- home
- Advanced Search
- Energy Research
- Embargo
- GB
- CN
- EU
- Energy Research
- Embargo
- GB
- CN
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | 14-ERASynBio Engineering ..., UKRI | The Electrochemical Leaf:...UKRI| 14-ERASynBio Engineering the chloroplast of microalgae as a chassis for the direct production of solar fuels and chemicals ,UKRI| The Electrochemical Leaf:Rapid, Reversible Cycling of Nicotinamide Cofactors for Enzyme-based Organic SynthesisAuthors: Wan, L; Megarity, C; Siritanaratkul, B; Armstrong, F;doi: 10.1039/c7cc08859k
pmid: 29319070
A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP+ and NADPH with a Pt electrode catalysing 2H+/H2 interconversion.
Oxford University Re... arrow_drop_down Chemical CommunicationsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7cc08859k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Chemical CommunicationsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7cc08859k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Julian M. Allwood; Zenaida Sobral Mourão; Jochen Linssen; D. Dennis Konadu; Heidi Heinrichs; Martin Robinius; Stefan Vögele; Wilhelm Kuckshinrichs; Bastian Gillessen; S. Venghaus; S. Venghaus; Detlef Stolten; Detlef Stolten;Abstract While it is generally accepted that our fossil fuel-dominated energy systems must undergo a sustainable transition, researchers have often neglected the potential impacts of this on water and land systems. However, if unintended environmental impacts from this process are to be avoided, understanding its implications for land use and water demand is of crucial importance. Moreover, developed countries may induce environmental stress beyond their own borders, for instance through extensive imports of bioenergy. In this paper, Germany serves as an example of a developed country with ambitious energy transformation targets. Results show that in particular, the politically-driven aspiration for more organic farming in Germany results in a higher import quota of biomass, especially biofuels. These imports translate into land demand, which will exceed the area available in Germany for bioenergy by a factor of 3–6.5 by 2050. As this will likely bring about land stress in the respective exporting countries, this effect of the German energy transformation ought to be limited as much as possible. In contrast, domestic water demand for the German energy system is expected to decrease by over 80% through 2050 due to declining numbers of fossil-fuelled power plants. However, possible future irrigation needs for bioenergy may reduce or even counterbalance this decreasing effect. In addition, energy policy targets specific to the transport sector show a high sensitivity to biomass imports. In particular, the sector-specific target for greenhouse gas reductions will seemingly promote biomass imports, leading to the above-described challenges in the pursuit of sustainability.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomBottery, Michael; Sedik, Sarah; Schwartz, Ilan S.; Hoenigl, Martin; Van Rhijn, Norman;Climate change is altering ecosystems worldwide. While shifting environmental conditions are complex, it has been hypothesised that the impact of climate change are directly leading to increases in fungal infections across the globe. Rising temperatures, changing precipitation patterns, and extreme weather events are thought to be driving the adaptation of fungal pathogens to new climates, expanding their geographical range and posing a growing threat to human health and agriculture. This review highlights how climate change may impact key pathogens, including Candida auris, Candida orthopsilosis, Cryptococcus deuterogattii, and resistant strains of Aspergillus fumigatus, which have emerged as significant public health concerns. Their spread is accelerated by globalisation, urbanisation, and the intensifying use of agricultural fungicides, which further increase antifungal resistance. The growing prevalence of resistant strains and emergence of novel fungal pathogens is likely linked to anthropogenic climate change, underscoring the urgent need for action and for more robust data collection.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::5783270f49949e23361c82eb1cd7308b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::5783270f49949e23361c82eb1cd7308b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Leal, W; Frizzo, K; Eustachio, JHPP; Tsani, S; Özuyar, PG;doi: 10.1002/sd.2796
AbstractThis study describes the relationships between climate change and the concept of a circular economy, outlining the need for synergies within a company's context. It reports on a bibliometric analysis of the relations between climate change and circular economy, and it provides evidence and assessments based on a sample of 11 large companies in the chemical industry. The results show that there is a concern in the academic literature to discuss circular economy efforts to combat climate change, reduce carbon emissions, strengthen the supply chain, assess the life cycle of products, their environmental impact, and waste management, and identify barriers to implementing the circular economy. In addition, there is a close association between the CE concept and tackling climate change in how organisations report their practices to the stakeholders, in considering concepts of recycling, reusing, adopting renewable energy, seeking resource efficiency, and rethinking strategies. The study concludes by providing some suggestions that may assist companies in intensifying their efforts to reduce their carbon footprint, combining them with more circular business models. Efforts from interested stakeholders must focus on defining CE in a more detailed manner, as well as its implementation at the different stages of production and consumption, especially in operations for which no uniform approach or common practice can be established. In this context, implications for positive social and environmental impacts by promoting a faster and more proactive climate transition in the chemical sector are presented. The novelty of this paper relies on the fact that it advances knowledge on matters related to the circular economy under a climate change context, identifying current trends and suggesting some measures which may optimise current business practices of the chemical sector.
e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Informa UK Limited Authors: Kiddey, R;AbstractThe Homeless Heritage project took place across two English cities (Bristol and York) between 2010 and 2014. The project sought to use a range of participatory heritage practices to engage contemporary homeless people in documenting their perspectives on each city. Drawing on data gathered over three and a half years this paper reflects on how collaborative cultural heritage practices can be useful in recording diverse stakeholder perspectives which can become catalysts for social change. It is further argued that two interactive exhibitions that resulted from the Homeless Heritage project contributed to the democratisation of knowledge, aiding negotiation of the complicated politics of contemporary homelessness in valuable ways.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/13527258.2016.1274669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/13527258.2016.1274669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2024 United KingdomAuthors: Forgesson, Sarah Louise;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______322::9d9f42449f89f6c58dbb42c7a744ac2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______322::9d9f42449f89f6c58dbb42c7a744ac2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 TurkeyPublisher:Elsevier BV Authors: Meng, Yue; Dinçer, Hasan; Yüksel, Serhat;handle: 20.500.12511/8003
Abstract The aim of this study is to evaluate the incremental innovation performance of nuclear energy projects. Within this context, a novel model is generated which consists of two different stages, and large nuclear reactors are taken into consideration. Firstly, the Pythagorean fuzzy DEMATEL is used to weight the phases of technology S-Curve for nuclear energy projects. Moreover, the second stage includes the ranking two-generation technology S-curve with integer patterns for nuclear energy projects. In this framework, the best combinations are selected for innovation life cycle pattern with the integer code series. The findings demonstrate that the nuclear energy companies need to consider the two-generation technology S-Curve because continuous technological developments are occurring for nuclear power generation. It is also determined that aging in the first generation is the most significant period of two-generation technology S-Curve for nuclear energy projects. In this process, critical decisions should be made regarding future technological investments. In addition, the growth phase in the second generation is also important for the effectiveness of the nuclear energy technology. Conducting effective evaluations in these processes will contribute to increasing the efficiency of companies.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Measuring and Evaluating ...UKRI| Measuring and Evaluating Time- and Energy-use Relationships (METER)Authors: Marvin Gleue; Jens Unterberg; Andreas Löschel; Philipp Grünewald;Abstract The rapid uptake of renewable energy sources requires new forms of flexibility in electricity systems, including a more responsive demand-side. The social acceptability, scale and economic value of flexible demand remain subjects of conjecture. In this paper we inform this debate with a multi-methods approach using three instruments: surveys, observations and modelling. This multi-method approach brings out similarities and differences between Germany and Great Britain in relation to demand-side flexibility. Participants in both countries express a high willingness to participate in time variant tariffs, but their implementation may need to be context specific. In Germany national peak demand occurs at midday, when PV generation results in lower emission factors. Conversely, British peak demand is in the early evening when emission factors are at their highest. The differences in responses allow us to explore important technical and cultural differences affecting the need for flexibility. Germany gains most from flexibility during the daytime in summer, while flexibility in Great Britain contributes most during winter evenings. We observe high degrees of acceptability of time-variant electricity tariffs (55%) and willingness to shift demand is high, resulting in peak demand reductions of up to 14.5%. However, the resulting cost and carbon savings of these efforts is less than 2% in both countries. We conclude that short term carbon or cost savings may be less powerful motivators for load shifting measures than long term system decarbonisation.
Oxford University Re... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Martha E. Crockatt; Wim Clymans; Wim Clymans; David J. Palmer; Alan G. Jones; Alan G. Jones;Moisture availability is a strong determinant of decomposition rates in forests worldwide. Climate models suggest that many terrestrial ecosystems are at risk from future droughts, suggesting moisture limiting conditions will develop across a range of forests worldwide. The impacts of increasing drought conditions on forest carbon (C) fluxes due to shifts in organic matter decay rates may be poorly characterised due to limited experimental research. To appraise this question, we conducted a meta-analysis of forest drought experiment studies worldwide, examining spatial limits, knowledge gaps and potential biases. To identify limits to experimental knowledge, we projected the global distribution of forest drought experiments against spatially modelled estimates of (i) future precipitation change, (ii) ecosystem total above-ground C and (iii) soil C storage. Our assessment, involving 115 individual experimental study locations, found a mismatch between the distribution of forest drought experiments and regions with higher levels of future drought risk and C storage, such as Central America, Amazonia, the Atlantic Forest of Brazil, equatorial Africa and Indonesia. Decomposition rate responses in litter and soil were also relatively under-studied, with only 30 experiments specifically examining the potential experimental impacts of drought on C fluxes from soil or litter. We propose new approaches for engaging experimentally with forest drought research, utilising standardised protocols to appraise the impacts of drought on the C cycle, while targeting the most vulnerable and relevant forests.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-021-01645-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-021-01645-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2022Embargo end date: 04 Nov 2022 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Smith, Collin;doi: 10.17863/cam.90350
Ammonia has been responsible for feeding population growth in the 20th century through synthetic fertilizer, and is poised to become the preferred energy storage medium for a society powered by renewable electricity in the 21st century. However, conventional brown ammonia production through the Haber-Bosch process is optimized for utilization of centralized and steady energy supply from fossil-fuels. When shifting to distributed and intermittent energy supply through wind and solar energy, a re-optimization is required for a low-capital and flexible green ammonia production processes. This thesis re-designs and Haber-Bosch process by targeting the integration of reaction and separation in a single process vessel at low pressures, thereby achieving the simplification and down-scaling of the high pressure recycle loop of the Haber-Bosch process. Materials are developed for this purpose, the feasibility of integration is demonstrated, and mathematical modeling is utilized for assessing the application of the single-vessel process to a range of renewable energy sources in comparison to competing ammonia production processes. Herein, a catalyst with low-temperature (< 350°C) and high-conversion (i.e. near equilibrium) activity is developed using ruthenium nanoparticles as the active metal supported on ceria and promoted with cesium to mitigate hydrogen and ammonia inhibition, respectively. This catalyst is compared to commercial iron-based catalyst from the perspective of the final application. Concurrently, a high-temperature (> 300°C) manganese chloride absorbent is developed that resists decomposition and is stable when supported on silica. These catalyst and absorbent are integrated in a layered reactor configuration to demonstrate the feasibility of the integrated process by exceeding single-pass reaction equilibrium. Mathematical modelling of ammonia production processes illustrates that at small-scales (< 1 t day-1) the single-vessel process is optimal compared to the Haber-Bosch process due to its modular design. In addition, it can achieve simpler ramping because the Haber-Bosch process is constrained by heat-integration in the recycle loop and the potential for runaway reaction. For final application, the pairing of ammonia production processes with examples of intermittent solar and wind sources demonstrates that the flexibility of the production process is essential when considering non-ideal sources of energy with a long-term (e.g. seasonal) oscillations. Flexible ammonia production also expands the economic usage of ammonia as an energy storage vector from the seasonal to the weekly time-scale, with advantage compared to batteries or hydrogen. The work of this thesis provides a framework for advancing the electrification of the chemical industry given the novel constrains of intermittent and distributed renewable energy. A systems level approach is applied from the ground up, starting from material design and progressing to optimized process design and application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Royal Society of Chemistry (RSC) Funded by:UKRI | 14-ERASynBio Engineering ..., UKRI | The Electrochemical Leaf:...UKRI| 14-ERASynBio Engineering the chloroplast of microalgae as a chassis for the direct production of solar fuels and chemicals ,UKRI| The Electrochemical Leaf:Rapid, Reversible Cycling of Nicotinamide Cofactors for Enzyme-based Organic SynthesisAuthors: Wan, L; Megarity, C; Siritanaratkul, B; Armstrong, F;doi: 10.1039/c7cc08859k
pmid: 29319070
A one-pot fuel cell for specific, enzyme-catalysed organic synthesis, with continuous monitoring of rate and reaction progress, combines an electrode catalysing rapid, reversible and diffusion-controlled interconversion of NADP+ and NADPH with a Pt electrode catalysing 2H+/H2 interconversion.
Oxford University Re... arrow_drop_down Chemical CommunicationsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7cc08859k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 19 citations 19 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Chemical CommunicationsArticle . 2018 . Peer-reviewedLicense: Royal Society of Chemistry Licence to PublishData sources: CrossrefThe University of Manchester - Institutional RepositoryArticle . 2018Data sources: The University of Manchester - Institutional Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c7cc08859k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 GermanyPublisher:Elsevier BV Julian M. Allwood; Zenaida Sobral Mourão; Jochen Linssen; D. Dennis Konadu; Heidi Heinrichs; Martin Robinius; Stefan Vögele; Wilhelm Kuckshinrichs; Bastian Gillessen; S. Venghaus; S. Venghaus; Detlef Stolten; Detlef Stolten;Abstract While it is generally accepted that our fossil fuel-dominated energy systems must undergo a sustainable transition, researchers have often neglected the potential impacts of this on water and land systems. However, if unintended environmental impacts from this process are to be avoided, understanding its implications for land use and water demand is of crucial importance. Moreover, developed countries may induce environmental stress beyond their own borders, for instance through extensive imports of bioenergy. In this paper, Germany serves as an example of a developed country with ambitious energy transformation targets. Results show that in particular, the politically-driven aspiration for more organic farming in Germany results in a higher import quota of biomass, especially biofuels. These imports translate into land demand, which will exceed the area available in Germany for bioenergy by a factor of 3–6.5 by 2050. As this will likely bring about land stress in the respective exporting countries, this effect of the German energy transformation ought to be limited as much as possible. In contrast, domestic water demand for the German energy system is expected to decrease by over 80% through 2050 due to declining numbers of fossil-fuelled power plants. However, possible future irrigation needs for bioenergy may reduce or even counterbalance this decreasing effect. In addition, energy policy targets specific to the transport sector show a high sensitivity to biomass imports. In particular, the sector-specific target for greenhouse gas reductions will seemingly promote biomass imports, leading to the above-described challenges in the pursuit of sustainability.
Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Juelich Shared Elect... arrow_drop_down Renewable and Sustainable Energy ReviewsArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.rser.2021.111469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2025 United KingdomBottery, Michael; Sedik, Sarah; Schwartz, Ilan S.; Hoenigl, Martin; Van Rhijn, Norman;Climate change is altering ecosystems worldwide. While shifting environmental conditions are complex, it has been hypothesised that the impact of climate change are directly leading to increases in fungal infections across the globe. Rising temperatures, changing precipitation patterns, and extreme weather events are thought to be driving the adaptation of fungal pathogens to new climates, expanding their geographical range and posing a growing threat to human health and agriculture. This review highlights how climate change may impact key pathogens, including Candida auris, Candida orthopsilosis, Cryptococcus deuterogattii, and resistant strains of Aspergillus fumigatus, which have emerged as significant public health concerns. Their spread is accelerated by globalisation, urbanisation, and the intensifying use of agricultural fungicides, which further increase antifungal resistance. The growing prevalence of resistant strains and emergence of novel fungal pathogens is likely linked to anthropogenic climate change, underscoring the urgent need for action and for more robust data collection.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::5783270f49949e23361c82eb1cd7308b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eumore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od______3818::5783270f49949e23361c82eb1cd7308b&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Wiley Leal, W; Frizzo, K; Eustachio, JHPP; Tsani, S; Özuyar, PG;doi: 10.1002/sd.2796
AbstractThis study describes the relationships between climate change and the concept of a circular economy, outlining the need for synergies within a company's context. It reports on a bibliometric analysis of the relations between climate change and circular economy, and it provides evidence and assessments based on a sample of 11 large companies in the chemical industry. The results show that there is a concern in the academic literature to discuss circular economy efforts to combat climate change, reduce carbon emissions, strengthen the supply chain, assess the life cycle of products, their environmental impact, and waste management, and identify barriers to implementing the circular economy. In addition, there is a close association between the CE concept and tackling climate change in how organisations report their practices to the stakeholders, in considering concepts of recycling, reusing, adopting renewable energy, seeking resource efficiency, and rethinking strategies. The study concludes by providing some suggestions that may assist companies in intensifying their efforts to reduce their carbon footprint, combining them with more circular business models. Efforts from interested stakeholders must focus on defining CE in a more detailed manner, as well as its implementation at the different stages of production and consumption, especially in operations for which no uniform approach or common practice can be established. In this context, implications for positive social and environmental impacts by promoting a faster and more proactive climate transition in the chemical sector are presented. The novelty of this paper relies on the fact that it advances knowledge on matters related to the circular economy under a climate change context, identifying current trends and suggesting some measures which may optimise current business practices of the chemical sector.
e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 5 citations 5 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert e-space at Mancheste... arrow_drop_down e-space at Manchester Metropolitan UniversityArticle . 2024Data sources: e-space at Manchester Metropolitan UniversitySustainable DevelopmentArticle . 2023 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/sd.2796&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Informa UK Limited Authors: Kiddey, R;AbstractThe Homeless Heritage project took place across two English cities (Bristol and York) between 2010 and 2014. The project sought to use a range of participatory heritage practices to engage contemporary homeless people in documenting their perspectives on each city. Drawing on data gathered over three and a half years this paper reflects on how collaborative cultural heritage practices can be useful in recording diverse stakeholder perspectives which can become catalysts for social change. It is further argued that two interactive exhibitions that resulted from the Homeless Heritage project contributed to the democratisation of knowledge, aiding negotiation of the complicated politics of contemporary homelessness in valuable ways.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/13527258.2016.1274669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/13527258.2016.1274669&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2024 United KingdomAuthors: Forgesson, Sarah Louise;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______322::9d9f42449f89f6c58dbb42c7a744ac2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=od_______322::9d9f42449f89f6c58dbb42c7a744ac2c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 TurkeyPublisher:Elsevier BV Authors: Meng, Yue; Dinçer, Hasan; Yüksel, Serhat;handle: 20.500.12511/8003
Abstract The aim of this study is to evaluate the incremental innovation performance of nuclear energy projects. Within this context, a novel model is generated which consists of two different stages, and large nuclear reactors are taken into consideration. Firstly, the Pythagorean fuzzy DEMATEL is used to weight the phases of technology S-Curve for nuclear energy projects. Moreover, the second stage includes the ranking two-generation technology S-curve with integer patterns for nuclear energy projects. In this framework, the best combinations are selected for innovation life cycle pattern with the integer code series. The findings demonstrate that the nuclear energy companies need to consider the two-generation technology S-Curve because continuous technological developments are occurring for nuclear power generation. It is also determined that aging in the first generation is the most significant period of two-generation technology S-Curve for nuclear energy projects. In this process, critical decisions should be made regarding future technological investments. In addition, the growth phase in the second generation is also important for the effectiveness of the nuclear energy technology. Conducting effective evaluations in these processes will contribute to increasing the efficiency of companies.
İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert İstanbul Medipol Uni... arrow_drop_down İstanbul Medipol University Institutional RepositoryArticle . 2021Data sources: İstanbul Medipol University Institutional RepositoryProgress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103924&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Funded by:UKRI | Measuring and Evaluating ...UKRI| Measuring and Evaluating Time- and Energy-use Relationships (METER)Authors: Marvin Gleue; Jens Unterberg; Andreas Löschel; Philipp Grünewald;Abstract The rapid uptake of renewable energy sources requires new forms of flexibility in electricity systems, including a more responsive demand-side. The social acceptability, scale and economic value of flexible demand remain subjects of conjecture. In this paper we inform this debate with a multi-methods approach using three instruments: surveys, observations and modelling. This multi-method approach brings out similarities and differences between Germany and Great Britain in relation to demand-side flexibility. Participants in both countries express a high willingness to participate in time variant tariffs, but their implementation may need to be context specific. In Germany national peak demand occurs at midday, when PV generation results in lower emission factors. Conversely, British peak demand is in the early evening when emission factors are at their highest. The differences in responses allow us to explore important technical and cultural differences affecting the need for flexibility. Germany gains most from flexibility during the daytime in summer, while flexibility in Great Britain contributes most during winter evenings. We observe high degrees of acceptability of time-variant electricity tariffs (55%) and willingness to shift demand is high, resulting in peak demand reductions of up to 14.5%. However, the resulting cost and carbon savings of these efforts is less than 2% in both countries. We conclude that short term carbon or cost savings may be less powerful motivators for load shifting measures than long term system decarbonisation.
Oxford University Re... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Oxford University Re... arrow_drop_down Energy Research & Social ScienceArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.erss.2021.102290&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Martha E. Crockatt; Wim Clymans; Wim Clymans; David J. Palmer; Alan G. Jones; Alan G. Jones;Moisture availability is a strong determinant of decomposition rates in forests worldwide. Climate models suggest that many terrestrial ecosystems are at risk from future droughts, suggesting moisture limiting conditions will develop across a range of forests worldwide. The impacts of increasing drought conditions on forest carbon (C) fluxes due to shifts in organic matter decay rates may be poorly characterised due to limited experimental research. To appraise this question, we conducted a meta-analysis of forest drought experiment studies worldwide, examining spatial limits, knowledge gaps and potential biases. To identify limits to experimental knowledge, we projected the global distribution of forest drought experiments against spatially modelled estimates of (i) future precipitation change, (ii) ecosystem total above-ground C and (iii) soil C storage. Our assessment, involving 115 individual experimental study locations, found a mismatch between the distribution of forest drought experiments and regions with higher levels of future drought risk and C storage, such as Central America, Amazonia, the Atlantic Forest of Brazil, equatorial Africa and Indonesia. Decomposition rate responses in litter and soil were also relatively under-studied, with only 30 experiments specifically examining the potential experimental impacts of drought on C fluxes from soil or litter. We propose new approaches for engaging experimentally with forest drought research, utilising standardised protocols to appraise the impacts of drought on the C cycle, while targeting the most vulnerable and relevant forests.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-021-01645-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s13280-021-01645-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Thesis 2022Embargo end date: 04 Nov 2022 United KingdomPublisher:Apollo - University of Cambridge Repository Authors: Smith, Collin;doi: 10.17863/cam.90350
Ammonia has been responsible for feeding population growth in the 20th century through synthetic fertilizer, and is poised to become the preferred energy storage medium for a society powered by renewable electricity in the 21st century. However, conventional brown ammonia production through the Haber-Bosch process is optimized for utilization of centralized and steady energy supply from fossil-fuels. When shifting to distributed and intermittent energy supply through wind and solar energy, a re-optimization is required for a low-capital and flexible green ammonia production processes. This thesis re-designs and Haber-Bosch process by targeting the integration of reaction and separation in a single process vessel at low pressures, thereby achieving the simplification and down-scaling of the high pressure recycle loop of the Haber-Bosch process. Materials are developed for this purpose, the feasibility of integration is demonstrated, and mathematical modeling is utilized for assessing the application of the single-vessel process to a range of renewable energy sources in comparison to competing ammonia production processes. Herein, a catalyst with low-temperature (< 350°C) and high-conversion (i.e. near equilibrium) activity is developed using ruthenium nanoparticles as the active metal supported on ceria and promoted with cesium to mitigate hydrogen and ammonia inhibition, respectively. This catalyst is compared to commercial iron-based catalyst from the perspective of the final application. Concurrently, a high-temperature (> 300°C) manganese chloride absorbent is developed that resists decomposition and is stable when supported on silica. These catalyst and absorbent are integrated in a layered reactor configuration to demonstrate the feasibility of the integrated process by exceeding single-pass reaction equilibrium. Mathematical modelling of ammonia production processes illustrates that at small-scales (< 1 t day-1) the single-vessel process is optimal compared to the Haber-Bosch process due to its modular design. In addition, it can achieve simpler ramping because the Haber-Bosch process is constrained by heat-integration in the recycle loop and the potential for runaway reaction. For final application, the pairing of ammonia production processes with examples of intermittent solar and wind sources demonstrates that the flexibility of the production process is essential when considering non-ideal sources of energy with a long-term (e.g. seasonal) oscillations. Flexible ammonia production also expands the economic usage of ammonia as an energy storage vector from the seasonal to the weekly time-scale, with advantage compared to batteries or hydrogen. The work of this thesis provides a framework for advancing the electrification of the chemical industry given the novel constrains of intermittent and distributed renewable energy. A systems level approach is applied from the ground up, starting from material design and progressing to optimized process design and application.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17863/cam.90350&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu