- home
- Advanced Search
- Energy Research
- Embargo
- GB
- AU
- FI
- Energy Research
- Embargo
- GB
- AU
- FI
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:SAGE Publications Luyun Jiang; Seong OK Han; Melissa Pirie; Hyun Hee Kim; Young-Hoon Seong; Hyunuk Kim; John S Foord;Seaweed fibre is usually discarded as biomass waste after extraction of useful ingredients from seaweed. However this seaweed fibre, a natural abundant cellulose material with uniform dimensions 10 times smaller than other plant-based fibre can be utilized as electrode material for energy storage. In this work, we converted seaweed fibre into conductive carbon electrodes by a thermal carbonisation method. The morphology, chemical composition and conductivity are highly influenced by the carbonisation temperature. In comparison to other biomass sources such as cotton pulp, seaweed fibre is finer, smoother and more conductive at low carbonisation temperature. These carbonized seaweeds were then used as a supercapacitor, giving a high supercapacitance (226.3 Fg−1) at the carbonisation temperature of 900°C, and good stability within 2400 cycles. This specific capacitance is significantly higher than values obtained from filter paper or cotton pulp.
Oxford University Re... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x19882398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x19882398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2023Embargo end date: 14 Jul 2023 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Bhattacharjee, Subhajit;doi: 10.17863/cam.99818
The aggravating global problems of energy crisis, rising atmospheric greenhouse gas concentrations and accumulation of persistent waste have attracted the attention of scientists, policy-makers and global organisations to come up with effective and expeditious solutions to address these challenges. In this context, the development of sustainable technologies driven by renewable energy sources for the production of clean fuels and commodity chemicals from diverse waste feedstocks is an appealing approach towards creating a circular economy. Over the years, semiconductor photocatalysts based on TiO₂, CdS, carbon-nitrides (CNx) and carbon dots (CDs) have been widely used for the photocatalytic reforming (PC reforming) of pre-treated waste substrates to organic products, accompanied with clean hydrogen (H₂) generation. However, these conventional solar-driven processes suffer from major drawbacks such as low production rates, poor product selectivity, CO₂ release, challenging process and catalyst optimisation, and harsh waste pre-treatment conditions, which limit their commercial applicability. These challenges are tackled in this thesis with the introduction of new and efficient photoelectrochemical (PEC) and chemoenzymatic processes for reforming a diverse range of waste feedstocks to sustainable fuels. Solar-driven PEC reforming based on halide perovskite light-absorber is first developed as an attractive alternative to PC reforming. The PEC systems consist of a perovskite|Pt photocathode for clean H₂ production and a Cu-Pd alloy anode for reforming diverse waste streams, including pre-treated cellulosic biomass, polyethylene terephthalate (PET) plastics, and industrial by-product glycerol into industrially-relevant, value-added chemicals (gluconic acid, glycolic acid and glyceric acid) without any externally applied bias or voltage. Additionally, the single light-absorber PEC systems can also convert the airborne waste stream and greenhouse gas CO₂ to diverse products with the simultaneous reforming of PET plastics with no applied voltage. The perovskite-based photocathode enables the integration of different CO₂ reduction catalysts such as a molecular cobalt porphyrin, a Cu-In alloy and formate dehydrogenase enzyme, which produce CO, syngas and formate, respectively. The versatile PEC systems, which can be assembled in either a ‘two-compartment’ or standalone ‘artificial leaf’ configurations achieve 60‒90% oxidation product selectivity (with no over-oxidation) and >100 µmol cm‾² h‾¹ product formation rates, corresponding to 10²‒10⁴ times higher activity than conventional PC reforming systems. In addition to developing PEC platforms, this thesis also explores avenues for circumventing the harsh alkaline pre-treatment strategies (pH >13, 60‒80 ºC) adopted for photoreforming waste substrates. For this purpose, a chemoenzymatic pathway is introduced whereby PET and polycaprolactone plastics were deconstructed using functional enzymes under benign conditions (pH 6‒8, 37‒65 ºC), followed by PC reforming using Pt loaded TiO₂ (TiO₂|Pt) or Ni₂P loaded carbon-nitride (CNx|Ni₂P) photocatalysts. The chemoenzymatic reforming process demonstrates versatility in upcycling polyester films and nanoplastics for H₂ production at high yields reaching ∼10³‒10⁴ µmol gsub‾¹ and activities at >500 µmol gcat‾¹ h‾¹. The utilisation of enzyme pre-treated plastics also allowed the coupling of plastic reforming with photocatalytic CO₂-to-syngas conversion using a phosphonated cobalt bis(terpyridine) co-catalyst immobilised on TiO₂ (TiO₂|CotpyP). Finally, moving beyond solar-driven systems, a bio-electrocatalytic flow process is demonstrated for the conversion of microbe pre-treated food waste to ethylene (an important feedstock in the chemical industry) on graphitic carbon electrodes via succinic acid as the central intermediate. In conclusion, with its focus on improving efficiencies, achieving selective product formation, building versatile platforms, diversifying substrate and product scope, and reducing carbon footprint and economic strain, this thesis aims to bring sustainable waste-to-fuel technologies a step closer to commercial implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 CanadaPublisher:Elsevier BV He, Yong; Xiong, Wei; Hu, Pengcheng; Huang, Daiqing; Feurtado, J. Allan; Zhang, Tianyi; Hao, Chenyang; DePauw, Ron; Zheng, Bangyou; Hoogenboom, Gerrit; Dixon, Laura E.; Wang, Hong; Challinor, Andrew Juan;pmid: 38278227
The stability of winter wheat-flowering-date is crucial for ensuring consistent and robust crop performance across diverse climatic conditions. However, the impact of climate change on wheat-flowering-dates remains uncertain. This study aims to elucidate the influence of climate change on wheat-flowering-dates, predict how projected future climate conditions will affect flowering date stability, and identify the most stable wheat genotypes in the study region. We applied a multi-locus genotype-based (MLG-based) model for simulating wheat-flowering-dates, which we calibrated and evaluated using observed data from the Northern China winter wheat region (NCWWR). This MLG-based model was employed to project flowering dates under different climate scenarios. The simulated flowering dates were then used to assess the stability of flowering dates under varying allelic combinations in projected climatic conditions. Our MLG-based model effectively simulated flowering dates, with a root mean square error (RMSE) of 2.3 days, explaining approximately 88.5 % of the genotypic variation in flowering dates among 100 wheat genotypes. We found that, in comparison to the baseline climate, wheat-flowering-dates are expected to shift earlier within the target sowing window by approximately 11 and 14 days by 2050 under the Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 climate scenarios, respectively. Furthermore, our analysis revealed that wheat-flowering-date stability is likely to be further strengthened under projected climate scenarios due to early flowering trends. Ultimately, we demonstrate that the combination of Vrn and Ppd genes, rather than individual Vrn or Ppd genes, plays a critical role in wheat-flowering-date stability. Our results suggest that the combination of Ppd-D1a with winter genotypes carrying the vrn-D1 allele significantly contributes to flowering date stability under current and projected climate scenarios. These findings provide valuable insights for wheat breeders and producers under future climatic conditions.
NRC Publications Arc... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert NRC Publications Arc... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Royal Society of Chemistry (RSC) Abdelhafiz, A; Vitale, A; Buntin, P; Deglee, B; Joiner, C; Robertson, A; Vogel, E; Warner, J; Alamgir, F;doi: 10.1039/c8ee00539g
Revolutionary catalyst protection by single layer graphene capping, tremendous catalyst lifetime longevity and activity enhancement towards oxygen reduction reaction.
Oxford University Re... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00539g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00539g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | CONSTRAINEC| CONSTRAINSofia Gonzales-Zuñiga; Claire Fyson; Andreas Geiges; Silke Mooldijk; Matthew Gidden; Mairi Louise Jeffery; Michel G.J. den Elzen; Niklas Höhne; Joeri Rogelj; Joeri Rogelj; Frederic Hans; William Hare;National net zero emission targets could, if fully implemented, reduce best estimates of projected global average temperature increase to 2.0–2.4 °C by 2100, bringing the Paris Agreement temperature goal within reach. A total of 131 countries are discussing, have announced or have adopted net zero targets, covering 72% of global emissions. These targets could substantially lower projected warming as compared to currently implemented policies (2.9–3.2 °C) or pledges submitted to the Paris Agreement (2.4–2.9 °C). Current pledges for emissions cuts are insufficient to meet the Paris Agreement temperature goal. The wave of net zero targets being discussed and adopted could make the Paris goal possible if further countries follow suit.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 170 citations 170 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Shang, WL; Ling, Y; Ochieng, W; Yang, L; Gao, X; Ren, Q; Chen, Y; Cao, M;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | 14-ERASynBio Engineering ..., UKRI | The Electrochemical Leaf:...UKRI| 14-ERASynBio Engineering the chloroplast of microalgae as a chassis for the direct production of solar fuels and chemicals ,UKRI| The Electrochemical Leaf:Rapid, Reversible Cycling of Nicotinamide Cofactors for Enzyme-based Organic SynthesisAuthors: Wan, L; Megarity, C; Siritanaratkul, B; Armstrong, F;doi: 10.1039/c7cc08859k
pmid: 29319070
A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP+ and NADPH with a Pt electrode catalysing 2H+/H2 interconversion.
Oxford University Re... arrow_drop_down Chemical CommunicationsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7cc08859k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Chemical CommunicationsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7cc08859k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Julian M. Allwood; Zenaida Sobral Mourão; Jochen Linssen; D. Dennis Konadu; Heidi Heinrichs; Martin Robinius; Stefan Vögele; Wilhelm Kuckshinrichs; Bastian Gillessen; S. Venghaus; S. Venghaus; Detlef Stolten; Detlef Stolten;Abstract While it is generally accepted that our fossil fuel-dominated energy systems must undergo a sustainable transition, researchers have often neglected the potential impacts of this on water and land systems. However, if unintended environmental impacts from this process are to be avoided, understanding its implications for land use and water demand is of crucial importance. Moreover, developed countries may induce environmental stress beyond their own borders, for instance through extensive imports of bioenergy. In this paper, Germany serves as an example of a developed country with ambitious energy transformation targets. Results show that in particular, the politically-driven aspiration for more organic farming in Germany results in a higher import quota of biomass, especially biofuels. These imports translate into land demand, which will exceed the area available in Germany for bioenergy by a factor of 3–6.5 by 2050. As this will likely bring about land stress in the respective exporting countries, this effect of the German energy transformation ought to be limited as much as possible. In contrast, domestic water demand for the German energy system is expected to decrease by over 80% through 2050 due to declining numbers of fossil-fuelled power plants. However, possible future irrigation needs for bioenergy may reduce or even counterbalance this decreasing effect. In addition, energy policy targets specific to the transport sector show a high sensitivity to biomass imports. In particular, the sector-specific target for greenhouse gas reductions will seemingly promote biomass imports, leading to the above-described challenges in the pursuit of sustainability.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomBottery, Michael; Sedik, Sarah; Schwartz, Ilan S.; Hoenigl, Martin; Van Rhijn, Norman;Climate change is altering ecosystems worldwide. While shifting environmental conditions are complex, it has been hypothesised that the impact of climate change are directly leading to increases in fungal infections across the globe. Rising temperatures, changing precipitation patterns, and extreme weather events are thought to be driving the adaptation of fungal pathogens to new climates, expanding their geographical range and posing a growing threat to human health and agriculture. This review highlights how climate change may impact key pathogens, including Candida auris, Candida orthopsilosis, Cryptococcus deuterogattii, and resistant strains of Aspergillus fumigatus, which have emerged as significant public health concerns. Their spread is accelerated by globalisation, urbanisation, and the intensifying use of agricultural fungicides, which further increase antifungal resistance. The growing prevalence of resistant strains and emergence of novel fungal pathogens is likely linked to anthropogenic climate change, underscoring the urgent need for action and for more robust data collection.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::5783270f49949e23361c82eb1cd7308b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::5783270f49949e23361c82eb1cd7308b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Leal, W; Frizzo, K; Eustachio, JHPP; Tsani, S; Özuyar, PG;doi: 10.1002/sd.2796
AbstractThis study describes the relationships between climate change and the concept of a circular economy, outlining the need for synergies within a company's context. It reports on a bibliometric analysis of the relations between climate change and circular economy, and it provides evidence and assessments based on a sample of 11 large companies in the chemical industry. The results show that there is a concern in the academic literature to discuss circular economy efforts to combat climate change, reduce carbon emissions, strengthen the supply chain, assess the life cycle of products, their environmental impact, and waste management, and identify barriers to implementing the circular economy. In addition, there is a close association between the CE concept and tackling climate change in how organisations report their practices to the stakeholders, in considering concepts of recycling, reusing, adopting renewable energy, seeking resource efficiency, and rethinking strategies. The study concludes by providing some suggestions that may assist companies in intensifying their efforts to reduce their carbon footprint, combining them with more circular business models. Efforts from interested stakeholders must focus on defining CE in a more detailed manner, as well as its implementation at the different stages of production and consumption, especially in operations for which no uniform approach or common practice can be established. In this context, implications for positive social and environmental impacts by promoting a faster and more proactive climate transition in the chemical sector are presented. The novelty of this paper relies on the fact that it advances knowledge on matters related to the circular economy under a climate change context, identifying current trends and suggesting some measures which may optimise current business practices of the chemical sector.
e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:SAGE Publications Luyun Jiang; Seong OK Han; Melissa Pirie; Hyun Hee Kim; Young-Hoon Seong; Hyunuk Kim; John S Foord;Seaweed fibre is usually discarded as biomass waste after extraction of useful ingredients from seaweed. However this seaweed fibre, a natural abundant cellulose material with uniform dimensions 10 times smaller than other plant-based fibre can be utilized as electrode material for energy storage. In this work, we converted seaweed fibre into conductive carbon electrodes by a thermal carbonisation method. The morphology, chemical composition and conductivity are highly influenced by the carbonisation temperature. In comparison to other biomass sources such as cotton pulp, seaweed fibre is finer, smoother and more conductive at low carbonisation temperature. These carbonized seaweeds were then used as a supercapacitor, giving a high supercapacitance (226.3 Fg−1) at the carbonisation temperature of 900°C, and good stability within 2400 cycles. This specific capacitance is significantly higher than values obtained from filter paper or cotton pulp.
Oxford University Re... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x19882398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0958305x19882398&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2023Embargo end date: 14 Jul 2023 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Bhattacharjee, Subhajit;doi: 10.17863/cam.99818
The aggravating global problems of energy crisis, rising atmospheric greenhouse gas concentrations and accumulation of persistent waste have attracted the attention of scientists, policy-makers and global organisations to come up with effective and expeditious solutions to address these challenges. In this context, the development of sustainable technologies driven by renewable energy sources for the production of clean fuels and commodity chemicals from diverse waste feedstocks is an appealing approach towards creating a circular economy. Over the years, semiconductor photocatalysts based on TiO₂, CdS, carbon-nitrides (CNx) and carbon dots (CDs) have been widely used for the photocatalytic reforming (PC reforming) of pre-treated waste substrates to organic products, accompanied with clean hydrogen (H₂) generation. However, these conventional solar-driven processes suffer from major drawbacks such as low production rates, poor product selectivity, CO₂ release, challenging process and catalyst optimisation, and harsh waste pre-treatment conditions, which limit their commercial applicability. These challenges are tackled in this thesis with the introduction of new and efficient photoelectrochemical (PEC) and chemoenzymatic processes for reforming a diverse range of waste feedstocks to sustainable fuels. Solar-driven PEC reforming based on halide perovskite light-absorber is first developed as an attractive alternative to PC reforming. The PEC systems consist of a perovskite|Pt photocathode for clean H₂ production and a Cu-Pd alloy anode for reforming diverse waste streams, including pre-treated cellulosic biomass, polyethylene terephthalate (PET) plastics, and industrial by-product glycerol into industrially-relevant, value-added chemicals (gluconic acid, glycolic acid and glyceric acid) without any externally applied bias or voltage. Additionally, the single light-absorber PEC systems can also convert the airborne waste stream and greenhouse gas CO₂ to diverse products with the simultaneous reforming of PET plastics with no applied voltage. The perovskite-based photocathode enables the integration of different CO₂ reduction catalysts such as a molecular cobalt porphyrin, a Cu-In alloy and formate dehydrogenase enzyme, which produce CO, syngas and formate, respectively. The versatile PEC systems, which can be assembled in either a ‘two-compartment’ or standalone ‘artificial leaf’ configurations achieve 60‒90% oxidation product selectivity (with no over-oxidation) and >100 µmol cm‾² h‾¹ product formation rates, corresponding to 10²‒10⁴ times higher activity than conventional PC reforming systems. In addition to developing PEC platforms, this thesis also explores avenues for circumventing the harsh alkaline pre-treatment strategies (pH >13, 60‒80 ºC) adopted for photoreforming waste substrates. For this purpose, a chemoenzymatic pathway is introduced whereby PET and polycaprolactone plastics were deconstructed using functional enzymes under benign conditions (pH 6‒8, 37‒65 ºC), followed by PC reforming using Pt loaded TiO₂ (TiO₂|Pt) or Ni₂P loaded carbon-nitride (CNx|Ni₂P) photocatalysts. The chemoenzymatic reforming process demonstrates versatility in upcycling polyester films and nanoplastics for H₂ production at high yields reaching ∼10³‒10⁴ µmol gsub‾¹ and activities at >500 µmol gcat‾¹ h‾¹. The utilisation of enzyme pre-treated plastics also allowed the coupling of plastic reforming with photocatalytic CO₂-to-syngas conversion using a phosphonated cobalt bis(terpyridine) co-catalyst immobilised on TiO₂ (TiO₂|CotpyP). Finally, moving beyond solar-driven systems, a bio-electrocatalytic flow process is demonstrated for the conversion of microbe pre-treated food waste to ethylene (an important feedstock in the chemical industry) on graphitic carbon electrodes via succinic acid as the central intermediate. In conclusion, with its focus on improving efficiencies, achieving selective product formation, building versatile platforms, diversifying substrate and product scope, and reducing carbon footprint and economic strain, this thesis aims to bring sustainable waste-to-fuel technologies a step closer to commercial implementation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.99818&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 CanadaPublisher:Elsevier BV He, Yong; Xiong, Wei; Hu, Pengcheng; Huang, Daiqing; Feurtado, J. Allan; Zhang, Tianyi; Hao, Chenyang; DePauw, Ron; Zheng, Bangyou; Hoogenboom, Gerrit; Dixon, Laura E.; Wang, Hong; Challinor, Andrew Juan;pmid: 38278227
The stability of winter wheat-flowering-date is crucial for ensuring consistent and robust crop performance across diverse climatic conditions. However, the impact of climate change on wheat-flowering-dates remains uncertain. This study aims to elucidate the influence of climate change on wheat-flowering-dates, predict how projected future climate conditions will affect flowering date stability, and identify the most stable wheat genotypes in the study region. We applied a multi-locus genotype-based (MLG-based) model for simulating wheat-flowering-dates, which we calibrated and evaluated using observed data from the Northern China winter wheat region (NCWWR). This MLG-based model was employed to project flowering dates under different climate scenarios. The simulated flowering dates were then used to assess the stability of flowering dates under varying allelic combinations in projected climatic conditions. Our MLG-based model effectively simulated flowering dates, with a root mean square error (RMSE) of 2.3 days, explaining approximately 88.5 % of the genotypic variation in flowering dates among 100 wheat genotypes. We found that, in comparison to the baseline climate, wheat-flowering-dates are expected to shift earlier within the target sowing window by approximately 11 and 14 days by 2050 under the Representative Concentration Pathways 4.5 (RCP4.5) and RCP8.5 climate scenarios, respectively. Furthermore, our analysis revealed that wheat-flowering-date stability is likely to be further strengthened under projected climate scenarios due to early flowering trends. Ultimately, we demonstrate that the combination of Vrn and Ppd genes, rather than individual Vrn or Ppd genes, plays a critical role in wheat-flowering-date stability. Our results suggest that the combination of Ppd-D1a with winter genotypes carrying the vrn-D1 allele significantly contributes to flowering date stability under current and projected climate scenarios. These findings provide valuable insights for wheat breeders and producers under future climatic conditions.
NRC Publications Arc... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert NRC Publications Arc... arrow_drop_down The Science of The Total EnvironmentArticle . 2024 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2024.170305&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Royal Society of Chemistry (RSC) Abdelhafiz, A; Vitale, A; Buntin, P; Deglee, B; Joiner, C; Robertson, A; Vogel, E; Warner, J; Alamgir, F;doi: 10.1039/c8ee00539g
Revolutionary catalyst protection by single layer graphene capping, tremendous catalyst lifetime longevity and activity enhancement towards oxygen reduction reaction.
Oxford University Re... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00539g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c8ee00539g&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021 Austria, NetherlandsPublisher:Springer Science and Business Media LLC Funded by:EC | CONSTRAINEC| CONSTRAINSofia Gonzales-Zuñiga; Claire Fyson; Andreas Geiges; Silke Mooldijk; Matthew Gidden; Mairi Louise Jeffery; Michel G.J. den Elzen; Niklas Höhne; Joeri Rogelj; Joeri Rogelj; Frederic Hans; William Hare;National net zero emission targets could, if fully implemented, reduce best estimates of projected global average temperature increase to 2.0–2.4 °C by 2100, bringing the Paris Agreement temperature goal within reach. A total of 131 countries are discussing, have announced or have adopted net zero targets, covering 72% of global emissions. These targets could substantially lower projected warming as compared to currently implemented policies (2.9–3.2 °C) or pledges submitted to the Paris Agreement (2.4–2.9 °C). Current pledges for emissions cuts are insufficient to meet the Paris Agreement temperature goal. The wave of net zero targets being discussed and adopted could make the Paris goal possible if further countries follow suit.
IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 170 citations 170 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
more_vert IIASA PURE arrow_drop_down IIASA PUREArticle . 2021 . Peer-reviewedFull-Text: https://pure.iiasa.ac.at/id/eprint/17443/1/ncc_hohne_gidden_master_clean_v2%20%281%29.pdfData sources: IIASA PUREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41558-021-01142-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024 United KingdomPublisher:Elsevier BV Shang, WL; Ling, Y; Ochieng, W; Yang, L; Gao, X; Ren, Q; Chen, Y; Cao, M;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.123226&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | 14-ERASynBio Engineering ..., UKRI | The Electrochemical Leaf:...UKRI| 14-ERASynBio Engineering the chloroplast of microalgae as a chassis for the direct production of solar fuels and chemicals ,UKRI| The Electrochemical Leaf:Rapid, Reversible Cycling of Nicotinamide Cofactors for Enzyme-based Organic SynthesisAuthors: Wan, L; Megarity, C; Siritanaratkul, B; Armstrong, F;doi: 10.1039/c7cc08859k
pmid: 29319070
A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP+ and NADPH with a Pt electrode catalysing 2H+/H2 interconversion.
Oxford University Re... arrow_drop_down Chemical CommunicationsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7cc08859k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Chemical CommunicationsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7cc08859k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Julian M. Allwood; Zenaida Sobral Mourão; Jochen Linssen; D. Dennis Konadu; Heidi Heinrichs; Martin Robinius; Stefan Vögele; Wilhelm Kuckshinrichs; Bastian Gillessen; S. Venghaus; S. Venghaus; Detlef Stolten; Detlef Stolten;Abstract While it is generally accepted that our fossil fuel-dominated energy systems must undergo a sustainable transition, researchers have often neglected the potential impacts of this on water and land systems. However, if unintended environmental impacts from this process are to be avoided, understanding its implications for land use and water demand is of crucial importance. Moreover, developed countries may induce environmental stress beyond their own borders, for instance through extensive imports of bioenergy. In this paper, Germany serves as an example of a developed country with ambitious energy transformation targets. Results show that in particular, the politically-driven aspiration for more organic farming in Germany results in a higher import quota of biomass, especially biofuels. These imports translate into land demand, which will exceed the area available in Germany for bioenergy by a factor of 3–6.5 by 2050. As this will likely bring about land stress in the respective exporting countries, this effect of the German energy transformation ought to be limited as much as possible. In contrast, domestic water demand for the German energy system is expected to decrease by over 80% through 2050 due to declining numbers of fossil-fuelled power plants. However, possible future irrigation needs for bioenergy may reduce or even counterbalance this decreasing effect. In addition, energy policy targets specific to the transport sector show a high sensitivity to biomass imports. In particular, the sector-specific target for greenhouse gas reductions will seemingly promote biomass imports, leading to the above-described challenges in the pursuit of sustainability.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomBottery, Michael; Sedik, Sarah; Schwartz, Ilan S.; Hoenigl, Martin; Van Rhijn, Norman;Climate change is altering ecosystems worldwide. While shifting environmental conditions are complex, it has been hypothesised that the impact of climate change are directly leading to increases in fungal infections across the globe. Rising temperatures, changing precipitation patterns, and extreme weather events are thought to be driving the adaptation of fungal pathogens to new climates, expanding their geographical range and posing a growing threat to human health and agriculture. This review highlights how climate change may impact key pathogens, including Candida auris, Candida orthopsilosis, Cryptococcus deuterogattii, and resistant strains of Aspergillus fumigatus, which have emerged as significant public health concerns. Their spread is accelerated by globalisation, urbanisation, and the intensifying use of agricultural fungicides, which further increase antifungal resistance. The growing prevalence of resistant strains and emergence of novel fungal pathogens is likely linked to anthropogenic climate change, underscoring the urgent need for action and for more robust data collection.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::5783270f49949e23361c82eb1cd7308b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::5783270f49949e23361c82eb1cd7308b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Leal, W; Frizzo, K; Eustachio, JHPP; Tsani, S; Özuyar, PG;doi: 10.1002/sd.2796
AbstractThis study describes the relationships between climate change and the concept of a circular economy, outlining the need for synergies within a company's context. It reports on a bibliometric analysis of the relations between climate change and circular economy, and it provides evidence and assessments based on a sample of 11 large companies in the chemical industry. The results show that there is a concern in the academic literature to discuss circular economy efforts to combat climate change, reduce carbon emissions, strengthen the supply chain, assess the life cycle of products, their environmental impact, and waste management, and identify barriers to implementing the circular economy. In addition, there is a close association between the CE concept and tackling climate change in how organisations report their practices to the stakeholders, in considering concepts of recycling, reusing, adopting renewable energy, seeking resource efficiency, and rethinking strategies. The study concludes by providing some suggestions that may assist companies in intensifying their efforts to reduce their carbon footprint, combining them with more circular business models. Efforts from interested stakeholders must focus on defining CE in a more detailed manner, as well as its implementation at the different stages of production and consumption, especially in operations for which no uniform approach or common practice can be established. In this context, implications for positive social and environmental impacts by promoting a faster and more proactive climate transition in the chemical sector are presented. The novelty of this paper relies on the fact that it advances knowledge on matters related to the circular economy under a climate change context, identifying current trends and suggesting some measures which may optimise current business practices of the chemical sector.
e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu