- home
- Advanced Search
- Energy Research
- Closed Access
- GB
- AU
- FI
- Energy Policy
- Energy Research
- Closed Access
- GB
- AU
- FI
- Energy Policy
description Publicationkeyboard_double_arrow_right Article , Journal 1986Publisher:Elsevier BV Authors: Catherine Waddams Price;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(86)90049-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(86)90049-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Authors: Carl Blumstein; Steven Stoft;In a recent paper Huntington lays some of the groundwork for more meaningful discussions between economists and technologists on the apparent underinvestment in energy efficiency. In a discussion illustrated by a production function, he points out that the technical efficiency of economic actors should be treated as an empirical question. Huntington's groundwork can be further extended by observing that there is a close relationship between production functions and conservation supply curves, an analytical tool routinely used by technologists. Here we show that a conservation supply curve can be obtained from a production function by a simple transformation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(95)00073-r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(95)00073-r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1992Publisher:Elsevier BV Authors: Terry Williamson; S. Coldicutt;Abstract With emphasis on application in the built environment, this paper analyses meanings of the term ‘solar energy use’. It shows that failure to address the inherently vague and context dependent nature of the concept leads to much confusion, especially when attempts at absolute quantification are made. The paper argues that meaningful absolute quantification of solar energy use is impossible, and that misplaced attempts at this quantification have serious implications, especially in relation to decisions at the level of government policy. To avoid confusion, solar energy should not be considered as a component of conservation, energy-efficiency, or renewables, and definition and quantification of solar energy use should be qualified regarding purpose of quantification, type of energy, definition of use, baselines and context.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(92)90119-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(92)90119-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1978Publisher:Elsevier BV Authors: L.G. Brookes;Abstract There is a widespread belief that the world energy problem will be solved by rising prices — closing the ‘gap’ by reducing demand and bringing in new, large, previously overcostly energy sources. The author rejects this view — high prices are the problem not the solution. Supply and demand will be brought into balance at some price, and the objective of energy policy should be to make it as low as we can, by concentrating on the exploitation of large, low-cost energy sources. New energy-saving technologies and new energy sources are more likely to be pursued in such an expensive climate than in the alternative world of high-priced energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(78)90031-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 73 citations 73 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(78)90031-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Simon Shackley; Peter Brownsort; Saran Sohi; James Hammond;Abstract Life cycle assessment (LCA) of slow pyrolysis biochar systems (PBS) in the UK for small, medium and large scale process chains and ten feedstocks was performed, assessing carbon abatement and electricity production. Pyrolysis biochar systems appear to offer greater carbon abatement than other bioenergy systems. Carbon abatement of 0.7–1.3 t CO2 equivalent per oven dry tonne of feedstock processed was found. In terms of delivered energy, medium to large scale PBS abates 1.4–1.9 t CO2e/MWh, which compares to average carbon emissions of 0.05–0.30 t CO2e/MWh for other bioenergy systems. The largest contribution to PBS carbon abatement is from the feedstock carbon stabilised in biochar (40–50%), followed by the less certain indirect effects of biochar in the soil (25–40%)—mainly due to increase in soil organic carbon levels. Change in soil organic carbon levels was found to be a key sensitivity. Electricity production off-setting emissions from fossil fuels accounted for 10–25% of carbon abatement. The LCA suggests that provided 43% of the carbon in the biochar remains stable, PBS will out-perform direct combustion of biomass at 33% efficiency in terms of carbon abatement, even if there is no beneficial effect upon soil organic carbon levels from biochar application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 188 citations 188 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Andrea Gatto; Andrea Gatto; Concetto Paolo Vinci; Luigi Aldieri;Abstract In modern developed economies, one of the primary objectives is to manage the transition from polluting to cleaner technologies as efficiently as possible. By now, in the current empirical literature, one can identify technological spillovers from environmental innovations as a major driver of this process. Specific energy policy aspects connected with industry behaviour have yet to be explored. The aim of this paper is to investigate energy efficiency via environmental innovation and the resulting degree of resilience and adaptation of both developed and developing countries. The work applies the non-parametric DEA (Data Envelopment Analysis) framework and Tobit analysis. For this scope, it is built a panel dataset made of some 5000 observations based on energy policy and sustainable development variables for 136 OECD and non-OECD countries. The results show that knowledge spillovers from environmental innovations reduce inefficiency and therefore strengthen the resilience of economies that decide and manage to invest adequately in the transition to more sustainable technologies. Besides, OECD countries improve their energy efficiency scores over time, whilst non-OECD countries do not. This implies that sustainable technologies transition is made more efficient by environmental innovation but the process is fostered by disposing of a resilient economic system – hence, vulnerability can affect the transition. These hypotheses lead to important economic, social and environmental implications for energy policy modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Nguyen Ha Dieu; Nguyen Minh Bao; Pham Khanh Toan;Abstract This article provides background on the current status and recent trends of energy use in Viet Nam, as well as projections of energy demand and energy supply in the coming decades. The article summarizes the results of the current national Master Plan for developing the electricity supply sector to meet increasing electricity demand. Also described are the evolution and current status of Viet Nam’s energy policies, including those related to energy security, energy efficiency and conservation, the environment, and development of renewable energy sources, as well as strategies for power sector development and restructuring of the energy sector toward greater use of competitive energy markets. The initial phase of the Viet Nam energy sector modeling effort under the Asian Energy Security (AES) project is described. The final section of this article offers conclusions regarding the status of Viet Nam’s energy sector and policies, and recommendations regarding “next steps” in energy security analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Lianyong Feng; Huihui Liu; Steve Mohr; Jianliang Wang; Gail E. Tverberg;Abstract China is vigorously promoting the development of its unconventional gas resources because natural gas is viewed as a lower-carbon energy source and because China has relatively little conventional natural gas supply. In this paper, we first evaluate how much unconventional gas might be available based on an analysis of technically recoverable resources for three types of unconventional gas resources: shale gas, coalbed methane and tight gas. We then develop three alternative scenarios of how this extraction might proceed, using the Geologic Resources Supply Demand Model. Based on our analysis, the medium scenario, which we would consider to be our best estimate, shows a resource peak of 176.1 billion cubic meters (bcm) in 2068. Depending on economic conditions and advance in extraction techniques, production could vary greatly from this. If economic conditions are adverse, unconventional natural gas production could perhaps be as low as 70.1 bcm, peaking in 2021. Under the extremely optimistic assumption that all of the resources that appear to be technologically available can actually be recovered, unconventional production could amount to as much as 469.7 bcm, with peak production in 2069. Even if this high scenario is achieved, China’s total gas production will only be sufficient to meet China’s lowest demand forecast. If production instead matches our best estimate, significant amounts of natural gas imports are likely to be needed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.10.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.10.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Simon Roberts;Abstract The projected growth in households in the UK is a key factor in future domestic energy consumption, particularly electricity consumption. While every household needs a home and its heating, lighting and appliances, increasing incomes have historically led to significantly higher appliance ownership, higher expectations of levels of energy service and greater usage. In the past this trend was combined with increasing household numbers to drive growth in domestic electricity demand. Official projections for population growth and household composition indicate significant drivers for future growth in energy demand. Curbing this will require policies to reverse the tendency for energy–efficiency improvements to be overwhelmed by growing numbers of households, more widespread appliance ownership and increased service expectations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1983Publisher:Elsevier BV Authors: Louis Turner;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(83)90020-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(83)90020-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 1986Publisher:Elsevier BV Authors: Catherine Waddams Price;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(86)90049-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(86)90049-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1995Publisher:Elsevier BV Authors: Carl Blumstein; Steven Stoft;In a recent paper Huntington lays some of the groundwork for more meaningful discussions between economists and technologists on the apparent underinvestment in energy efficiency. In a discussion illustrated by a production function, he points out that the technical efficiency of economic actors should be treated as an empirical question. Huntington's groundwork can be further extended by observing that there is a close relationship between production functions and conservation supply curves, an analytical tool routinely used by technologists. Here we show that a conservation supply curve can be obtained from a production function by a simple transformation.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(95)00073-r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(95)00073-r&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1992Publisher:Elsevier BV Authors: Terry Williamson; S. Coldicutt;Abstract With emphasis on application in the built environment, this paper analyses meanings of the term ‘solar energy use’. It shows that failure to address the inherently vague and context dependent nature of the concept leads to much confusion, especially when attempts at absolute quantification are made. The paper argues that meaningful absolute quantification of solar energy use is impossible, and that misplaced attempts at this quantification have serious implications, especially in relation to decisions at the level of government policy. To avoid confusion, solar energy should not be considered as a component of conservation, energy-efficiency, or renewables, and definition and quantification of solar energy use should be qualified regarding purpose of quantification, type of energy, definition of use, baselines and context.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(92)90119-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(92)90119-m&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1978Publisher:Elsevier BV Authors: L.G. Brookes;Abstract There is a widespread belief that the world energy problem will be solved by rising prices — closing the ‘gap’ by reducing demand and bringing in new, large, previously overcostly energy sources. The author rejects this view — high prices are the problem not the solution. Supply and demand will be brought into balance at some price, and the objective of energy policy should be to make it as low as we can, by concentrating on the exploitation of large, low-cost energy sources. New energy-saving technologies and new energy sources are more likely to be pursued in such an expensive climate than in the alternative world of high-priced energy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(78)90031-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 73 citations 73 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(78)90031-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Simon Shackley; Peter Brownsort; Saran Sohi; James Hammond;Abstract Life cycle assessment (LCA) of slow pyrolysis biochar systems (PBS) in the UK for small, medium and large scale process chains and ten feedstocks was performed, assessing carbon abatement and electricity production. Pyrolysis biochar systems appear to offer greater carbon abatement than other bioenergy systems. Carbon abatement of 0.7–1.3 t CO2 equivalent per oven dry tonne of feedstock processed was found. In terms of delivered energy, medium to large scale PBS abates 1.4–1.9 t CO2e/MWh, which compares to average carbon emissions of 0.05–0.30 t CO2e/MWh for other bioenergy systems. The largest contribution to PBS carbon abatement is from the feedstock carbon stabilised in biochar (40–50%), followed by the less certain indirect effects of biochar in the soil (25–40%)—mainly due to increase in soil organic carbon levels. Change in soil organic carbon levels was found to be a key sensitivity. Electricity production off-setting emissions from fossil fuels accounted for 10–25% of carbon abatement. The LCA suggests that provided 43% of the carbon in the biochar remains stable, PBS will out-perform direct combustion of biomass at 33% efficiency in terms of carbon abatement, even if there is no beneficial effect upon soil organic carbon levels from biochar application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 188 citations 188 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2011.02.033&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Andrea Gatto; Andrea Gatto; Concetto Paolo Vinci; Luigi Aldieri;Abstract In modern developed economies, one of the primary objectives is to manage the transition from polluting to cleaner technologies as efficiently as possible. By now, in the current empirical literature, one can identify technological spillovers from environmental innovations as a major driver of this process. Specific energy policy aspects connected with industry behaviour have yet to be explored. The aim of this paper is to investigate energy efficiency via environmental innovation and the resulting degree of resilience and adaptation of both developed and developing countries. The work applies the non-parametric DEA (Data Envelopment Analysis) framework and Tobit analysis. For this scope, it is built a panel dataset made of some 5000 observations based on energy policy and sustainable development variables for 136 OECD and non-OECD countries. The results show that knowledge spillovers from environmental innovations reduce inefficiency and therefore strengthen the resilience of economies that decide and manage to invest adequately in the transition to more sustainable technologies. Besides, OECD countries improve their energy efficiency scores over time, whilst non-OECD countries do not. This implies that sustainable technologies transition is made more efficient by environmental innovation but the process is fostered by disposing of a resilient economic system – hence, vulnerability can affect the transition. These hypotheses lead to important economic, social and environmental implications for energy policy modelling.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 74 citations 74 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2021.112505&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Elsevier BV Authors: Nguyen Ha Dieu; Nguyen Minh Bao; Pham Khanh Toan;Abstract This article provides background on the current status and recent trends of energy use in Viet Nam, as well as projections of energy demand and energy supply in the coming decades. The article summarizes the results of the current national Master Plan for developing the electricity supply sector to meet increasing electricity demand. Also described are the evolution and current status of Viet Nam’s energy policies, including those related to energy security, energy efficiency and conservation, the environment, and development of renewable energy sources, as well as strategies for power sector development and restructuring of the energy sector toward greater use of competitive energy markets. The initial phase of the Viet Nam energy sector modeling effort under the Asian Energy Security (AES) project is described. The final section of this article offers conclusions regarding the status of Viet Nam’s energy sector and policies, and recommendations regarding “next steps” in energy security analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 44 citations 44 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2010.03.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Lianyong Feng; Huihui Liu; Steve Mohr; Jianliang Wang; Gail E. Tverberg;Abstract China is vigorously promoting the development of its unconventional gas resources because natural gas is viewed as a lower-carbon energy source and because China has relatively little conventional natural gas supply. In this paper, we first evaluate how much unconventional gas might be available based on an analysis of technically recoverable resources for three types of unconventional gas resources: shale gas, coalbed methane and tight gas. We then develop three alternative scenarios of how this extraction might proceed, using the Geologic Resources Supply Demand Model. Based on our analysis, the medium scenario, which we would consider to be our best estimate, shows a resource peak of 176.1 billion cubic meters (bcm) in 2068. Depending on economic conditions and advance in extraction techniques, production could vary greatly from this. If economic conditions are adverse, unconventional natural gas production could perhaps be as low as 70.1 bcm, peaking in 2021. Under the extremely optimistic assumption that all of the resources that appear to be technologically available can actually be recovered, unconventional production could amount to as much as 469.7 bcm, with peak production in 2069. Even if this high scenario is achieved, China’s total gas production will only be sufficient to meet China’s lowest demand forecast. If production instead matches our best estimate, significant amounts of natural gas imports are likely to be needed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.10.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2015.10.042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008Publisher:Elsevier BV Authors: Simon Roberts;Abstract The projected growth in households in the UK is a key factor in future domestic energy consumption, particularly electricity consumption. While every household needs a home and its heating, lighting and appliances, increasing incomes have historically led to significantly higher appliance ownership, higher expectations of levels of energy service and greater usage. In the past this trend was combined with increasing household numbers to drive growth in domestic electricity demand. Official projections for population growth and household composition indicate significant drivers for future growth in energy demand. Curbing this will require policies to reverse the tendency for energy–efficiency improvements to be overwhelmed by growing numbers of households, more widespread appliance ownership and increased service expectations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enpol.2008.09.064&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1983Publisher:Elsevier BV Authors: Louis Turner;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(83)90020-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0301-4215(83)90020-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu