- home
- Advanced Search
- Energy Research
- 7. Clean energy
- FR
- ZENODO
- Energy Research
- 7. Clean energy
- FR
- ZENODO
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Pillet, Anne-Caroline; Stark, Simon J.; van der Zant, Hinne; Lehner, Benjamin A.E.;Three distinct dataset used to forecast the development of marine energy in Europe in the upcoming three decades: - European offshore wind farms - tidal energy converter deployements in Europe - wave energy converter deployements in Europe
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7938412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7938412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Funded by:EC | THINKPVEC| THINKPVY. Chaibi; Youssef Zeraouli; M. Malvoni; T. El Rhafiki; Tarik Kousksou;In the recent decade, Machine Learning techniques have been widely deployed in solar systems due their high accuracy in predicting the performances without going through the physical modelling. In this work, the Artificial Neural Network (ANN) method is adopted to forecast the electrical and thermal efficiencies of a photovoltaic/thermal (PVT) air collector system. Indeed, two accurate modelling techniques have been used to generate the output results for training and validation. Both deployed electrical and thermal models have been validated experimentally and demonstrated high accuracy. Then, real climatic samples of one year with a 10 minute step of the Jordan valley location have been adopted to generate the electrical and thermal efficiencies. These latter are used in the training and validation of the developed ANN model under various combinations of the weather variables. The solar irradiance and the module temperature are the most important variables to consider as input in a NN-based model respectively. The developed ANN model shows MAE of 0.0078% and 3.3607% in predicting the electrical and thermal efficiency respectively. The electrical efficiency can be predicted with higher accuracy than the thermal efficiency. Further, the results demonstrate that the ANN outperforms the LS-SVM in forecasting the PVT air collector performances.
Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2021.100132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 49 Powered bymore_vert Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2021.100132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Switzerland, United KingdomPublisher:Elsevier BV Funded by:EC | PARIS REINFORCE, UKRI | Science and Solutions for...EC| PARIS REINFORCE ,UKRI| Science and Solutions for a Changing PlanetPaul Zagamé; Adam Hawkes; Felix Neuner; Marc Vielle; Elisa Delpiazzo; Elisa Delpiazzo; Elisa Delpiazzo; Alessia Elia; Patrick Plötz; Arnaud Fougeyrollas; Annela Anger-Kraavi; Pierre Le Mouel; Alessandro Chiodi; Maurizio Gargiulo; Jorge Moreno; Alexandros Nikas; Sara Giarola; Alexandre C. Köberle; Andrea Herbst; Haris Doukas; I. Sognnaes; Neil Grant; Joeri Rogelj; Joeri Rogelj; Ha Bui; Ben McWilliams; Sigit Perdana; Konstantinos Koasidis; Lorenza Campagnolo; Lorenza Campagnolo; Lorenza Campagnolo; Rocco De Miglio; Baptiste Boitier; Georg Zachmann; Glen P. Peters; Dirk-Jan van de Ven; Andrey Kolpakov; Gabriele Cassetti; Shivika Mittal; Ajay Gambhir;Recent calls to do climate policy research with, rather than for, stakeholders have been answered in non-modelling science. Notwithstanding progress in modelling literature, however, very little of the scenario space traces back to what stakeholders are ultimately concerned about. With a suite of eleven integrated assessment, energy system and sectoral models, we carry out a model inter-comparison for the EU, the scenario logic and research questions of which have been formulated based on stakeholders' concerns. The output of this process is a scenario framework exploring where the region is headed rather than how to achieve its goals, extrapolating its current policy efforts into the future. We find that Europe is currently on track to overperforming its pre-2020 40% target yet far from its newest ambition of 55% emissions cuts by 2030, as well as looking at a 1.0-2.35 GtCO2 emissions range in 2050. Aside from the importance of transport electrification, deployment levels of carbon capture and storage are found intertwined with deeper emissions cuts and with hydrogen diffusion, with most hydrogen produced post-2040 being blue. Finally, the multi-model exercise has highlighted benefits from deeper decarbonisation in terms of energy security and jobs, and moderate to high renewables-dominated investment needs.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90239Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 60visibility views 60 download downloads 82 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90239Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, United KingdomPublisher:Elsevier BV Minelli, Annalisa; Marchesini, Ivan; Taylor, Faith; De Rosa, Pierluigi; Casagrande, Luca; Cenci, Michele;Although there are clear economic and environmental incentives for producing. energy from solar and wind power, there can be local opposition to their installation due to their impact upon the landscape. To date, no international guidelines exist to guide quantitative visual impact assessment of these facilities, making the planning process somewhat subjective. In this paper we demonstrate the development of a method and an Open Source GIS tool to quantitatively assess the visual impact of these facilities using line-of-site techniques. The methods here build upon previous studies by (i) more accurately representing the shape of energy producing facilities, (ii) taking into account the distortion of the perceived shape and size of facilities caused by the location of the observer, (iii) calculating the possible obscuring of facilities caused by terrain morphology and (iv) allowing the combination of various facilities to more accurately represent the landscape. The tool has been applied to real and synthetic case studies and compared to recently published results from other models, and demonstrates an improvement in accuracy of the calculated visual impact of facilities. The tool is named r.wind.sun and is freely available from GRASS GIS AddOns. (C) 2014 Elsevier Inc All rights reserved.
Environmental Impact... arrow_drop_down Environmental Impact Assessment ReviewArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eiar.2014.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 65visibility views 65 download downloads 426 Powered bymore_vert Environmental Impact... arrow_drop_down Environmental Impact Assessment ReviewArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eiar.2014.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | VERIFY, EC | 4C, EC | PARIS REINFORCE +1 projectsEC| VERIFY ,EC| 4C ,EC| PARIS REINFORCE ,EC| CHEMatthew W. Jones; Robbie M. Andrew; Glen P. Peters; Greet Janssens-Maenhout; Anthony J. De-Gol; Philippe Ciais; Prabir K. Patra; Frederic Chevallier; Corinne Le Quéré;AbstractQuantification of CO2 fluxes at the Earth’s surface is required to evaluate the causes and drivers of observed increases in atmospheric CO2 concentrations. Atmospheric inversion models disaggregate observed variations in atmospheric CO2 concentration to variability in CO2 emissions and sinks. They require prior constraints fossil CO2 emissions. Here we describe GCP-GridFED (version 2019.1), a gridded fossil emissions dataset that is consistent with the national CO2 emissions reported by the Global Carbon Project (GCP). GCP-GridFEDv2019.1 provides monthly fossil CO2 emissions estimates for the period 1959–2018 at a spatial resolution of 0.1°. Estimates are provided separately for oil, coal and natural gas, for mixed international bunker fuels, and for the calcination of limestone during cement production. GCP-GridFED also includes gridded estimates of O2 uptake based on oxidative ratios for oil, coal and natural gas. It will be updated annually and made available for atmospheric inversions contributing to GCP global carbon budget assessments, thus aligning the prior constraints on top-down fossil CO2 emissions with the bottom-up estimates compiled by the GCP.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 66visibility views 66 download downloads 91 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Advanced Engineering and Science Authors: Suwarno Suwarno; Ismail Yusuf; M. Irwanto; Ayong Hiendro;<span lang="EN-CA">Estimating wind speed characteristics plays an essential role in designing a wind power plant at a selected location. In this study, the Weibull, gamma, and exponential distribution models were proposed to estimate and analyze the wind speed parameters and distribution functions. Real measured data were collected from Medan City, Indonesia. The scale and shape factors of wind distribution for three years data were calculated. The observed cumulative probability of the three models was compared to predicted wind characteristics. The probability density function (PDF) and the cumulative density function (CDF) of wind speed were also analyzed. The results showed that the Weibull model was the best model to determine PDF, while the exponential model was the best model to determine CDF for the Medan City wind site.</span>
International Journa... arrow_drop_down International Journal of Power Electronics and Drive Systems (IJPEDS)Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefInternational Journal of Power Electronics and Drive Systems (IJPEDS)ArticleLicense: CC BY SAData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijpeds.v12.i2.pp1102-1113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 17visibility views 17 download downloads 13 Powered bymore_vert International Journa... arrow_drop_down International Journal of Power Electronics and Drive Systems (IJPEDS)Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefInternational Journal of Power Electronics and Drive Systems (IJPEDS)ArticleLicense: CC BY SAData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijpeds.v12.i2.pp1102-1113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:F1000 Research Ltd Funded by:EC | SunHorizonEC| SunHorizonAuthors: Roure, Robin; Chèze, David; Vallée, Mathieu;Background Heating and cooling in buildings represents a significant amount of the energy demand in the EU, but the market penetration of renewable solutions is still marginal. The SunHorizon project aims at proving the viability and benefits of innovative coupling between heat pumps and various advanced solar panels. Methods This study focuses on the optimal operation strategies of a technological package located in Latvia, and composed of hybrid photovoltaic thermal (PVT) panels, a gas driven heat pump and a hot water storage tank. In this work, a model predictive control is developed, based on mixed integer linear programming (MILP) optimization. This model uses innovative elements compared to traditional model predictive control (MPC), with environmental indicators for the Latvian electricity grid accounting for imports, co-simulation with TRNSYS using the transmission control protocol (TCP) and modelling of long-term storage for long and short-term decisions. The usual minimization of costs is compared to two new optimization approaches, which aim to minimize greenhouse gas (GHG) emissions or maximize renewable use and self-consumption. Results and conclusions The results of the optimization of costs and GHG emissions show that gains can be found within the variations in time series related to the electricity grid, but the overall operation strategies remain similar. Optimization of renewable share and self-consumption is another path for control strategy, but with less economic and environmental performance.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.14992.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.14992.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 FrancePublisher:Elsevier BV Authors: Pinon, Grégory; Hurst, Matías Fernández; Lukeba, Edile;Abstract This paper presents the influence that ambient turbulence has on a tidal turbine farm. Firstly, the analytical model developed by Bahaj and Myers (2004) is used and modified in order to incorporate the ambient turbulence effects. Ambient turbulence is taken into account via the experiments of Mycek et al. (2014), where two levels of turbulences were tested, namely 3% and 15%. Modifications in wake velocity deficit are treated. However, the influence that ambient turbulence has on the power coefficient of downstream turbine(s), which is usually neglected, is taken into account. For the lower level of turbulence, three scenarios for the downstream turbine(s) behaviour are considered. This enhanced model is then tested on a given site in the Alderney Race (Raz Blanchard). Yearly energy productions depending on ambient turbulence, turbine layouts and proposed scenarios are evaluated and compared. A technico-economical analysis is also carried out. Finally, the tidal turbine farm profitability highly depends on ambient turbulence and turbines layout.
Normandie Université... arrow_drop_down International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
visibility 57visibility views 57 download downloads 87 Powered bymore_vert Normandie Université... arrow_drop_down International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:EC | FACADE, EC | InnoRenew CoEEC| FACADE ,EC| InnoRenew CoELaetitia Marrot; Kevin Candelier; Jérémy Valette; Charline Lanvin; Barbara Horvat; Lea Legan; David B. DeVallance;AbstractThe presented research aimed at finding new ways to value hemp by-products (stalks) from the cannabidiol industry through thermochemical conversion. Chemical and elemental composition of hemp biomass was investigated by successive chemical extractions and Scanning Electron Microscopy along with Energy-dispersive X-ray Spectroscopy. Proximate and elemental analyses completed the chemical characterization of the hemp biomass and its biochar. Thermogravimetric analysis of the hemp biomass allowed to understand its kinetic of decomposition during thermal conversion. The carbon structure and porosity of the biochar were assessed by Raman spectroscopy and CO2 gas adsorption. Properties of interest were the energy production measured through calorific values, and the electrical conductivity. Two ways of valorisation of the hemp biomass were clearly identified, depending mainly on the chosen pyrolysis temperature. Hemp biochar carbonized at 400–600°C were classified as lignocellulosic materials with a good potential for solid biofuel applications. Specifically, the resulting carbonized biochar presented low moisture content (below 2.50%) favourable for high fuel quality, low volatile matter (27.1–10.4%) likely to show lower particle matter emissions, limited ash content (6.8–9.8%) resulting in low risk of fouling issues during the combustion, high carbon content (73.8–86.8%) suggesting strong energy density, associated with high higher heating values (28.45–30.95 MJ kg−1). Hemp biochar carbonized at 800–1000 °C displayed interesting electrical conductivity, opening opportunities for its use in electrical purposes. The electrical conductivity was related to the evolution of the biochar microstructure (development of graphite-like structure and changes in microporosity) in regard with the thermochemical conversion process parameters. Graphical abstract
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01640-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 73visibility views 73 download downloads 49 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01640-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
Research data keyboard_double_arrow_right Dataset 2021Publisher:Zenodo Minx, Jan C.; Lamb, William F.; Andrew, Robbie M.; Canadell, Josep G.; Crippa, Monica; Döbbeling, Niklas; Forster, Piers; Guizzardi, Diego; Olivier, Jos; Pongratz, Julia; Reisinger, Andy; Rigby, Matthew; Peters, Glen; Saunois, Marielle; Smith, Steven J.; Solazzo, Efisio; Tian, Hanqin;Comprehensive and reliable information on anthropogenic sources of greenhouse gas emissions is required to track progress towards keeping warming well below 2°C as agreed upon in the Paris Agreement. Here we provide a dataset on anthropogenic GHG emissions 1970-2019 with a broad country and sector coverage. We build the dataset from recent releases from the “Emissions Database for Global Atmospheric Research” (EDGAR) for CO2 emissions from fossil fuel combustion and industry (FFI), CH4 emissions, N2O emissions, and fluorinated gases and use a well-established fast-track method to extend this dataset from 2018 to 2019. We complement this with information on net CO2 emissions from land use, land-use change and forestry (LULUCF) from three available bookkeeping models.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 3Kvisibility views 3,130 download downloads 1,221 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.5548333&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:Zenodo Authors: Pillet, Anne-Caroline; Stark, Simon J.; van der Zant, Hinne; Lehner, Benjamin A.E.;Three distinct dataset used to forecast the development of marine energy in Europe in the upcoming three decades: - European offshore wind farms - tidal energy converter deployements in Europe - wave energy converter deployements in Europe
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7938412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 6 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.7938412&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Elsevier BV Funded by:EC | THINKPVEC| THINKPVY. Chaibi; Youssef Zeraouli; M. Malvoni; T. El Rhafiki; Tarik Kousksou;In the recent decade, Machine Learning techniques have been widely deployed in solar systems due their high accuracy in predicting the performances without going through the physical modelling. In this work, the Artificial Neural Network (ANN) method is adopted to forecast the electrical and thermal efficiencies of a photovoltaic/thermal (PVT) air collector system. Indeed, two accurate modelling techniques have been used to generate the output results for training and validation. Both deployed electrical and thermal models have been validated experimentally and demonstrated high accuracy. Then, real climatic samples of one year with a 10 minute step of the Jordan valley location have been adopted to generate the electrical and thermal efficiencies. These latter are used in the training and validation of the developed ANN model under various combinations of the weather variables. The solar irradiance and the module temperature are the most important variables to consider as input in a NN-based model respectively. The developed ANN model shows MAE of 0.0078% and 3.3607% in predicting the electrical and thermal efficiency respectively. The electrical efficiency can be predicted with higher accuracy than the thermal efficiency. Further, the results demonstrate that the ANN outperforms the LS-SVM in forecasting the PVT air collector performances.
Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2021.100132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 49 Powered bymore_vert Cleaner Engineering ... arrow_drop_down Cleaner Engineering and TechnologyArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.clet.2021.100132&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 Switzerland, United KingdomPublisher:Elsevier BV Funded by:EC | PARIS REINFORCE, UKRI | Science and Solutions for...EC| PARIS REINFORCE ,UKRI| Science and Solutions for a Changing PlanetPaul Zagamé; Adam Hawkes; Felix Neuner; Marc Vielle; Elisa Delpiazzo; Elisa Delpiazzo; Elisa Delpiazzo; Alessia Elia; Patrick Plötz; Arnaud Fougeyrollas; Annela Anger-Kraavi; Pierre Le Mouel; Alessandro Chiodi; Maurizio Gargiulo; Jorge Moreno; Alexandros Nikas; Sara Giarola; Alexandre C. Köberle; Andrea Herbst; Haris Doukas; I. Sognnaes; Neil Grant; Joeri Rogelj; Joeri Rogelj; Ha Bui; Ben McWilliams; Sigit Perdana; Konstantinos Koasidis; Lorenza Campagnolo; Lorenza Campagnolo; Lorenza Campagnolo; Rocco De Miglio; Baptiste Boitier; Georg Zachmann; Glen P. Peters; Dirk-Jan van de Ven; Andrey Kolpakov; Gabriele Cassetti; Shivika Mittal; Ajay Gambhir;Recent calls to do climate policy research with, rather than for, stakeholders have been answered in non-modelling science. Notwithstanding progress in modelling literature, however, very little of the scenario space traces back to what stakeholders are ultimately concerned about. With a suite of eleven integrated assessment, energy system and sectoral models, we carry out a model inter-comparison for the EU, the scenario logic and research questions of which have been formulated based on stakeholders' concerns. The output of this process is a scenario framework exploring where the region is headed rather than how to achieve its goals, extrapolating its current policy efforts into the future. We find that Europe is currently on track to overperforming its pre-2020 40% target yet far from its newest ambition of 55% emissions cuts by 2030, as well as looking at a 1.0-2.35 GtCO2 emissions range in 2050. Aside from the importance of transport electrification, deployment levels of carbon capture and storage are found intertwined with deeper emissions cuts and with hydrogen diffusion, with most hydrogen produced post-2040 being blue. Finally, the multi-model exercise has highlighted benefits from deeper decarbonisation in terms of energy security and jobs, and moderate to high renewables-dominated investment needs.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90239Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 60visibility views 60 download downloads 82 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/90239Data sources: Bielefeld Academic Search Engine (BASE)The Science of The Total EnvironmentArticle . 2021 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2021License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2021.148549&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 Italy, United KingdomPublisher:Elsevier BV Minelli, Annalisa; Marchesini, Ivan; Taylor, Faith; De Rosa, Pierluigi; Casagrande, Luca; Cenci, Michele;Although there are clear economic and environmental incentives for producing. energy from solar and wind power, there can be local opposition to their installation due to their impact upon the landscape. To date, no international guidelines exist to guide quantitative visual impact assessment of these facilities, making the planning process somewhat subjective. In this paper we demonstrate the development of a method and an Open Source GIS tool to quantitatively assess the visual impact of these facilities using line-of-site techniques. The methods here build upon previous studies by (i) more accurately representing the shape of energy producing facilities, (ii) taking into account the distortion of the perceived shape and size of facilities caused by the location of the observer, (iii) calculating the possible obscuring of facilities caused by terrain morphology and (iv) allowing the combination of various facilities to more accurately represent the landscape. The tool has been applied to real and synthetic case studies and compared to recently published results from other models, and demonstrates an improvement in accuracy of the calculated visual impact of facilities. The tool is named r.wind.sun and is freely available from GRASS GIS AddOns. (C) 2014 Elsevier Inc All rights reserved.
Environmental Impact... arrow_drop_down Environmental Impact Assessment ReviewArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eiar.2014.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 49 citations 49 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 65visibility views 65 download downloads 426 Powered bymore_vert Environmental Impact... arrow_drop_down Environmental Impact Assessment ReviewArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefKing's College, London: Research PortalArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.eiar.2014.07.002&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United Kingdom, FrancePublisher:Springer Science and Business Media LLC Funded by:EC | VERIFY, EC | 4C, EC | PARIS REINFORCE +1 projectsEC| VERIFY ,EC| 4C ,EC| PARIS REINFORCE ,EC| CHEMatthew W. Jones; Robbie M. Andrew; Glen P. Peters; Greet Janssens-Maenhout; Anthony J. De-Gol; Philippe Ciais; Prabir K. Patra; Frederic Chevallier; Corinne Le Quéré;AbstractQuantification of CO2 fluxes at the Earth’s surface is required to evaluate the causes and drivers of observed increases in atmospheric CO2 concentrations. Atmospheric inversion models disaggregate observed variations in atmospheric CO2 concentration to variability in CO2 emissions and sinks. They require prior constraints fossil CO2 emissions. Here we describe GCP-GridFED (version 2019.1), a gridded fossil emissions dataset that is consistent with the national CO2 emissions reported by the Global Carbon Project (GCP). GCP-GridFEDv2019.1 provides monthly fossil CO2 emissions estimates for the period 1959–2018 at a spatial resolution of 0.1°. Estimates are provided separately for oil, coal and natural gas, for mixed international bunker fuels, and for the calcination of limestone during cement production. GCP-GridFED also includes gridded estimates of O2 uptake based on oxidative ratios for oil, coal and natural gas. It will be updated annually and made available for atmospheric inversions contributing to GCP global carbon budget assessments, thus aligning the prior constraints on top-down fossil CO2 emissions with the bottom-up estimates compiled by the GCP.
Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 63 citations 63 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 66visibility views 66 download downloads 91 Powered bymore_vert Université de Versai... arrow_drop_down Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021Full-Text: https://hal.science/hal-03487836Data sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41597-020-00779-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Institute of Advanced Engineering and Science Authors: Suwarno Suwarno; Ismail Yusuf; M. Irwanto; Ayong Hiendro;<span lang="EN-CA">Estimating wind speed characteristics plays an essential role in designing a wind power plant at a selected location. In this study, the Weibull, gamma, and exponential distribution models were proposed to estimate and analyze the wind speed parameters and distribution functions. Real measured data were collected from Medan City, Indonesia. The scale and shape factors of wind distribution for three years data were calculated. The observed cumulative probability of the three models was compared to predicted wind characteristics. The probability density function (PDF) and the cumulative density function (CDF) of wind speed were also analyzed. The results showed that the Weibull model was the best model to determine PDF, while the exponential model was the best model to determine CDF for the Medan City wind site.</span>
International Journa... arrow_drop_down International Journal of Power Electronics and Drive Systems (IJPEDS)Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefInternational Journal of Power Electronics and Drive Systems (IJPEDS)ArticleLicense: CC BY SAData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijpeds.v12.i2.pp1102-1113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 17visibility views 17 download downloads 13 Powered bymore_vert International Journa... arrow_drop_down International Journal of Power Electronics and Drive Systems (IJPEDS)Article . 2021 . Peer-reviewedLicense: CC BY SAData sources: CrossrefInternational Journal of Power Electronics and Drive Systems (IJPEDS)ArticleLicense: CC BY SAData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.11591/ijpeds.v12.i2.pp1102-1113&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:F1000 Research Ltd Funded by:EC | SunHorizonEC| SunHorizonAuthors: Roure, Robin; Chèze, David; Vallée, Mathieu;Background Heating and cooling in buildings represents a significant amount of the energy demand in the EU, but the market penetration of renewable solutions is still marginal. The SunHorizon project aims at proving the viability and benefits of innovative coupling between heat pumps and various advanced solar panels. Methods This study focuses on the optimal operation strategies of a technological package located in Latvia, and composed of hybrid photovoltaic thermal (PVT) panels, a gas driven heat pump and a hot water storage tank. In this work, a model predictive control is developed, based on mixed integer linear programming (MILP) optimization. This model uses innovative elements compared to traditional model predictive control (MPC), with environmental indicators for the Latvian electricity grid accounting for imports, co-simulation with TRNSYS using the transmission control protocol (TCP) and modelling of long-term storage for long and short-term decisions. The usual minimization of costs is compared to two new optimization approaches, which aim to minimize greenhouse gas (GHG) emissions or maximize renewable use and self-consumption. Results and conclusions The results of the optimization of costs and GHG emissions show that gains can be found within the variations in time series related to the electricity grid, but the overall operation strategies remain similar. Optimization of renewable share and self-consumption is another path for control strategy, but with less economic and environmental performance.
https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.14992.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.12688/openr...Article . 2023 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.12688/openreseurope.14992.2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2017 FrancePublisher:Elsevier BV Authors: Pinon, Grégory; Hurst, Matías Fernández; Lukeba, Edile;Abstract This paper presents the influence that ambient turbulence has on a tidal turbine farm. Firstly, the analytical model developed by Bahaj and Myers (2004) is used and modified in order to incorporate the ambient turbulence effects. Ambient turbulence is taken into account via the experiments of Mycek et al. (2014), where two levels of turbulences were tested, namely 3% and 15%. Modifications in wake velocity deficit are treated. However, the influence that ambient turbulence has on the power coefficient of downstream turbine(s), which is usually neglected, is taken into account. For the lower level of turbulence, three scenarios for the downstream turbine(s) behaviour are considered. This enhanced model is then tested on a given site in the Alderney Race (Raz Blanchard). Yearly energy productions depending on ambient turbulence, turbine layouts and proposed scenarios are evaluated and compared. A technico-economical analysis is also carried out. Finally, the tidal turbine farm profitability highly depends on ambient turbulence and turbines layout.
Normandie Université... arrow_drop_down International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
visibility 57visibility views 57 download downloads 87 Powered bymore_vert Normandie Université... arrow_drop_down International Journal of Marine EnergyArticle . 2017 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijome.2017.05.003&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Springer Science and Business Media LLC Funded by:EC | FACADE, EC | InnoRenew CoEEC| FACADE ,EC| InnoRenew CoELaetitia Marrot; Kevin Candelier; Jérémy Valette; Charline Lanvin; Barbara Horvat; Lea Legan; David B. DeVallance;AbstractThe presented research aimed at finding new ways to value hemp by-products (stalks) from the cannabidiol industry through thermochemical conversion. Chemical and elemental composition of hemp biomass was investigated by successive chemical extractions and Scanning Electron Microscopy along with Energy-dispersive X-ray Spectroscopy. Proximate and elemental analyses completed the chemical characterization of the hemp biomass and its biochar. Thermogravimetric analysis of the hemp biomass allowed to understand its kinetic of decomposition during thermal conversion. The carbon structure and porosity of the biochar were assessed by Raman spectroscopy and CO2 gas adsorption. Properties of interest were the energy production measured through calorific values, and the electrical conductivity. Two ways of valorisation of the hemp biomass were clearly identified, depending mainly on the chosen pyrolysis temperature. Hemp biochar carbonized at 400–600°C were classified as lignocellulosic materials with a good potential for solid biofuel applications. Specifically, the resulting carbonized biochar presented low moisture content (below 2.50%) favourable for high fuel quality, low volatile matter (27.1–10.4%) likely to show lower particle matter emissions, limited ash content (6.8–9.8%) resulting in low risk of fouling issues during the combustion, high carbon content (73.8–86.8%) suggesting strong energy density, associated with high higher heating values (28.45–30.95 MJ kg−1). Hemp biochar carbonized at 800–1000 °C displayed interesting electrical conductivity, opening opportunities for its use in electrical purposes. The electrical conductivity was related to the evolution of the biochar microstructure (development of graphite-like structure and changes in microporosity) in regard with the thermochemical conversion process parameters. Graphical abstract
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01640-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 73visibility views 73 download downloads 49 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12649-021-01640-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu