Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
10,187 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • 6. Clean water
  • GB
  • CA

  • Authors: Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Chaplow, J.S.; +1 Authors

    Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. Data from an investigation of the effects of biochar application to soil on greenhouse gas emissions using soil from a bioenergy crop (Miscanthus X. giganteus). Data include physical (bulk density) and chemical analyses of the soil (total carbon (C) and nitrogen (N), extractable ammonium and nitrate), and greenhouse gas (GHG) emissions (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)) during incubations. Data were collected during two incubation experiments investigating the effects of temperature, soil moisture and soil aeration on biochar induced suppression of GHG emissions. Biochar is a carbon rich substances which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Miller, L.C.; Smeaton, C.; Garbutt, A.; Austin, W.E.N.;

    The dataset comprises of physical and biogeochemical measurements of belowground (root) biomass from across four Scottish saltmarshes. Sites were chosen to represent contrasting habitats types in Scotland, in particular sediment types, vegetation and sea level history. The data provide a quantitative measure of belowground (root) biomass, organic carbon content and belowground (root) carbon. Samples were collected using a wide gauge gouge corer. The samples were processed to determine belowground (root) biomass, the organic carbon was quantified through elemental analysis and these two data sets were combined to calculate the belowground (root) carbon content. The data were collected to help create a detailed picture of saltmarsh carbon storage in surficial soils across Scotland. The work was carried out under the NERC programme - Carbon Storage in Intertidal Environment (C-SIDE), NERC grant reference NE/R010846/1 Soil cores were taken at each sampling location using a wide diameter gouge corer. The location of the sample was recorded using GPS. Prior to analysis the samples were stored at 4 degrees Celsius at the University of St Andrews. Belowground (root) biomass, organic carbon content and belowground (root) carbon data was produced using standard analytical procedures (detailed in the supporting documentation). All laboratory equipment were calibrated in accordance with the laboratory practises at the University of St Andrews. Results were recorded on to lab sheets and transferred into an Excel file. Results were exported as comma separated value (.csv) files for ingestion into the EIDC.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eloranta, Antti P.; Finstad, Anders G.; Helland, Ingeborg P.; Ugedal, Ola; +1 Authors

    Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Data of environmental characteristics and brown trout populations in 102 Norwegian hydropower reservoirsThe data contains field-collected data of brown trout populations in 102 Norwegian reservoirs with variable environmental characteristics. The brown trout data (i.e. response variables) include estimates of: "Biomass" (grams of fish per 100m2 net per night); "Density" (number of fish per 100m2 net per night); "Mean weight" (mean wet mass in grams); "Mean condition" (mean Fulton's condition factor); and "Mean maturity length" (mean total length of mature females in millimeters). All abbreviations for different variables (columns) are explained in the paper. Many reservoirs ("Lake") have various names, some including Norwegian letters (æ, ø & å). Hence, we recommend to use coordinate data (EPSG:4326; "decimalLongitude" and "decimalLatitude") and Norwegian national lake ID numbers ("Lake_nr"; managed by the Norwegian Water Resources and Energy Directorate; www.nve.no) to locate the reservoirs. The variables "Year", "Month" and "Day" refer to times when survey fishing was conducted. Lake morphometry data ("A"=surface area, "SD"=shoreline development) is obtained from NVE database. The lake climatic and catchment data ("T"=mean July air temperature, "NDVI"= Normalized Difference Vegetation Index, and "SL"=terrain slope) is obtained and measured as described by Finstad et al. (2014; DOI: 10.1111/ele.12201). Other abbreviations include: "FC"=presence of other fish species (1=absent, 2=present); "GS"=gillnet series (1=Nordic, 2=Jensen); and "ST"=brown trout stocking (0=no stocking, 1=stocking). The water level regulation (WLR) metrics include: ): "WLR_magnitude"= maximum regulation amplitude; "WLR_frequency"=relative proportion of weeks with a sudden rise or drop in water level; and "WLR_duration"=the relative proportion of weeks with exceptionally low water levels.Data-in_doi.org-10.1016-j.scitotenv.2017.10.268.xlsx

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2017
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2017
    Data sources: B2FIND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    EASY
    Dataset . 2017
    Data sources: EASY
    DRYAD
    Dataset . 2017
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2017
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2017
      Data sources: B2FIND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      EASY
      Dataset . 2017
      Data sources: EASY
      DRYAD
      Dataset . 2017
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Kramer, Onno; Boek, Edo;

    A virtual lab (MOOC) for students chemical, civil or mechanical engineering. Students are introduced with a fluidised bed reactor (multiphase flow). This expansion column represents a liquid-solid fluidisation process applied in drinking water treatment processes. The knowledge you will gain will help you develop and improve your competence profile of a highly qualified chemical engineer. Students are informed with short lectures (films) and a manual (document). Several assignments must be completed based on recorded laboratory experiments.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Comer-Warner, S.A.; Romeijn, P.; Krause, S.; Gooddy, D.C.; +1 Authors

    Sediment was collected using a shovel before being sieved (0.8 cm for fine, and 1.6 cm for medium and coarse) and homogenised prior to storage. The sediment was stored airtight in the cold and dark. Sediment of varying organic matter content from two geological origins (chalk and sandstone) was incubated at five temperatures (5, 9, 15, 21 and 26°C). Resorufin production was measured using a GGUN-FL30 on-line fluorometer, dissolved oxygen was measured using a Pyro-science Firesting fixed needle-type probe, and carbon dioxide and methane concentrations were measured using an Agilent 7890A Gas Chromatograph - Flame Ionisation Detector. The carbon dioxide and methane concentrations were converted to production per hour by calculating the difference in concentration between zero and five hours and normalising the production by the length of the incubation period. The data was then converted to emissions per volume of dry sediment using the Bunsen coefficient and the volume of sediment in each jar, resulting in units of milligrams of carbon per square metre per hour. Greenhouse gas concentrations were corrected for any machine drift using results from a standard gas mixture ran periodically during gas analysis. The resorufin concentration was converted to production per hour by calculating the difference in concentration between zero and five hours and normalising the production by the length of the incubation period. The production was then normalised by the concentration of resazurin added to the jar, resulting in units of nanograms of resorufin per microgram of resazurin per hour. Data were entered into an Excel spreadsheet and exported as a comma separated value file (.csv) for ingestion into the EIDC. The dataset contains carbon dioxide and methane emissions, as well as resorufin production (as a proxy for microbial metabolic activity) and dissolved oxygen concentrations, resulting from laboratory incubation experiments of streambed sediments. The sediments were collected from the upper 10 centimetres of the streambed in the River Tern and the River Lambourn in September 2015, with three samples collected from each river. These samples were collected from three areas: silt-dominated sediment underneath vegetation (fine), sand-dominated sediment from unvegetated zones (medium) and gravel-dominated sediment from unvegetated zones (coarse). The sediment was used in laboratory incubation experiments to determine the effect of temperature, organic matter content, substrate type and geological origin on streambed microbial metabolic activity, and carbon dioxide and methane production. The work was carried out as part of a Natural Environment Research Council (NERC) funded PhD (NERC award number 1602135). The work was also part funded through the Seventh Framework Programme (EU grant number 607150).

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wade, Ruth N.; Karley, Alison J.; Johnson, Scott N.; Hartley, Sue E.;

    1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios. Controlled environment and field experimental dataData file containing all data reported in the paper including plant, soil and insect data from controlled environment and field experiments. First spreadsheet in the data file contains a key to explain all abbreviations used throughout the file.Experimental data.xlsx

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2018
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2017
    Data sources: B2FIND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2017
    Data sources: B2FIND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    EASY
    Dataset . 2017
    Data sources: EASY
    DRYAD
    Dataset . 2017
    License: CC 0
    Data sources: Datacite
    DRYAD
    Dataset . 2018
    License: CC 0
    Data sources: Datacite
    DRYAD
    Dataset . 2017
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility11
    visibilityviews11
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2018
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2017
      Data sources: B2FIND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2017
      Data sources: B2FIND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      EASY
      Dataset . 2017
      Data sources: EASY
      DRYAD
      Dataset . 2017
      License: CC 0
      Data sources: Datacite
      DRYAD
      Dataset . 2018
      License: CC 0
      Data sources: Datacite
      DRYAD
      Dataset . 2017
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sepehr Eslami; Jannis M. Hoch; Edwin H. Sutanudjaja; Hal E. Voepel;

    Projections of Sea Level Rise (SLR) under RCP 4.5 and RCP 8.5 (AR5) along the Mekong Coast, Published1 by the Ministry of Natural Resources and Environment (MONRE), Hanoi, Vietnam. Projections of Mekong River discharge during the dry season under RCP 4.5 and RCP 8.5 at Kratie, Cambodia. The data contains the cumulative, minimum and maximum dry season (January-1st to April-30th) discharge from 5 different climate models. PCR-GLOBWB2 was run at 5 arc-min spatial resolution and forced with the data based on output from five ISIMIP CMIP5 global climate models (HadGEM2-ES, GFDL-ESM2, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M). 1. Ministry of Natural Resources and Environment (MONRE), V. Climate change and sea level rise scenarios for Vietnam, Ministry of Natural Resources and Environment. (2016). 2. Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018). {"references": ["Sutanudjaja et al. (2018)", "Ministry of Natural Resources and Environment (2016)"]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility162
    visibilityviews162
    downloaddownloads75
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pappis, Ioannis; Sridharan, Vignesh; Howells, Mark; Medarac, Hrvoje; +4 Authors

    This dataset underpins the study "Synergies and conflicts of energy development and water security in Africa". The study provides insights into energy supply and demand, power generation, investments and total system costs, water consumption and withdrawal as well as carbon dioxide emissions for the African continent. We developed a model to evaluate energy supply and water requirements to cover the energy needs of the African continent during the period 2015-2065. The model was developed using the open-source modeling system for long-term energy planning OSeMOSYS. The objective function is to minimise total energy system costs, rather than, for example, co-optimise the energy and water sectors. Other energy resources were also included in the model except for adding the water analysis, and the dataset was updated based on the latest available information. The OSeMOSYS model developed to conduct the study “Energy projections for African countries”, itself extended from the Electricity Model Base for Africa (TEMBA), was further extended, included exports for all fuels, water loss due to evaporation in hydropower plants and more scenarios examined. Furthermore, the latest available data on the energy system of Africa was also updated. The TEMBA model produces aggregate energy, and detailed power system results in each country in the African continent. The power sector results are also reported with power pool aggregation. The OSeMOSYS model and input data used to produce these results can be found at KTH-dESA/jrc_temba: TEMBA 2.1 (Version v2.1) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4889373 (Authors: Ioannis Pappis, Vignesh Sridharan, Will Usher, & Mark Howells. (2021). The initial study was funded by the Joint Research Centre of the European Commission (contract number C936531 - JRC/PTT/2018/C.7/0038/NC).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility80
    visibilityviews80
    downloaddownloads10
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Fry, E.L.; Hall, A.L.; Savage, J.; Bardgett, R.D.; +3 Authors

    This dataset contains nitrate and ammonium concentrations, nitrification and mineralisation rates, particle size and microbial biomass data from soils taken from an experiment based at Winklebury Hill, UK. The experiment used seeds and plug plants to create different plant communities on the bare chalk on Winklebury Hill and tested the resulting carbon and nutrient cycling rates and compared these to the characteristics of different plant functional groups. The experiment ran from 2013 to 2016 and this dataset contains data from 2013 only. This experiment was part of the Wessex BESS project, a six-year (2011-2017) project aimed at understanding how biodiversity underpins the ecosystem functions and services that landscapes provide. KCl extractable N and potential mineralisation were measured using an autoanalyser, running 5% analytical replicates, recalibration (at 5, 4, 3, 2 and 1 ppm) and blanks every 20 samples. Extracts were adjusted for soil moisture. Standardised protocols were followed in all cases, details of which can be found in the supporting documentation.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Robinson, Sinikka; O'Gorman, Eoin; Frey, Beat; Hagner, Marleena; +1 Authors

    Study site This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 soil plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots, measuring approximately 1 m2, evenly span a temperature gradient of 10-35°C. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015 (see Robinson et al. 2021 for plot details and sampling regime). Soil properties Soil temperature was measured at 5 cm depth at each plot on 15th, 18th, and 22nd August, and a mean plot temperature calculated. Soil physiochemical properties were analysed from 3 soil cores of 3 cm in diameter, taken from the upper 10 cm soil stratum at each plot; one quarter of each subsample was pooled to obtain an estimate per plot. Aboveground plant matter, excluding roots, were removed from each core. Percentage soil moisture was calculated by measuring the weight of one pooled soil sample before and after drying for 24 h in a 70°C drying oven. Soil pH was obtained from 20 g of the dry soil by adding 100 ml distilled water, shaking for 5 min on 150 rpm, letting the sample stand for 2 h, and measuring soil pH from the water layer using an InoLab pH 720 (WTW) probe. Soil PO4, NH4, and NO3 concentrations were analysed from a second pooled soil; 60 g of fresh soil was extracted in 100 ml distilled water, filtered through a GF/C (1.2μm) glass microfiber filter (Whatman, GE Healthcare Europe GmbH), and analysed using a Lachat QuikChem 8000 analyser (Zallweger Analytics, Inc., Lachat Instruments Division, USA). Total mineral N was calculated as the sum of NH4 and NO3. Soil organic matter content (excluding dry root biomass) was calculated as the weight lost from an oven dried (105°C for 24 hours) soil sample after heating at 550 °C for 5 h. Decomposition rate of soil organic matter was measured using the Cotton-strip Assay method (Tiegs et al. 2013) by placing a 2.5 cm x 8 cm strip of Fredrix-brand unprimed 12-oz. heavyweight cotton fabric (Style #548) 5 cm belowground at 60 plots, concurrently with a Maxim Integrated DS1921G Thermocron iButton temperature logger, on 13th May 2015. The strips were collected on 3rd July, rinsed with stream water to remove residual soil, soaked in 96% ethanol for 30 seconds to kill bacteria and halt decomposition, and dried at 60 °C for 12 h. Using a universal testing machine (Instron 5866 with 500 kN tensile holding clamps), maximum tensile strench of each cotton strip was measured. % tensile loss (proxy for decomposition) was calculated as (C-T) / C x 100, where T is the maximum tensile strength for each strip collected from the field, and C is the mean tensile strength of seven control strips, which had not been placed in the ground. See Robinson et al. 2021 for detailed description of plots sampled in 2015. Microbial abundance Bacterial and fungal abundance was estimated from additional soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including the litter layer) at each plot. DNA was extracted using the PowerSoil DNA Isolation Kit (Qiagen, Germany). DNA was quantified using the high-sensitivity Qubit assay (Thermo Fisher Scientific, Switzerland). Relative abundances of bacterial and fungal communities were determined by quantitative PCR (qPCR) on an ABI7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). PCR amplification of partial bacterial small-subunit ribosomal RNA genes (region V1–V3 of 16S; primers 27F and 512R) and fungal ribosomal internal transcribed spacers (region ITS2; primers IT3 and ITS4) was performed as described previously (Frey et al. 2020, Frey et al. 2021). For qPCR analyses, 2.5 ng DNA in a total volume of 6.6 µL and 8.4 µL GoTaq qPCRMaster Mix (Promega, Switzerland), containing 1.8 mM of each primer and 0.2 mg mL-1 of BSA, were used. The PCR conditions consisted of an initial denaturation at 95 ºC for 10 min, 40 cycles of denaturation at 95 ºC for 40 s, annealing at 58 ºC for 40 s and elongation at 72 ºC for 60 s followed by the final data acquisition step at 80 ºC for 60 s. The specificity of the amplification products was confirmed by melting-curve analysis. Three standard curves per target region (correlations ≥0.997) were obtained using tenfold serial dilutions (10-1 to 10-9 copies) of plasmids generated from cloned targets (Frey et al. 2020). Data were converted to represent the average copy number of targets per μg DNA and per g soil. Vegetation properties Vascular plant biomass was measured from a randomly placed 30 x 30 cm quadrat at each plot. To measure aboveground biomass (AGB) of plants, the aboveground layer of vegetation was cut and removed, dried at 70 °C for 24 h and weighed to obtain biomass per unit area. AGB was estimated as the biomass of graminoids plus forbs; total biomass of mosses was also estimated. Graminoid leaf N concentration was analysed from dried and ground leaf material using a LECO CNS-2000 analyser (LECO Corporation, Saint Joseph, MI, USA). Belowground biomass (BGB) of vascular plants was estimated from a soil core of 3 cm in diameter taken from the 10 cm upper soil stratum (excluding aboveground plant material) at each quadrat. Roots were extracted from the soil cores by rinsing in water using a 250-μm sieve, dried at 70 °C for 24 hours and weighed to obtain biomass per unit area. Root to shoot ratio was calculated as dry weight of BGB per cm2 divided by dry weight of AGB per cm2, and the total vascular plant biomass as the sum of AGB and BGB. Invertebrate community Enchytraied and nematode biomass was estimated from 3 soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including litter layer) at each plot. Enchytraieds were extracted using wet funnels (O'Connor 1962) from a pooled sample of one half of each of the three soil cores, counted live, and classified into size classes (length 0-2, 2.1-4, 4.1-6, 6.1-8, 8.1-10, 10.1-12 or >12 mm) and their biomass was calculated according to Abrahamsen (1973). Nematodes were also extracted using wet funnels (Sohlenius 1979) from a pooled sample of a quarter of each of the three soil cores, counted live and preserved in 70% ethanol. Fifty individuals from each sample were identified and classified by trophic group (bacterivore, fungivoe, herbivore, omnivore, predator; Yeates et al. 1993). Soil micro-arthropods were extracted using a modified high-gradient-extractor (MacFayden 1961) from soil cores of 5.4 cm in diameter, taken from the upper 4 cm soil straum (including litter layer) at each plot. Total micro-arthropod biomass was calculated as the sum of all individual species' biomasses, obtained using length-weight regressions (see Robinson et al. 2021), and abundance of individual trophic groups (microbivore/detritivore, herbivore, omnivore, predator) calculated. Epigeal invertebrates were sampled by deploying five pitfall traps in each plot. White plastic cups of 7 cm in diameter and 8.5 cm in depth were filled with 10 ml of ethylene glycol and 30 ml of stream water, and left for 48 h before collection. Samples from the five traps at each plot were combined into a 250-μm sieve and stored in 70% ethanol. Invertebrate activity density (abundance) was estimate as the total number of individuals in the five traps, and total biomass as the sum of all individual species' biomasses. Invertebrates were identified to species level where possible and split into trophic groups, exluding adult Diptera, Hymenoptera, and Lepidoptera. Further details of sampling and collection of epigeal invertebrates are detailed in Robinson et al. (2018). References: Abrahamsen G. (1973) Studies on body-volume, body-surface area, density, and live weight of enchytraeidae (Oligochaeta). Pedobiologia 13: 6–15. Frey B, Carnol M, Dharmarajah A, Brunner I, Schleppi P. (2020) Only minor changes in the soil microbiome of a sub-alpine forest after 20 years of moderately increased nitrogen loads. Frontiers in Forests and Global Change 3: 77. Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I (2021) Deep soil layers of drough-exposed forests harbor poorly known bacterial and fungal communities. Frontiers in Microbiology 12: 1061. MacFayden A. (1961) Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology 30: 171–184. O’Connor FB. (1962) The extraction of Enchytraeidae from soil. In: P. W. Murphy (Ed.) Progress in soil zoology. Butterworth, London, UK; 279–285. Robinson SI, McLaughlin ÓB, Marteinsdóttir B, O'Gorman EJ. (2018) Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. Journal of Animal Ecology 87: 634–46. Robinson SI, Mikola J, Ovaskainen O, O’Gorman EJ. (2021) Temperature effects on the temporal dynamics of a subarctic invertebrate community. Journal of Animal Ecology 90: 1217-1227. Sohlenius B. (1979) A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 2: 30–40. Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ. (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25: 315–331. This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots span a temperature gradient of 10-35 °C over the sampling period, and this temperature gradient is consistent over time. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015. See README_Robinson_Hengill2018.txt 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility32
    visibilityviews32
    downloaddownloads21
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
10,187 Research products
  • Authors: Case, S.D.C.; McNamara, N.P.; Reay, D.S.; Chaplow, J.S.; +1 Authors

    Twenty soil cores were collected from a field site in Lincolnshire in March 2011, three weeks after planting and Nitrogen fertiliser addition. Soil cores of 150-180 millimetre (mm) depth, containing approximately 1.6 kilogram soil (dry weight) were extracted in Polyvinyl chloride (PVC) pipes (height 215 mm depth 102 mm) and stored at 4 degrees centigrade for 30 days. A four-treatment factorial experiment was designed using soils un-amended or amended with biochar and un-wetted or wetted with deionised water (5 replicates per treatment). Soil in all the cores was mixed to 7 centimetre (cm) depth. To half of the cores, biochar (less than 2 mm) was mixed into the soil at a rate of 3 percent soil dry weight (approximately 22 tons per hectare (t ha-1)). After allowing for any potential Carbon dioxide (CO2) flush from newly-mixed soil to equilibrate for seven days, the cores were placed at 16 degrees centigrade in the dark. Un-wetted soil cores were maintained at 23 percent Gravimetric moisture content (GMC), whilst the GMC of 'wetted' soil cores was increased to 28 percent GMC at the time zero (t0) of four wetting events on day 17, 46, 67 and 116. These water addition rates were based on mean and maximum monthly soil GMC measured in the field between 2009-2010. Data from an investigation of the effects of biochar application to soil on greenhouse gas emissions using soil from a bioenergy crop (Miscanthus X. giganteus). Data include physical (bulk density) and chemical analyses of the soil (total carbon (C) and nitrogen (N), extractable ammonium and nitrate), and greenhouse gas (GHG) emissions (carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O)) during incubations. Data were collected during two incubation experiments investigating the effects of temperature, soil moisture and soil aeration on biochar induced suppression of GHG emissions. Biochar is a carbon rich substances which is being advocated as a climate mitigation tool to increase carbon sequestration and reduce nitrous oxide emissions.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Miller, L.C.; Smeaton, C.; Garbutt, A.; Austin, W.E.N.;

    The dataset comprises of physical and biogeochemical measurements of belowground (root) biomass from across four Scottish saltmarshes. Sites were chosen to represent contrasting habitats types in Scotland, in particular sediment types, vegetation and sea level history. The data provide a quantitative measure of belowground (root) biomass, organic carbon content and belowground (root) carbon. Samples were collected using a wide gauge gouge corer. The samples were processed to determine belowground (root) biomass, the organic carbon was quantified through elemental analysis and these two data sets were combined to calculate the belowground (root) carbon content. The data were collected to help create a detailed picture of saltmarsh carbon storage in surficial soils across Scotland. The work was carried out under the NERC programme - Carbon Storage in Intertidal Environment (C-SIDE), NERC grant reference NE/R010846/1 Soil cores were taken at each sampling location using a wide diameter gouge corer. The location of the sample was recorded using GPS. Prior to analysis the samples were stored at 4 degrees Celsius at the University of St Andrews. Belowground (root) biomass, organic carbon content and belowground (root) carbon data was produced using standard analytical procedures (detailed in the supporting documentation). All laboratory equipment were calibrated in accordance with the laboratory practises at the University of St Andrews. Results were recorded on to lab sheets and transferred into an Excel file. Results were exported as comma separated value (.csv) files for ingestion into the EIDC.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Eloranta, Antti P.; Finstad, Anders G.; Helland, Ingeborg P.; Ugedal, Ola; +1 Authors

    Global transition towards renewable energy production has increased the demand for new and more flexible hydropower operations. Before management and stakeholders can make informed choices on potential mitigations, it is essential to understand how the hydropower reservoir ecosystems respond to water level regulation (WLR) impacts that are likely modified by the reservoirs' abiotic and biotic characteristics. Yet, most reservoir studies have been case-specific, which hampers large-scale planning, evaluation and mitigation actions across various reservoir ecosystems. Here, we investigated how the effect of the magnitude, frequency and duration of WLR on fish populations varies along environmental gradients. We used biomass, density, size, condition and maturation of brown trout (Salmo trutta L.) in Norwegian hydropower reservoirs as a measure of ecosystem response, and tested for interacting effects of WLR and lake morphometry, climatic conditions and fish community structure. Our results showed that environmental drivers modified the responses of brown trout populations to different WLR patterns. Specifically, brown trout biomass and density increased with WLR magnitude particularly in large and complex-shaped reservoirs, but the positive relationships were only evident in reservoirs with no other fish species. Moreover, increasing WLR frequency was associated with increased brown trout density but decreased condition of individuals within the populations. WLR duration had no significant impacts on brown trout, and the mean weight and maturation length of brown trout showed no significant response to any WLR metrics. Our study demonstrates that local environmental characteristics and the biotic community strongly modify the hydropower-induced WLR impacts on reservoir fishes and ecosystems, and that there are no one-size-fits-all solutions to mitigate environmental impacts. This knowledge is vital for sustainable planning, management and mitigation of hydropower operations that need to meet the increasing worldwide demand for both renewable energy and ecosystem services delivered by freshwaters. Data of environmental characteristics and brown trout populations in 102 Norwegian hydropower reservoirsThe data contains field-collected data of brown trout populations in 102 Norwegian reservoirs with variable environmental characteristics. The brown trout data (i.e. response variables) include estimates of: "Biomass" (grams of fish per 100m2 net per night); "Density" (number of fish per 100m2 net per night); "Mean weight" (mean wet mass in grams); "Mean condition" (mean Fulton's condition factor); and "Mean maturity length" (mean total length of mature females in millimeters). All abbreviations for different variables (columns) are explained in the paper. Many reservoirs ("Lake") have various names, some including Norwegian letters (æ, ø & å). Hence, we recommend to use coordinate data (EPSG:4326; "decimalLongitude" and "decimalLatitude") and Norwegian national lake ID numbers ("Lake_nr"; managed by the Norwegian Water Resources and Energy Directorate; www.nve.no) to locate the reservoirs. The variables "Year", "Month" and "Day" refer to times when survey fishing was conducted. Lake morphometry data ("A"=surface area, "SD"=shoreline development) is obtained from NVE database. The lake climatic and catchment data ("T"=mean July air temperature, "NDVI"= Normalized Difference Vegetation Index, and "SL"=terrain slope) is obtained and measured as described by Finstad et al. (2014; DOI: 10.1111/ele.12201). Other abbreviations include: "FC"=presence of other fish species (1=absent, 2=present); "GS"=gillnet series (1=Nordic, 2=Jensen); and "ST"=brown trout stocking (0=no stocking, 1=stocking). The water level regulation (WLR) metrics include: ): "WLR_magnitude"= maximum regulation amplitude; "WLR_frequency"=relative proportion of weeks with a sudden rise or drop in water level; and "WLR_duration"=the relative proportion of weeks with exceptionally low water levels.Data-in_doi.org-10.1016-j.scitotenv.2017.10.268.xlsx

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2017
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2017
    Data sources: B2FIND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    EASY
    Dataset . 2017
    Data sources: EASY
    DRYAD
    Dataset . 2017
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility10
    visibilityviews10
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2017
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2017
      Data sources: B2FIND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      EASY
      Dataset . 2017
      Data sources: EASY
      DRYAD
      Dataset . 2017
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Kramer, Onno; Boek, Edo;

    A virtual lab (MOOC) for students chemical, civil or mechanical engineering. Students are introduced with a fluidised bed reactor (multiphase flow). This expansion column represents a liquid-solid fluidisation process applied in drinking water treatment processes. The knowledge you will gain will help you develop and improve your competence profile of a highly qualified chemical engineer. Students are informed with short lectures (films) and a manual (document). Several assignments must be completed based on recorded laboratory experiments.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • Authors: Comer-Warner, S.A.; Romeijn, P.; Krause, S.; Gooddy, D.C.; +1 Authors

    Sediment was collected using a shovel before being sieved (0.8 cm for fine, and 1.6 cm for medium and coarse) and homogenised prior to storage. The sediment was stored airtight in the cold and dark. Sediment of varying organic matter content from two geological origins (chalk and sandstone) was incubated at five temperatures (5, 9, 15, 21 and 26°C). Resorufin production was measured using a GGUN-FL30 on-line fluorometer, dissolved oxygen was measured using a Pyro-science Firesting fixed needle-type probe, and carbon dioxide and methane concentrations were measured using an Agilent 7890A Gas Chromatograph - Flame Ionisation Detector. The carbon dioxide and methane concentrations were converted to production per hour by calculating the difference in concentration between zero and five hours and normalising the production by the length of the incubation period. The data was then converted to emissions per volume of dry sediment using the Bunsen coefficient and the volume of sediment in each jar, resulting in units of milligrams of carbon per square metre per hour. Greenhouse gas concentrations were corrected for any machine drift using results from a standard gas mixture ran periodically during gas analysis. The resorufin concentration was converted to production per hour by calculating the difference in concentration between zero and five hours and normalising the production by the length of the incubation period. The production was then normalised by the concentration of resazurin added to the jar, resulting in units of nanograms of resorufin per microgram of resazurin per hour. Data were entered into an Excel spreadsheet and exported as a comma separated value file (.csv) for ingestion into the EIDC. The dataset contains carbon dioxide and methane emissions, as well as resorufin production (as a proxy for microbial metabolic activity) and dissolved oxygen concentrations, resulting from laboratory incubation experiments of streambed sediments. The sediments were collected from the upper 10 centimetres of the streambed in the River Tern and the River Lambourn in September 2015, with three samples collected from each river. These samples were collected from three areas: silt-dominated sediment underneath vegetation (fine), sand-dominated sediment from unvegetated zones (medium) and gravel-dominated sediment from unvegetated zones (coarse). The sediment was used in laboratory incubation experiments to determine the effect of temperature, organic matter content, substrate type and geological origin on streambed microbial metabolic activity, and carbon dioxide and methane production. The work was carried out as part of a Natural Environment Research Council (NERC) funded PhD (NERC award number 1602135). The work was also part funded through the Seventh Framework Programme (EU grant number 607150).

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wade, Ruth N.; Karley, Alison J.; Johnson, Scott N.; Hartley, Sue E.;

    1. Predicted changes in the frequency and intensity of extreme rainfall events in the UK have the potential to disrupt terrestrial ecosystem function. However, responses of different trophic levels to these changes in rainfall patterns, and the underlying mechanisms, are not well characterised. 2. This study aimed to investigate how changes in both the quantity and frequency of rainfall events will affect the outcome of interactions between plants, insect herbivores (above- and below- ground) and natural enemies. 3. Hordeum vulgare L. plants were grown in controlled conditions and in the field, and subjected to three precipitation scenarios: ambient (based on a local 10 year average rainfall); continuous drought (40% reduction compared to ambient); drought/ deluge (40% reduction compared to ambient at a reduced frequency). The effects of these watering regimes and wireworm (Agriotes species) root herbivory on the performance of the plants, aphid herbivores above-ground (Sitobion avenae, Metapolophium dirhodum and Rhopalosiphum padi), and natural enemies of aphids including ladybirds (Harmonia axyridis) were assessed from measurements of plant growth, insect abundance and mass, and assays of feeding behaviour. 4. Continuous drought decreased plant biomass, whereas reducing the frequency of watering events did not affect plant biomass but did alter plant chemical composition. In controlled conditions, continuous drought ameliorated the negative impact of wireworms on plant biomass. 5. Compared to the ambient treatment, aphid mass was increased by 15% when feeding on plants subjected to drought/ deluge; and ladybirds were 66% heavier when feeding on these aphids but this did not affect ladybird prey choice. In field conditions, wireworms feeding below-ground reduced the number of shoot-feeding aphids under ambient and continuous drought conditions but not under drought/ deluge. 6. Predicted changes in both the frequency and intensity of precipitation events under climate change have the potential to limit plant growth, but reduce wireworm herbivory, while simultaneously promoting above-ground aphid numbers and mass, with these effects transferring to the third trophic level. Understanding the effect of future changes in precipitation on species interactions is critical for determining their potential impact on ecosystem functioning and constructing accurate predictions under global change scenarios. Controlled environment and field experimental dataData file containing all data reported in the paper including plant, soil and insect data from controlled environment and field experiments. First spreadsheet in the data file contains a key to explain all abbreviations used throughout the file.Experimental data.xlsx

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2018
    License: CC 0
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2017
    Data sources: B2FIND
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    B2FIND
    Dataset . 2017
    Data sources: B2FIND
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    EASY
    Dataset . 2017
    Data sources: EASY
    DRYAD
    Dataset . 2017
    License: CC 0
    Data sources: Datacite
    DRYAD
    Dataset . 2018
    License: CC 0
    Data sources: Datacite
    DRYAD
    Dataset . 2017
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility11
    visibilityviews11
    downloaddownloads2
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2018
      License: CC 0
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2017
      Data sources: B2FIND
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      B2FIND
      Dataset . 2017
      Data sources: B2FIND
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      EASY
      Dataset . 2017
      Data sources: EASY
      DRYAD
      Dataset . 2017
      License: CC 0
      Data sources: Datacite
      DRYAD
      Dataset . 2018
      License: CC 0
      Data sources: Datacite
      DRYAD
      Dataset . 2017
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Sepehr Eslami; Jannis M. Hoch; Edwin H. Sutanudjaja; Hal E. Voepel;

    Projections of Sea Level Rise (SLR) under RCP 4.5 and RCP 8.5 (AR5) along the Mekong Coast, Published1 by the Ministry of Natural Resources and Environment (MONRE), Hanoi, Vietnam. Projections of Mekong River discharge during the dry season under RCP 4.5 and RCP 8.5 at Kratie, Cambodia. The data contains the cumulative, minimum and maximum dry season (January-1st to April-30th) discharge from 5 different climate models. PCR-GLOBWB2 was run at 5 arc-min spatial resolution and forced with the data based on output from five ISIMIP CMIP5 global climate models (HadGEM2-ES, GFDL-ESM2, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M). 1. Ministry of Natural Resources and Environment (MONRE), V. Climate change and sea level rise scenarios for Vietnam, Ministry of Natural Resources and Environment. (2016). 2. Sutanudjaja, E. H. et al. PCR-GLOBWB 2: a 5 arcmin global hydrological and water resources model. Geosci. Model Dev. 11, 2429–2453 (2018). {"references": ["Sutanudjaja et al. (2018)", "Ministry of Natural Resources and Environment (2016)"]}

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility162
    visibilityviews162
    downloaddownloads75
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Pappis, Ioannis; Sridharan, Vignesh; Howells, Mark; Medarac, Hrvoje; +4 Authors

    This dataset underpins the study "Synergies and conflicts of energy development and water security in Africa". The study provides insights into energy supply and demand, power generation, investments and total system costs, water consumption and withdrawal as well as carbon dioxide emissions for the African continent. We developed a model to evaluate energy supply and water requirements to cover the energy needs of the African continent during the period 2015-2065. The model was developed using the open-source modeling system for long-term energy planning OSeMOSYS. The objective function is to minimise total energy system costs, rather than, for example, co-optimise the energy and water sectors. Other energy resources were also included in the model except for adding the water analysis, and the dataset was updated based on the latest available information. The OSeMOSYS model developed to conduct the study “Energy projections for African countries”, itself extended from the Electricity Model Base for Africa (TEMBA), was further extended, included exports for all fuels, water loss due to evaporation in hydropower plants and more scenarios examined. Furthermore, the latest available data on the energy system of Africa was also updated. The TEMBA model produces aggregate energy, and detailed power system results in each country in the African continent. The power sector results are also reported with power pool aggregation. The OSeMOSYS model and input data used to produce these results can be found at KTH-dESA/jrc_temba: TEMBA 2.1 (Version v2.1) [Data set]. Zenodo. http://doi.org/10.5281/zenodo.4889373 (Authors: Ioannis Pappis, Vignesh Sridharan, Will Usher, & Mark Howells. (2021). The initial study was funded by the Joint Research Centre of the European Commission (contract number C936531 - JRC/PTT/2018/C.7/0038/NC).

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2021
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Smithsonian figshare
    Dataset . 2021
    License: CC BY
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility80
    visibilityviews80
    downloaddownloads10
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2021
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Smithsonian figshare
      Dataset . 2021
      License: CC BY
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • Authors: Fry, E.L.; Hall, A.L.; Savage, J.; Bardgett, R.D.; +3 Authors

    This dataset contains nitrate and ammonium concentrations, nitrification and mineralisation rates, particle size and microbial biomass data from soils taken from an experiment based at Winklebury Hill, UK. The experiment used seeds and plug plants to create different plant communities on the bare chalk on Winklebury Hill and tested the resulting carbon and nutrient cycling rates and compared these to the characteristics of different plant functional groups. The experiment ran from 2013 to 2016 and this dataset contains data from 2013 only. This experiment was part of the Wessex BESS project, a six-year (2011-2017) project aimed at understanding how biodiversity underpins the ecosystem functions and services that landscapes provide. KCl extractable N and potential mineralisation were measured using an autoanalyser, running 5% analytical replicates, recalibration (at 5, 4, 3, 2 and 1 ppm) and blanks every 20 samples. Extracts were adjusted for soil moisture. Standardised protocols were followed in all cases, details of which can be found in the supporting documentation.

    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Robinson, Sinikka; O'Gorman, Eoin; Frey, Beat; Hagner, Marleena; +1 Authors

    Study site This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 soil plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots, measuring approximately 1 m2, evenly span a temperature gradient of 10-35°C. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015 (see Robinson et al. 2021 for plot details and sampling regime). Soil properties Soil temperature was measured at 5 cm depth at each plot on 15th, 18th, and 22nd August, and a mean plot temperature calculated. Soil physiochemical properties were analysed from 3 soil cores of 3 cm in diameter, taken from the upper 10 cm soil stratum at each plot; one quarter of each subsample was pooled to obtain an estimate per plot. Aboveground plant matter, excluding roots, were removed from each core. Percentage soil moisture was calculated by measuring the weight of one pooled soil sample before and after drying for 24 h in a 70°C drying oven. Soil pH was obtained from 20 g of the dry soil by adding 100 ml distilled water, shaking for 5 min on 150 rpm, letting the sample stand for 2 h, and measuring soil pH from the water layer using an InoLab pH 720 (WTW) probe. Soil PO4, NH4, and NO3 concentrations were analysed from a second pooled soil; 60 g of fresh soil was extracted in 100 ml distilled water, filtered through a GF/C (1.2μm) glass microfiber filter (Whatman, GE Healthcare Europe GmbH), and analysed using a Lachat QuikChem 8000 analyser (Zallweger Analytics, Inc., Lachat Instruments Division, USA). Total mineral N was calculated as the sum of NH4 and NO3. Soil organic matter content (excluding dry root biomass) was calculated as the weight lost from an oven dried (105°C for 24 hours) soil sample after heating at 550 °C for 5 h. Decomposition rate of soil organic matter was measured using the Cotton-strip Assay method (Tiegs et al. 2013) by placing a 2.5 cm x 8 cm strip of Fredrix-brand unprimed 12-oz. heavyweight cotton fabric (Style #548) 5 cm belowground at 60 plots, concurrently with a Maxim Integrated DS1921G Thermocron iButton temperature logger, on 13th May 2015. The strips were collected on 3rd July, rinsed with stream water to remove residual soil, soaked in 96% ethanol for 30 seconds to kill bacteria and halt decomposition, and dried at 60 °C for 12 h. Using a universal testing machine (Instron 5866 with 500 kN tensile holding clamps), maximum tensile strench of each cotton strip was measured. % tensile loss (proxy for decomposition) was calculated as (C-T) / C x 100, where T is the maximum tensile strength for each strip collected from the field, and C is the mean tensile strength of seven control strips, which had not been placed in the ground. See Robinson et al. 2021 for detailed description of plots sampled in 2015. Microbial abundance Bacterial and fungal abundance was estimated from additional soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including the litter layer) at each plot. DNA was extracted using the PowerSoil DNA Isolation Kit (Qiagen, Germany). DNA was quantified using the high-sensitivity Qubit assay (Thermo Fisher Scientific, Switzerland). Relative abundances of bacterial and fungal communities were determined by quantitative PCR (qPCR) on an ABI7500 Fast Real-Time PCR system (Applied Biosystems, Foster City, CA, USA). PCR amplification of partial bacterial small-subunit ribosomal RNA genes (region V1–V3 of 16S; primers 27F and 512R) and fungal ribosomal internal transcribed spacers (region ITS2; primers IT3 and ITS4) was performed as described previously (Frey et al. 2020, Frey et al. 2021). For qPCR analyses, 2.5 ng DNA in a total volume of 6.6 µL and 8.4 µL GoTaq qPCRMaster Mix (Promega, Switzerland), containing 1.8 mM of each primer and 0.2 mg mL-1 of BSA, were used. The PCR conditions consisted of an initial denaturation at 95 ºC for 10 min, 40 cycles of denaturation at 95 ºC for 40 s, annealing at 58 ºC for 40 s and elongation at 72 ºC for 60 s followed by the final data acquisition step at 80 ºC for 60 s. The specificity of the amplification products was confirmed by melting-curve analysis. Three standard curves per target region (correlations ≥0.997) were obtained using tenfold serial dilutions (10-1 to 10-9 copies) of plasmids generated from cloned targets (Frey et al. 2020). Data were converted to represent the average copy number of targets per μg DNA and per g soil. Vegetation properties Vascular plant biomass was measured from a randomly placed 30 x 30 cm quadrat at each plot. To measure aboveground biomass (AGB) of plants, the aboveground layer of vegetation was cut and removed, dried at 70 °C for 24 h and weighed to obtain biomass per unit area. AGB was estimated as the biomass of graminoids plus forbs; total biomass of mosses was also estimated. Graminoid leaf N concentration was analysed from dried and ground leaf material using a LECO CNS-2000 analyser (LECO Corporation, Saint Joseph, MI, USA). Belowground biomass (BGB) of vascular plants was estimated from a soil core of 3 cm in diameter taken from the 10 cm upper soil stratum (excluding aboveground plant material) at each quadrat. Roots were extracted from the soil cores by rinsing in water using a 250-μm sieve, dried at 70 °C for 24 hours and weighed to obtain biomass per unit area. Root to shoot ratio was calculated as dry weight of BGB per cm2 divided by dry weight of AGB per cm2, and the total vascular plant biomass as the sum of AGB and BGB. Invertebrate community Enchytraied and nematode biomass was estimated from 3 soil cores of 3 cm in diameter taken from the upper 4 cm soil stratum (including litter layer) at each plot. Enchytraieds were extracted using wet funnels (O'Connor 1962) from a pooled sample of one half of each of the three soil cores, counted live, and classified into size classes (length 0-2, 2.1-4, 4.1-6, 6.1-8, 8.1-10, 10.1-12 or >12 mm) and their biomass was calculated according to Abrahamsen (1973). Nematodes were also extracted using wet funnels (Sohlenius 1979) from a pooled sample of a quarter of each of the three soil cores, counted live and preserved in 70% ethanol. Fifty individuals from each sample were identified and classified by trophic group (bacterivore, fungivoe, herbivore, omnivore, predator; Yeates et al. 1993). Soil micro-arthropods were extracted using a modified high-gradient-extractor (MacFayden 1961) from soil cores of 5.4 cm in diameter, taken from the upper 4 cm soil straum (including litter layer) at each plot. Total micro-arthropod biomass was calculated as the sum of all individual species' biomasses, obtained using length-weight regressions (see Robinson et al. 2021), and abundance of individual trophic groups (microbivore/detritivore, herbivore, omnivore, predator) calculated. Epigeal invertebrates were sampled by deploying five pitfall traps in each plot. White plastic cups of 7 cm in diameter and 8.5 cm in depth were filled with 10 ml of ethylene glycol and 30 ml of stream water, and left for 48 h before collection. Samples from the five traps at each plot were combined into a 250-μm sieve and stored in 70% ethanol. Invertebrate activity density (abundance) was estimate as the total number of individuals in the five traps, and total biomass as the sum of all individual species' biomasses. Invertebrates were identified to species level where possible and split into trophic groups, exluding adult Diptera, Hymenoptera, and Lepidoptera. Further details of sampling and collection of epigeal invertebrates are detailed in Robinson et al. (2018). References: Abrahamsen G. (1973) Studies on body-volume, body-surface area, density, and live weight of enchytraeidae (Oligochaeta). Pedobiologia 13: 6–15. Frey B, Carnol M, Dharmarajah A, Brunner I, Schleppi P. (2020) Only minor changes in the soil microbiome of a sub-alpine forest after 20 years of moderately increased nitrogen loads. Frontiers in Forests and Global Change 3: 77. Frey B, Walthert L, Perez-Mon C, Stierli B, Köchli R, Dharmarajah A, Brunner I (2021) Deep soil layers of drough-exposed forests harbor poorly known bacterial and fungal communities. Frontiers in Microbiology 12: 1061. MacFayden A. (1961) Improved funnel-type extractors for soil arthropods. Journal of Animal Ecology 30: 171–184. O’Connor FB. (1962) The extraction of Enchytraeidae from soil. In: P. W. Murphy (Ed.) Progress in soil zoology. Butterworth, London, UK; 279–285. Robinson SI, McLaughlin ÓB, Marteinsdóttir B, O'Gorman EJ. (2018) Soil temperature effects on the structure and diversity of plant and invertebrate communities in a natural warming experiment. Journal of Animal Ecology 87: 634–46. Robinson SI, Mikola J, Ovaskainen O, O’Gorman EJ. (2021) Temperature effects on the temporal dynamics of a subarctic invertebrate community. Journal of Animal Ecology 90: 1217-1227. Sohlenius B. (1979) A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarctic Ecology 2: 30–40. Tiegs SD, Clapcott JE, Griffiths NA, Boulton AJ. (2013) A standardized cotton-strip assay for measuring organic-matter decomposition in streams. Ecological Indicators 32: 131–139. Yeates GW, Bongers T, De Goede RGM, Freckman DW, Georgieva SS. (1993) Feeding habits in soil nematode families and genera—an outline for soil ecologists. Journal of Nematology 25: 315–331. This is a dataset of soil physiochemical properties, bacterial and fungal abundance, and above and belowground plant and invertebrate biomass, sampled at 40 plots in the Hengill geothermal valley, Iceland, from 15th to 22nd August 2018. The plots span a temperature gradient of 10-35 °C over the sampling period, and this temperature gradient is consistent over time. The dataset also includes data on the decomposition rate of soil organic matter, which was sampled at 60 plots in the Hengill valley from May to July 2015. See README_Robinson_Hengill2018.txt 

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Dataset . 2022
    License: CC 0
    Data sources: ZENODO
    DRYAD
    Dataset . 2022
    License: CC 0
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility32
    visibilityviews32
    downloaddownloads21
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Dataset . 2022
      License: CC 0
      Data sources: ZENODO
      DRYAD
      Dataset . 2022
      License: CC 0
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.