakes. Lake Titicaca, the largest freshwater lake in South America, located at 3809 m above the sea level, experienced its first recorded algal bloom covering a large fraction of its southern shallow basin in March–April 2015. The dominant algae involved in the bloom was Carteria sp. Water geochemistry changed during the bloom with a simultaneous alkalinization in heterotrophic parts of the lake and acidification in eutrophic shallow areas. A decrease in oxygen saturation (from 105 to 51%), and a dramatic increase in hydrogen sulfide (H2S) concentrations (from <0.02 to up to 155 µg∙L−1) resulted in the massive death of pelagic organisms. Such changes were brought by the exacerbated activity of sulfate-reducing bacteria (SRB) in this sulfate-rich lake. Although levels in total mercury remained stable during the event, MMHg % rose, highlighting higher conservation of produced MMHg in the water. Such an increase on MMHg % has the potential to produce exponential changes on MMHg concentrations at the end food web due to the biomagnification process. Our physicochemical and climatological data suggest that unusually intense rain events released large amounts of nutrients from the watershed and triggered the bloom. The observed bloom offers a hint for possible scenarios for the lake if pollution and climate change continue to follow the same trend. Such a scenario may have significant impacts on the most valuable fish source in the Andean region and the largest freshwater Lake in South America. Furthermore, the event illustrates a possible fate of high altitude environments subjected to eutrophication.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/12/438/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/12/438/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:NSERCNSERCLabrie, Rachel; Bhiry, Najat; Todisco, Dominique; Finco, Cécile; Couillet, Armelle;Characterizing permafrost is crucial for understanding the fate of arctic and subarctic archaeological archives under climate change. The loss of bio-physical integrity of archaeological sites in northern regions is still poorly documented, even though discontinuous permafrost is particularly vulnerable to global warming. In this study, we documented the spatial distribution of the permafrost-supported Inuit archaeological site Oakes Bay 1 on Dog Island (Labrador, Canada) while employing a novel approach in northern geoarchaeology based on non-invasive geophysical methods. ERT and GPR were successfully used to estimate active layer thickness and image permafrost spatial variability and characteristics. The results made it possible to reconstruct a conceptual model of the current geocryological context of the subsurface in relation to the site topography, hydrology, and geomorphology. The peripherical walls of Inuit semi-subterranean sod houses were found to contain ice-rich permafrost, whereas their central depressions were identified as sources of vertical permafrost degradation. The geophysical investigations were used to classify the permafrost at Oakes Bay 1 as climate-driven, ecosystem-protected permafrost that cannot regenerate under current climate conditions. This work highlights how the permafrost at Oakes Bay 1 is currently affected by multi-point thermal degradation by both conduction and advection, which makes it highly sensitive to climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences14040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences14040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:NSERCNSERCLabrie, Rachel; Bhiry, Najat; Todisco, Dominique; Finco, Cécile; Couillet, Armelle;Characterizing permafrost is crucial for understanding the fate of arctic and subarctic archaeological archives under climate change. The loss of bio-physical integrity of archaeological sites in northern regions is still poorly documented, even though discontinuous permafrost is particularly vulnerable to global warming. In this study, we documented the spatial distribution of the permafrost-supported Inuit archaeological site Oakes Bay 1 on Dog Island (Labrador, Canada) while employing a novel approach in northern geoarchaeology based on non-invasive geophysical methods. ERT and GPR were successfully used to estimate active layer thickness and image permafrost spatial variability and characteristics. The results made it possible to reconstruct a conceptual model of the current geocryological context of the subsurface in relation to the site topography, hydrology, and geomorphology. The peripherical walls of Inuit semi-subterranean sod houses were found to contain ice-rich permafrost, whereas their central depressions were identified as sources of vertical permafrost degradation. The geophysical investigations were used to classify the permafrost at Oakes Bay 1 as climate-driven, ecosystem-protected permafrost that cannot regenerate under current climate conditions. This work highlights how the permafrost at Oakes Bay 1 is currently affected by multi-point thermal degradation by both conduction and advection, which makes it highly sensitive to climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences14040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences14040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 FrancePublisher:MDPI AG Arnaud, Gael; Krien, Yann; Abadie, Stéphane; Zahibo, Narcisse; Dudon, Bernard;Tsunamis are among the deadliest threats to coastal areas as reminded by the recent tragic events in the Indian Ocean in 2004 and in Japan in 2011. A large number of tropical islands are indeed exposed due to their proximity to potential tsunami sources in tectonic subduction zones. For these territories, assessing tsunamis’ impact is of major concern for early warning systems and management plans. The effectiveness of inundation predictions relies, among other things, on processes engaged at the scale of the local bathymetry and topography. As part of the project C3AF that aimed to study the consequences of climate change on the French West Indies, we used the numerical model SCHISM to simulate the propagation of several potential tsunamis as well as their impacts on the Guadeloupe islands (French West Indies). Working from the findings of the most recent studies, we used the simulations of four scenarios of collapse of the Cumbre Vieja volcano in La Palma, Canary islands. We then used FUNWAVE-TVD to simulate trans-Atlantic wave propagation until they reached the Guadeloupe archipelago where we used SCHISM to assess their final impact. Inundation is quantified for the whole archipelago and detailed for the most exposed areas. Finally, in a climate change perspective, inundation is compared for different sea levels and degrees of vegetation cover deterioration using modified friction coefficients. We then discuss the results showing that climate change-related factors would amplify the impact more in the case of smaller inundation along with model limitations and assumptions.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/2/56/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11020056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/2/56/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11020056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 FrancePublisher:MDPI AG Arnaud, Gael; Krien, Yann; Abadie, Stéphane; Zahibo, Narcisse; Dudon, Bernard;Tsunamis are among the deadliest threats to coastal areas as reminded by the recent tragic events in the Indian Ocean in 2004 and in Japan in 2011. A large number of tropical islands are indeed exposed due to their proximity to potential tsunami sources in tectonic subduction zones. For these territories, assessing tsunamis’ impact is of major concern for early warning systems and management plans. The effectiveness of inundation predictions relies, among other things, on processes engaged at the scale of the local bathymetry and topography. As part of the project C3AF that aimed to study the consequences of climate change on the French West Indies, we used the numerical model SCHISM to simulate the propagation of several potential tsunamis as well as their impacts on the Guadeloupe islands (French West Indies). Working from the findings of the most recent studies, we used the simulations of four scenarios of collapse of the Cumbre Vieja volcano in La Palma, Canary islands. We then used FUNWAVE-TVD to simulate trans-Atlantic wave propagation until they reached the Guadeloupe archipelago where we used SCHISM to assess their final impact. Inundation is quantified for the whole archipelago and detailed for the most exposed areas. Finally, in a climate change perspective, inundation is compared for different sea levels and degrees of vegetation cover deterioration using modified friction coefficients. We then discuss the results showing that climate change-related factors would amplify the impact more in the case of smaller inundation along with model limitations and assumptions.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/2/56/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11020056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/2/56/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11020056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Christian Obaje; Sri Kalyan Tangirala; John Reinecker; Kristian Bär; Ingo Sass;The United Downs Deep Geothermal Project (UDDGP) is designed to utilize a presumably permeable steep dipping fault damage zone (constituting the hydrothermal reservoir in a very low permeability granitic host rock) for fluid circulation and heat extraction between an injection well at 2.2 km depth (UD−2) and a production well at 5 km depth (UD−1). Soft hydraulic stimulation was performed to increase the permeability of the reservoir. Numerical simulations are performed to analyze the hydraulic stimulation results and evaluate the increase in permeability of the reservoir. Experimental and field data are used to characterize the initial reservoir static model. The reservoir is highly fractured, and two distinct fracture networks constitute the equivalent porous matrix and fault zone, respectively. Based on experimental and field data, stochastic discrete fracture networks (DFN) are developed to mimic the reservoir permeability behavior. Due to the large number of fractures involved in the stochastic model, equivalent permeability fields are calculated to create a model which is computationally feasible. Hydraulic test and stimulation data from UD−1 are used to modify the equivalent permeability field based on the observed difference between the real fractured reservoir and the stochastic DFN model. Additional hydraulic test and stimulation data from UD−2 are used to validate this modified permeability. Results reveal that the equivalent permeability field model derived from observations made in UD−1 is a good representation of the actual overall reservoir permeability, and it is useful for future studies. The numerical simulation results show the amount of permeability changes due to the soft hydraulic stimulation operation. Based on the validated permeability field, different flow rate scenarios of the petrothermal doublet and their respective pressure evolution are examined. Higher flow rates have a strong impact on the pressure evolution. Simulations are performed in the acidized enhanced permeability region to make a connection between the ongoing laboratory works on the acid injection and field response to the possible acidizing stimulation.
Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Christian Obaje; Sri Kalyan Tangirala; John Reinecker; Kristian Bär; Ingo Sass;The United Downs Deep Geothermal Project (UDDGP) is designed to utilize a presumably permeable steep dipping fault damage zone (constituting the hydrothermal reservoir in a very low permeability granitic host rock) for fluid circulation and heat extraction between an injection well at 2.2 km depth (UD−2) and a production well at 5 km depth (UD−1). Soft hydraulic stimulation was performed to increase the permeability of the reservoir. Numerical simulations are performed to analyze the hydraulic stimulation results and evaluate the increase in permeability of the reservoir. Experimental and field data are used to characterize the initial reservoir static model. The reservoir is highly fractured, and two distinct fracture networks constitute the equivalent porous matrix and fault zone, respectively. Based on experimental and field data, stochastic discrete fracture networks (DFN) are developed to mimic the reservoir permeability behavior. Due to the large number of fractures involved in the stochastic model, equivalent permeability fields are calculated to create a model which is computationally feasible. Hydraulic test and stimulation data from UD−1 are used to modify the equivalent permeability field based on the observed difference between the real fractured reservoir and the stochastic DFN model. Additional hydraulic test and stimulation data from UD−2 are used to validate this modified permeability. Results reveal that the equivalent permeability field model derived from observations made in UD−1 is a good representation of the actual overall reservoir permeability, and it is useful for future studies. The numerical simulation results show the amount of permeability changes due to the soft hydraulic stimulation operation. Based on the validated permeability field, different flow rate scenarios of the petrothermal doublet and their respective pressure evolution are examined. Higher flow rates have a strong impact on the pressure evolution. Simulations are performed in the acidized enhanced permeability region to make a connection between the ongoing laboratory works on the acid injection and field response to the possible acidizing stimulation.
Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, Norway, GermanyPublisher:MDPI AG Alessandra Insana; Mary Antonette Beroya-Eitner; Marco Barla; Hauke Zachert; Bojan Žlender; Margreet van Marle; Bjørn Kalsnes; Tamara Bračko; Carlos Pereira; Iulia Prodan; Fabien Szymkiewicz; Hjördis Löfroth;handle: 11583/2941352 , 11250/2981775
Climate change is already being felt in Europe, unequivocally affecting the regions’ geo-structures. Concern over this is rising, as reflected in the increasing number of studies on the subject. However, the majority of these studies focused only on slopes and on a limited geographical scope. In this paper, we attempted to provide a broader picture of potential climate change impacts on the geo-structures in Europe by gathering the collective view of geo-engineers and geo-scientists in several countries, and by considering different geo-structure types. We also investigated how geo-structural concerns are being addressed in national adaptation plans. We found that specific provisions for geo-structural adaptation are generally lacking and mainly come in the form of strategies for specific problems. In this regard, two common strategies are hazard/risk assessment and monitoring, which are mainly implemented in relation to slope stability. We recommend that in future steps, other geo-structures are likewise given attention, particularly those assessed as also potentially significantly affected by climate change. Countries considered in this study are mainly the member countries of the European Large Geotechnical Institutes Platform (ELGIP).
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, Norway, GermanyPublisher:MDPI AG Alessandra Insana; Mary Antonette Beroya-Eitner; Marco Barla; Hauke Zachert; Bojan Žlender; Margreet van Marle; Bjørn Kalsnes; Tamara Bračko; Carlos Pereira; Iulia Prodan; Fabien Szymkiewicz; Hjördis Löfroth;handle: 11583/2941352 , 11250/2981775
Climate change is already being felt in Europe, unequivocally affecting the regions’ geo-structures. Concern over this is rising, as reflected in the increasing number of studies on the subject. However, the majority of these studies focused only on slopes and on a limited geographical scope. In this paper, we attempted to provide a broader picture of potential climate change impacts on the geo-structures in Europe by gathering the collective view of geo-engineers and geo-scientists in several countries, and by considering different geo-structure types. We also investigated how geo-structural concerns are being addressed in national adaptation plans. We found that specific provisions for geo-structural adaptation are generally lacking and mainly come in the form of strategies for specific problems. In this regard, two common strategies are hazard/risk assessment and monitoring, which are mainly implemented in relation to slope stability. We recommend that in future steps, other geo-structures are likewise given attention, particularly those assessed as also potentially significantly affected by climate change. Countries considered in this study are mainly the member countries of the European Large Geotechnical Institutes Platform (ELGIP).
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 FrancePublisher:MDPI AG Funded by:ANR | CRITEX, ANR | Stock-en-SocleANR| CRITEX ,ANR| Stock-en-SocleJérôme de La Bernardie; Olivier Bour; Nicolas Guihéneuf; Eliot Chatton; Laurent Longuevergne; Tanguy Le Borgne;Experimental characterization of thermal transport in fractured media through thermal tracer tests is crucial for environmental and industrial applications such as the prediction of geothermal system efficiency. However, such experiments have been poorly achieved in fractured rock due to the low permeability and complexity of these media. We have thus little knowledge about the effect of flow configuration on thermal recovery during thermal tracer tests in such systems. We present here the experimental set up and results of several single-well thermal tracer tests for different flow configurations, from fully convergent to perfect dipole, achieved in a fractured crystalline rock aquifer at the experimental site of Plœmeur (H+ observatory network). The monitoring of temperature using Fiber-Optic Distributed Temperature Sensing (FO-DTS) associated with appropriate data processing allowed to properly highlight the heat inflow in the borehole and to estimate temperature breakthroughs for the different tests. Results show that thermal recovery is mainly controlled by advection processes in convergent flow configuration while in perfect dipole flow field, thermal exchanges with the rock matrix are more important, inducing lower thermal recovery.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/10/440/pdfData sources: Multidisciplinary Digital Publishing InstituteArchive Ouverte de l'Université Rennes (HAL)Article . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9100440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/10/440/pdfData sources: Multidisciplinary Digital Publishing InstituteArchive Ouverte de l'Université Rennes (HAL)Article . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9100440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 FrancePublisher:MDPI AG Funded by:ANR | CRITEX, ANR | Stock-en-SocleANR| CRITEX ,ANR| Stock-en-SocleJérôme de La Bernardie; Olivier Bour; Nicolas Guihéneuf; Eliot Chatton; Laurent Longuevergne; Tanguy Le Borgne;Experimental characterization of thermal transport in fractured media through thermal tracer tests is crucial for environmental and industrial applications such as the prediction of geothermal system efficiency. However, such experiments have been poorly achieved in fractured rock due to the low permeability and complexity of these media. We have thus little knowledge about the effect of flow configuration on thermal recovery during thermal tracer tests in such systems. We present here the experimental set up and results of several single-well thermal tracer tests for different flow configurations, from fully convergent to perfect dipole, achieved in a fractured crystalline rock aquifer at the experimental site of Plœmeur (H+ observatory network). The monitoring of temperature using Fiber-Optic Distributed Temperature Sensing (FO-DTS) associated with appropriate data processing allowed to properly highlight the heat inflow in the borehole and to estimate temperature breakthroughs for the different tests. Results show that thermal recovery is mainly controlled by advection processes in convergent flow configuration while in perfect dipole flow field, thermal exchanges with the rock matrix are more important, inducing lower thermal recovery.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/10/440/pdfData sources: Multidisciplinary Digital Publishing InstituteArchive Ouverte de l'Université Rennes (HAL)Article . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9100440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/10/440/pdfData sources: Multidisciplinary Digital Publishing InstituteArchive Ouverte de l'Université Rennes (HAL)Article . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9100440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, France, ItalyPublisher:MDPI AG Funded by:UKRI | Drone Swarm for Unmanned ..., ANR | Université de ParisUKRI| Drone Swarm for Unmanned Inspection of Wind Turbines (Dr-SUIT): Battery Health Management, Hybrid Comms Systems and Operational Platform for Autonomous Offshore Windfarm Inspection ,ANR| Université de ParisMoretti, Roberto; Moune, Séverine; Jessop, David; Glynn, Chagnon; Robert, Vincent; Deroussi, Sébastien;handle: 11591/493989
The volcanic-hydrothermal geo-diversity of the Basse-Terre Island of Guadeloupe archipelago (Eastern Caribbean, France) is a major asset of the Caribbean bio-geoheritage. In this paper, we use Guadeloupe as a representative of many small island developing states (SIDS), to show that the volcanic-hydrothermal geodiversity is a major resource and strategic thread for resilience and sustainability. These latter are related to the specific richness of Guadeloupe’s volcanic-geothermal diversity, which is de facto inalienable even in the wake of climate change and natural risks that are responsible for this diversity, i.e., volcanic eruptions. We propose the interweaving the specificity of volcanic-geothermal diversity into planning initiatives for resilience and sustainability. Among these initiatives research and development programs focused on the knowledge of geodiversity, biodiversity and related resources and risks are central for the long-term management of the water resource, lato sensu. Such a management should include a comprehensive scientific observatory for the characterization, exploration, and sustainable exploitation of the volcanic-hydrothermal geodiversity alongside planning for and mitigating geophysical risks related to sudden volcanic-induced phenomena and long-term systemic drifts due to climate change. The results of this exercise for Guadeloupe could typify innovative paths for similar SIDS around their own volcanic-hydrothermal geodiversity.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/454/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.uca.fr/hal-03412797Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/454/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.uca.fr/hal-03412797Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, France, ItalyPublisher:MDPI AG Funded by:UKRI | Drone Swarm for Unmanned ..., ANR | Université de ParisUKRI| Drone Swarm for Unmanned Inspection of Wind Turbines (Dr-SUIT): Battery Health Management, Hybrid Comms Systems and Operational Platform for Autonomous Offshore Windfarm Inspection ,ANR| Université de ParisMoretti, Roberto; Moune, Séverine; Jessop, David; Glynn, Chagnon; Robert, Vincent; Deroussi, Sébastien;handle: 11591/493989
The volcanic-hydrothermal geo-diversity of the Basse-Terre Island of Guadeloupe archipelago (Eastern Caribbean, France) is a major asset of the Caribbean bio-geoheritage. In this paper, we use Guadeloupe as a representative of many small island developing states (SIDS), to show that the volcanic-hydrothermal geodiversity is a major resource and strategic thread for resilience and sustainability. These latter are related to the specific richness of Guadeloupe’s volcanic-geothermal diversity, which is de facto inalienable even in the wake of climate change and natural risks that are responsible for this diversity, i.e., volcanic eruptions. We propose the interweaving the specificity of volcanic-geothermal diversity into planning initiatives for resilience and sustainability. Among these initiatives research and development programs focused on the knowledge of geodiversity, biodiversity and related resources and risks are central for the long-term management of the water resource, lato sensu. Such a management should include a comprehensive scientific observatory for the characterization, exploration, and sustainable exploitation of the volcanic-hydrothermal geodiversity alongside planning for and mitigating geophysical risks related to sudden volcanic-induced phenomena and long-term systemic drifts due to climate change. The results of this exercise for Guadeloupe could typify innovative paths for similar SIDS around their own volcanic-hydrothermal geodiversity.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/454/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.uca.fr/hal-03412797Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/454/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.uca.fr/hal-03412797Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FrancePublisher:MDPI AG Authors: Menendez, Beatriz;Changes induced by climate change in salt weathering of built cultural heritage are estimated in different ways, but generally as a function of phase changes phenomena of two common salts, sodium chloride and sodium sulfate. We propose to use not only these salts, but also other common salts as calcium sulfate, or mixtures of chlorides, sulfates, and nitrates of sodium, calcium, magnesium, and potassium. Comparisons between the predicted changes in salt weathering obtained for single salts and for combinations of different salts are presented. We applied the proposed methodology to 41 locations uniformly distributed in France. The results show that estimations of actual and evolution of future weathering depend on the selected salt or combination of salts. According to our results, when using a combination of different salts, weathering evolution is less favorable (more damage in the future) than when using a single salt.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/11/401/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8110401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/11/401/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8110401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FrancePublisher:MDPI AG Authors: Menendez, Beatriz;Changes induced by climate change in salt weathering of built cultural heritage are estimated in different ways, but generally as a function of phase changes phenomena of two common salts, sodium chloride and sodium sulfate. We propose to use not only these salts, but also other common salts as calcium sulfate, or mixtures of chlorides, sulfates, and nitrates of sodium, calcium, magnesium, and potassium. Comparisons between the predicted changes in salt weathering obtained for single salts and for combinations of different salts are presented. We applied the proposed methodology to 41 locations uniformly distributed in France. The results show that estimations of actual and evolution of future weathering depend on the selected salt or combination of salts. According to our results, when using a combination of different salts, weathering evolution is less favorable (more damage in the future) than when using a single salt.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/11/401/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8110401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 32 citations 32 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/11/401/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8110401&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 CroatiaPublisher:MDPI AG Funded by:EC | MEETEC| MEETAuthors: Hranić, Josipa; Raos, Sara; Leoutre, Eric; Rajšl, Ivan;There are numerous oil fields that are approaching the end of their lifetime and that have great geothermal potential considering temperature and water cut. On the other hand, the oil industry is facing challenges due to increasingly stringent environmental regulations. An example of this is the case of France where oil extraction will be forbidden starting from the year 2035. Therefore, some oil companies are considering switching from the oil business to investing in geothermal projects conducted on existing oil wells. The proposed methodology and developed conversions present the evaluation of existing geothermal potentials for each oil field in terms of water temperature and flow rate. An additional important aspect is also the spatial distribution of existing oil wells related to the specific oil field. This paper proposes a two-stage clustering approach for grouping similar wells in terms of their temperature properties. Once grouped on a temperature basis, these clusters should be clustered once more with respect to their spatial arrangement in order to optimize the location of production facilities. The outputs regarding production quantities and economic and environmental aspects will provide insight into the optimal scenario for oil-to-water conversion. The scenarios differ in terms of produced energy and technology used. A case study has been developed where the comparison of overall fields and clustered fields is shown, together with the formed scenarios that can further determine the possible conversion of petroleum assets to a geothermal assets.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/470/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/11/470/pdfData sources: SygmaCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 7 Powered bymore_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/470/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/11/470/pdfData sources: SygmaCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 CroatiaPublisher:MDPI AG Funded by:EC | MEETEC| MEETAuthors: Hranić, Josipa; Raos, Sara; Leoutre, Eric; Rajšl, Ivan;There are numerous oil fields that are approaching the end of their lifetime and that have great geothermal potential considering temperature and water cut. On the other hand, the oil industry is facing challenges due to increasingly stringent environmental regulations. An example of this is the case of France where oil extraction will be forbidden starting from the year 2035. Therefore, some oil companies are considering switching from the oil business to investing in geothermal projects conducted on existing oil wells. The proposed methodology and developed conversions present the evaluation of existing geothermal potentials for each oil field in terms of water temperature and flow rate. An additional important aspect is also the spatial distribution of existing oil wells related to the specific oil field. This paper proposes a two-stage clustering approach for grouping similar wells in terms of their temperature properties. Once grouped on a temperature basis, these clusters should be clustered once more with respect to their spatial arrangement in order to optimize the location of production facilities. The outputs regarding production quantities and economic and environmental aspects will provide insight into the optimal scenario for oil-to-water conversion. The scenarios differ in terms of produced energy and technology used. A case study has been developed where the comparison of overall fields and clustered fields is shown, together with the formed scenarios that can further determine the possible conversion of petroleum assets to a geothermal assets.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/470/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/11/470/pdfData sources: SygmaCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 9visibility views 9 download downloads 7 Powered bymore_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/11/470/pdfData sources: Multidisciplinary Digital Publishing InstituteGeosciencesArticleLicense: CC BYFull-Text: https://www.mdpi.com/2076-3263/11/11/470/pdfData sources: SygmaCroatian Scientific Bibliography - CROSBIArticle . 2021Data sources: Croatian Scientific Bibliography - CROSBIadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11110470&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FrancePublisher:MDPI AG Funded by:ANR | LA PACHAMAMAANR| LA PACHAMAMAAchá, Darío; Guédron, Stéphane; Amouroux, David; Point, David; Lazzaro, Xavier; Fernandez, Pablo Edgar; Sarret, Geraldine;Algal blooms occurrence is increasing around the globe. However, algal blooms are uncommon in dominantly oligotrophic high-altitude lakes. Lake Titicaca, the largest freshwater lake in South America, located at 3809 m above the sea level, experienced its first recorded algal bloom covering a large fraction of its southern shallow basin in March–April 2015. The dominant algae involved in the bloom was Carteria sp. Water geochemistry changed during the bloom with a simultaneous alkalinization in heterotrophic parts of the lake and acidification in eutrophic shallow areas. A decrease in oxygen saturation (from 105 to 51%), and a dramatic increase in hydrogen sulfide (H2S) concentrations (from <0.02 to up to 155 µg∙L−1) resulted in the massive death of pelagic organisms. Such changes were brought by the exacerbated activity of sulfate-reducing bacteria (SRB) in this sulfate-rich lake. Although levels in total mercury remained stable during the event, MMHg % rose, highlighting higher conservation of produced MMHg in the water. Such an increase on MMHg % has the potential to produce exponential changes on MMHg concentrations at the end food web due to the biomagnification process. Our physicochemical and climatological data suggest that unusually intense rain events released large amounts of nutrients from the watershed and triggered the bloom. The observed bloom offers a hint for possible scenarios for the lake if pollution and climate change continue to follow the same trend. Such a scenario may have significant impacts on the most valuable fish source in the Andean region and the largest freshwater Lake in South America. Furthermore, the event illustrates a possible fate of high altitude environments subjected to eutrophication.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/12/438/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/12/438/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2018 FrancePublisher:MDPI AG Funded by:ANR | LA PACHAMAMAANR| LA PACHAMAMAAchá, Darío; Guédron, Stéphane; Amouroux, David; Point, David; Lazzaro, Xavier; Fernandez, Pablo Edgar; Sarret, Geraldine;Algal blooms occurrence is increasing around the globe. However, algal blooms are uncommon in dominantly oligotrophic high-altitude lakes. Lake Titicaca, the largest freshwater lake in South America, located at 3809 m above the sea level, experienced its first recorded algal bloom covering a large fraction of its southern shallow basin in March–April 2015. The dominant algae involved in the bloom was Carteria sp. Water geochemistry changed during the bloom with a simultaneous alkalinization in heterotrophic parts of the lake and acidification in eutrophic shallow areas. A decrease in oxygen saturation (from 105 to 51%), and a dramatic increase in hydrogen sulfide (H2S) concentrations (from <0.02 to up to 155 µg∙L−1) resulted in the massive death of pelagic organisms. Such changes were brought by the exacerbated activity of sulfate-reducing bacteria (SRB) in this sulfate-rich lake. Although levels in total mercury remained stable during the event, MMHg % rose, highlighting higher conservation of produced MMHg in the water. Such an increase on MMHg % has the potential to produce exponential changes on MMHg concentrations at the end food web due to the biomagnification process. Our physicochemical and climatological data suggest that unusually intense rain events released large amounts of nutrients from the watershed and triggered the bloom. The observed bloom offers a hint for possible scenarios for the lake if pollution and climate change continue to follow the same trend. Such a scenario may have significant impacts on the most valuable fish source in the Andean region and the largest freshwater Lake in South America. Furthermore, the event illustrates a possible fate of high altitude environments subjected to eutrophication.
Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/12/438/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/2076-3263/8/12/438/pdfData sources: Multidisciplinary Digital Publishing InstituteUniversité Savoie Mont Blanc: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Université Grenoble Alpes: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Normandie Université: HALArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2018Full-Text: https://hal.science/hal-02339859Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences8120438&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:NSERCNSERCLabrie, Rachel; Bhiry, Najat; Todisco, Dominique; Finco, Cécile; Couillet, Armelle;Characterizing permafrost is crucial for understanding the fate of arctic and subarctic archaeological archives under climate change. The loss of bio-physical integrity of archaeological sites in northern regions is still poorly documented, even though discontinuous permafrost is particularly vulnerable to global warming. In this study, we documented the spatial distribution of the permafrost-supported Inuit archaeological site Oakes Bay 1 on Dog Island (Labrador, Canada) while employing a novel approach in northern geoarchaeology based on non-invasive geophysical methods. ERT and GPR were successfully used to estimate active layer thickness and image permafrost spatial variability and characteristics. The results made it possible to reconstruct a conceptual model of the current geocryological context of the subsurface in relation to the site topography, hydrology, and geomorphology. The peripherical walls of Inuit semi-subterranean sod houses were found to contain ice-rich permafrost, whereas their central depressions were identified as sources of vertical permafrost degradation. The geophysical investigations were used to classify the permafrost at Oakes Bay 1 as climate-driven, ecosystem-protected permafrost that cannot regenerate under current climate conditions. This work highlights how the permafrost at Oakes Bay 1 is currently affected by multi-point thermal degradation by both conduction and advection, which makes it highly sensitive to climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences14040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences14040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:MDPI AG Funded by:NSERCNSERCLabrie, Rachel; Bhiry, Najat; Todisco, Dominique; Finco, Cécile; Couillet, Armelle;Characterizing permafrost is crucial for understanding the fate of arctic and subarctic archaeological archives under climate change. The loss of bio-physical integrity of archaeological sites in northern regions is still poorly documented, even though discontinuous permafrost is particularly vulnerable to global warming. In this study, we documented the spatial distribution of the permafrost-supported Inuit archaeological site Oakes Bay 1 on Dog Island (Labrador, Canada) while employing a novel approach in northern geoarchaeology based on non-invasive geophysical methods. ERT and GPR were successfully used to estimate active layer thickness and image permafrost spatial variability and characteristics. The results made it possible to reconstruct a conceptual model of the current geocryological context of the subsurface in relation to the site topography, hydrology, and geomorphology. The peripherical walls of Inuit semi-subterranean sod houses were found to contain ice-rich permafrost, whereas their central depressions were identified as sources of vertical permafrost degradation. The geophysical investigations were used to classify the permafrost at Oakes Bay 1 as climate-driven, ecosystem-protected permafrost that cannot regenerate under current climate conditions. This work highlights how the permafrost at Oakes Bay 1 is currently affected by multi-point thermal degradation by both conduction and advection, which makes it highly sensitive to climate warming.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences14040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences14040095&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 FrancePublisher:MDPI AG Arnaud, Gael; Krien, Yann; Abadie, Stéphane; Zahibo, Narcisse; Dudon, Bernard;Tsunamis are among the deadliest threats to coastal areas as reminded by the recent tragic events in the Indian Ocean in 2004 and in Japan in 2011. A large number of tropical islands are indeed exposed due to their proximity to potential tsunami sources in tectonic subduction zones. For these territories, assessing tsunamis’ impact is of major concern for early warning systems and management plans. The effectiveness of inundation predictions relies, among other things, on processes engaged at the scale of the local bathymetry and topography. As part of the project C3AF that aimed to study the consequences of climate change on the French West Indies, we used the numerical model SCHISM to simulate the propagation of several potential tsunamis as well as their impacts on the Guadeloupe islands (French West Indies). Working from the findings of the most recent studies, we used the simulations of four scenarios of collapse of the Cumbre Vieja volcano in La Palma, Canary islands. We then used FUNWAVE-TVD to simulate trans-Atlantic wave propagation until they reached the Guadeloupe archipelago where we used SCHISM to assess their final impact. Inundation is quantified for the whole archipelago and detailed for the most exposed areas. Finally, in a climate change perspective, inundation is compared for different sea levels and degrees of vegetation cover deterioration using modified friction coefficients. We then discuss the results showing that climate change-related factors would amplify the impact more in the case of smaller inundation along with model limitations and assumptions.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/2/56/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11020056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/2/56/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11020056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2021 FrancePublisher:MDPI AG Arnaud, Gael; Krien, Yann; Abadie, Stéphane; Zahibo, Narcisse; Dudon, Bernard;Tsunamis are among the deadliest threats to coastal areas as reminded by the recent tragic events in the Indian Ocean in 2004 and in Japan in 2011. A large number of tropical islands are indeed exposed due to their proximity to potential tsunami sources in tectonic subduction zones. For these territories, assessing tsunamis’ impact is of major concern for early warning systems and management plans. The effectiveness of inundation predictions relies, among other things, on processes engaged at the scale of the local bathymetry and topography. As part of the project C3AF that aimed to study the consequences of climate change on the French West Indies, we used the numerical model SCHISM to simulate the propagation of several potential tsunamis as well as their impacts on the Guadeloupe islands (French West Indies). Working from the findings of the most recent studies, we used the simulations of four scenarios of collapse of the Cumbre Vieja volcano in La Palma, Canary islands. We then used FUNWAVE-TVD to simulate trans-Atlantic wave propagation until they reached the Guadeloupe archipelago where we used SCHISM to assess their final impact. Inundation is quantified for the whole archipelago and detailed for the most exposed areas. Finally, in a climate change perspective, inundation is compared for different sea levels and degrees of vegetation cover deterioration using modified friction coefficients. We then discuss the results showing that climate change-related factors would amplify the impact more in the case of smaller inundation along with model limitations and assumptions.
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/2/56/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11020056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/2/56/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11020056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Christian Obaje; Sri Kalyan Tangirala; John Reinecker; Kristian Bär; Ingo Sass;The United Downs Deep Geothermal Project (UDDGP) is designed to utilize a presumably permeable steep dipping fault damage zone (constituting the hydrothermal reservoir in a very low permeability granitic host rock) for fluid circulation and heat extraction between an injection well at 2.2 km depth (UD−2) and a production well at 5 km depth (UD−1). Soft hydraulic stimulation was performed to increase the permeability of the reservoir. Numerical simulations are performed to analyze the hydraulic stimulation results and evaluate the increase in permeability of the reservoir. Experimental and field data are used to characterize the initial reservoir static model. The reservoir is highly fractured, and two distinct fracture networks constitute the equivalent porous matrix and fault zone, respectively. Based on experimental and field data, stochastic discrete fracture networks (DFN) are developed to mimic the reservoir permeability behavior. Due to the large number of fractures involved in the stochastic model, equivalent permeability fields are calculated to create a model which is computationally feasible. Hydraulic test and stimulation data from UD−1 are used to modify the equivalent permeability field based on the observed difference between the real fractured reservoir and the stochastic DFN model. Additional hydraulic test and stimulation data from UD−2 are used to validate this modified permeability. Results reveal that the equivalent permeability field model derived from observations made in UD−1 is a good representation of the actual overall reservoir permeability, and it is useful for future studies. The numerical simulation results show the amount of permeability changes due to the soft hydraulic stimulation operation. Based on the validated permeability field, different flow rate scenarios of the petrothermal doublet and their respective pressure evolution are examined. Higher flow rates have a strong impact on the pressure evolution. Simulations are performed in the acidized enhanced permeability region to make a connection between the ongoing laboratory works on the acid injection and field response to the possible acidizing stimulation.
Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2022 GermanyPublisher:MDPI AG Funded by:EC | MEETEC| MEETSaeed Mahmoodpour; Mrityunjay Singh; Christian Obaje; Sri Kalyan Tangirala; John Reinecker; Kristian Bär; Ingo Sass;The United Downs Deep Geothermal Project (UDDGP) is designed to utilize a presumably permeable steep dipping fault damage zone (constituting the hydrothermal reservoir in a very low permeability granitic host rock) for fluid circulation and heat extraction between an injection well at 2.2 km depth (UD−2) and a production well at 5 km depth (UD−1). Soft hydraulic stimulation was performed to increase the permeability of the reservoir. Numerical simulations are performed to analyze the hydraulic stimulation results and evaluate the increase in permeability of the reservoir. Experimental and field data are used to characterize the initial reservoir static model. The reservoir is highly fractured, and two distinct fracture networks constitute the equivalent porous matrix and fault zone, respectively. Based on experimental and field data, stochastic discrete fracture networks (DFN) are developed to mimic the reservoir permeability behavior. Due to the large number of fractures involved in the stochastic model, equivalent permeability fields are calculated to create a model which is computationally feasible. Hydraulic test and stimulation data from UD−1 are used to modify the equivalent permeability field based on the observed difference between the real fractured reservoir and the stochastic DFN model. Additional hydraulic test and stimulation data from UD−2 are used to validate this modified permeability. Results reveal that the equivalent permeability field model derived from observations made in UD−1 is a good representation of the actual overall reservoir permeability, and it is useful for future studies. The numerical simulation results show the amount of permeability changes due to the soft hydraulic stimulation operation. Based on the validated permeability field, different flow rate scenarios of the petrothermal doublet and their respective pressure evolution are examined. Higher flow rates have a strong impact on the pressure evolution. Simulations are performed in the acidized enhanced permeability region to make a connection between the ongoing laboratory works on the acid injection and field response to the possible acidizing stimulation.
Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/2076-3263/12/8/296/pdfData sources: Multidisciplinary Digital Publishing InstituteGFZpublic (German Research Centre for Geosciences, Helmholtz-Zentrum Potsdam)Article . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)GFZ German Research Centre for GeosciencesArticle . 2022License: CC BYData sources: GFZ German Research Centre for Geosciencesadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences12080296&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, Norway, GermanyPublisher:MDPI AG Alessandra Insana; Mary Antonette Beroya-Eitner; Marco Barla; Hauke Zachert; Bojan Žlender; Margreet van Marle; Bjørn Kalsnes; Tamara Bračko; Carlos Pereira; Iulia Prodan; Fabien Szymkiewicz; Hjördis Löfroth;handle: 11583/2941352 , 11250/2981775
Climate change is already being felt in Europe, unequivocally affecting the regions’ geo-structures. Concern over this is rising, as reflected in the increasing number of studies on the subject. However, the majority of these studies focused only on slopes and on a limited geographical scope. In this paper, we attempted to provide a broader picture of potential climate change impacts on the geo-structures in Europe by gathering the collective view of geo-engineers and geo-scientists in several countries, and by considering different geo-structure types. We also investigated how geo-structural concerns are being addressed in national adaptation plans. We found that specific provisions for geo-structural adaptation are generally lacking and mainly come in the form of strategies for specific problems. In this regard, two common strategies are hazard/risk assessment and monitoring, which are mainly implemented in relation to slope stability. We recommend that in future steps, other geo-structures are likewise given attention, particularly those assessed as also potentially significantly affected by climate change. Countries considered in this study are mainly the member countries of the European Large Geotechnical Institutes Platform (ELGIP).
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 Italy, Norway, GermanyPublisher:MDPI AG Alessandra Insana; Mary Antonette Beroya-Eitner; Marco Barla; Hauke Zachert; Bojan Žlender; Margreet van Marle; Bjørn Kalsnes; Tamara Bračko; Carlos Pereira; Iulia Prodan; Fabien Szymkiewicz; Hjördis Löfroth;handle: 11583/2941352 , 11250/2981775
Climate change is already being felt in Europe, unequivocally affecting the regions’ geo-structures. Concern over this is rising, as reflected in the increasing number of studies on the subject. However, the majority of these studies focused only on slopes and on a limited geographical scope. In this paper, we attempted to provide a broader picture of potential climate change impacts on the geo-structures in Europe by gathering the collective view of geo-engineers and geo-scientists in several countries, and by considering different geo-structure types. We also investigated how geo-structural concerns are being addressed in national adaptation plans. We found that specific provisions for geo-structural adaptation are generally lacking and mainly come in the form of strategies for specific problems. In this regard, two common strategies are hazard/risk assessment and monitoring, which are mainly implemented in relation to slope stability. We recommend that in future steps, other geo-structures are likewise given attention, particularly those assessed as also potentially significantly affected by climate change. Countries considered in this study are mainly the member countries of the European Large Geotechnical Institutes Platform (ELGIP).
Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2076-3263/11/12/488/pdfData sources: Multidisciplinary Digital Publishing InstitutePublications Open Repository TOrinoArticle . 2021License: CC BYData sources: Publications Open Repository TOrinoNorwegian Geotechnical Institute (NGI) Digital ArchiveArticle . 2021Data sources: Norwegian Geotechnical Institute (NGI) Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences11120488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 FrancePublisher:MDPI AG Funded by:ANR | CRITEX, ANR | Stock-en-SocleANR| CRITEX ,ANR| Stock-en-SocleJérôme de La Bernardie; Olivier Bour; Nicolas Guihéneuf; Eliot Chatton; Laurent Longuevergne; Tanguy Le Borgne;Experimental characterization of thermal transport in fractured media through thermal tracer tests is crucial for environmental and industrial applications such as the prediction of geothermal system efficiency. However, such experiments have been poorly achieved in fractured rock due to the low permeability and complexity of these media. We have thus little knowledge about the effect of flow configuration on thermal recovery during thermal tracer tests in such systems. We present here the experimental set up and results of several single-well thermal tracer tests for different flow configurations, from fully convergent to perfect dipole, achieved in a fractured crystalline rock aquifer at the experimental site of Plœmeur (H+ observatory network). The monitoring of temperature using Fiber-Optic Distributed Temperature Sensing (FO-DTS) associated with appropriate data processing allowed to properly highlight the heat inflow in the borehole and to estimate temperature breakthroughs for the different tests. Results show that thermal recovery is mainly controlled by advection processes in convergent flow configuration while in perfect dipole flow field, thermal exchanges with the rock matrix are more important, inducing lower thermal recovery.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/10/440/pdfData sources: Multidisciplinary Digital Publishing InstituteArchive Ouverte de l'Université Rennes (HAL)Article . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9100440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/10/440/pdfData sources: Multidisciplinary Digital Publishing InstituteArchive Ouverte de l'Université Rennes (HAL)Article . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9100440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 FrancePublisher:MDPI AG Funded by:ANR | CRITEX, ANR | Stock-en-SocleANR| CRITEX ,ANR| Stock-en-SocleJérôme de La Bernardie; Olivier Bour; Nicolas Guihéneuf; Eliot Chatton; Laurent Longuevergne; Tanguy Le Borgne;Experimental characterization of thermal transport in fractured media through thermal tracer tests is crucial for environmental and industrial applications such as the prediction of geothermal system efficiency. However, such experiments have been poorly achieved in fractured rock due to the low permeability and complexity of these media. We have thus little knowledge about the effect of flow configuration on thermal recovery during thermal tracer tests in such systems. We present here the experimental set up and results of several single-well thermal tracer tests for different flow configurations, from fully convergent to perfect dipole, achieved in a fractured crystalline rock aquifer at the experimental site of Plœmeur (H+ observatory network). The monitoring of temperature using Fiber-Optic Distributed Temperature Sensing (FO-DTS) associated with appropriate data processing allowed to properly highlight the heat inflow in the borehole and to estimate temperature breakthroughs for the different tests. Results show that thermal recovery is mainly controlled by advection processes in convergent flow configuration while in perfect dipole flow field, thermal exchanges with the rock matrix are more important, inducing lower thermal recovery.
Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/10/440/pdfData sources: Multidisciplinary Digital Publishing InstituteArchive Ouverte de l'Université Rennes (HAL)Article . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9100440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Geosciences arrow_drop_down GeosciencesOther literature type . 2019License: CC BYFull-Text: http://www.mdpi.com/2076-3263/9/10/440/pdfData sources: Multidisciplinary Digital Publishing InstituteArchive Ouverte de l'Université Rennes (HAL)Article . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2019Full-Text: https://insu.hal.science/insu-02325864Data sources: Bielefeld Academic Search Engine (BASE)Institut National de la Recherche Agronomique: ProdINRAArticle . 2019Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/geosciences9100440&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu