- home
- Advanced Search
- Energy Research
- mechanical engineering
- 13. Climate action
- 12. Responsible consumption
- CN
- GB
- Energy Research
- mechanical engineering
- 13. Climate action
- 12. Responsible consumption
- CN
- GB
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Funded by:AKA | Energy Efficient Resource..., AKA | Software Defined Hyper Ce...AKA| Energy Efficient Resource Allocation for Heterogeneous Multi-RAT Networks ,AKA| Software Defined Hyper Cellular Architecture for Green and Smart Service Provisioning in 5G Networks / Consortium: Hyper5GAuthors: Zheng Chang; Qianqian Zhang; Tapani Ristaniemi; Xijuan Guo;Most of the existed works on the radio resource allocation (RRA) problem commonly assume the channel-state information (CSI) can be perfectly obtained by the transmission source. However, such assumption is not practical in the realistic wireless systems. In this work, we consider the practical implementation issues of resource allocation in orthogonal frequency division multiple access (OFDMA) two-way relay networks: the inaccuracy of channel-state information (CSI) available to the source. Instead, only the estimated channel status is known by the source. In this context, a joint optimization of subcarrier pairing and allocation, relay selection, and transmit power allocation is formulated in OFDMA two-way amplify-and-forward relay networks. Moreover, the objective of this work is to minimize the energy consumption of the overall system. Further, to ensure the quality of service (QoS) or data rate requirement, the energy consumption must be minimized without compromising the QoS. Therefore, by applying convex optimization techniques, energy-efficient algorithms are developed with the objective to minimize the total transmit power with guaranteeing the required data rates. Through simulation studies, energy consumption performance of the systems under the proposed schemes is investigated. It can be observed that our proposed scheme can improve the energy consumption performance of the considered system.
EURASIP Journal on W... arrow_drop_down EURASIP Journal on Wireless Communications and NetworkingArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: UnpayWallEURASIP Journal on Wireless Communications and NetworkingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13638-015-0455-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert EURASIP Journal on W... arrow_drop_down EURASIP Journal on Wireless Communications and NetworkingArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: UnpayWallEURASIP Journal on Wireless Communications and NetworkingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13638-015-0455-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Masilu Marupi; Munira Batool; Morteza Alizadeh; Noor Zanib;doi: 10.3390/en16020689
The global climate protection policy aimed at achieving a zero greenhouse gas emissions target has led to the fast incorporation of large-scale photovoltaics into the power network. The conventional AC grid was not modeled to be incorporated with large-scale non-synchronous inverter-based energy resources (IBR). Incorporating inertia-free IBR into the grid leads to technical issues such as the degradation of system strength and inertia, therefore affecting the safety and reliability of the electrical power system. This research introduced a new solution to incorporate a flywheel in the rotor of a synchronous machine to improve the dynamic inertia control during a system disruption and to maintain the constancy of the system. The objective of this work is to enhance large-scale photovoltaic systems in such a way that they can avoid failures during a fault. A model of transient constancy with two synchronous generators and a LSPV is established in PowerWorld modeling software. A line-to-ground and three-phase fault are simulated in a system with up to 50% IBR penetration. The outcomes showed that the power network was able to ride through faults (RTFs) and that the stability of frequency and voltage are enhanced because of a flywheel that improved grid inertia and strength.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Shuai Zhang; Dexuan Song; Zhuoyu Yu; Yifan Song; Shubo Du; Li Yang;doi: 10.3390/en16031325
Approximately 40% of the overall energy consumption of society is consumed by buildings. Most building energy usage is due to poor envelope performance. In regions with cold winters, the corners of structures typically have the lowest interior surface temperature. In corners, condensation, frost, and mold are common. This has a substantial effect on building energy usage and residents’ comfort. In this study, the heat loss of corner envelopes is evaluated, and a suitable insulation construction of wall corners is constructed to increase the surface temperature of the envelope interior. Computational Fluid Dynamics simulation has been used to examine the heat transmission in a corner of an ultra-low energy building in this study. By comparing the indoor surface temperature to the soil temperature beneath the building, the insulation construction of wall corners has been tuned. The study results indicate that the planned insulation construction of wall corners can enhance the internal surface temperature in the corner and the soil temperature under the structure by approximately 8.5 °C, thereby decreasing the indoor–outdoor temperature differential and the heat transfer at ground level. In extremely cold places, the insulation horizontal extension belt installation can help prevent the earth beneath the building from freezing throughout the winter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Elsevier BV Publicly fundedFunded by:SFI | Marine Renewable Energy I...SFI| Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy ResearchAuthors: Ciaran R. Kennedy; Vesna Jaksic; Sean B. Leen; Conchúr M.Ó. Brádaigh;handle: 10379/15593
Tidal turbine blades are subject to harsh loading and environmental conditions, including large thrust and torsional loadings, relative to wind turbine blades, due to the high density of seawater, among other factors. The complex combination of these loadings, as well as water ingress and associated composite laminate saturation, have significant implications for blade design, affecting overall device design, stability, scalability, energy production and cost-effectiveness. This study investigates the effect of seawater ingress on composite material properties, and the associated design and life expectancy of tidal turbine blades in operating conditions. The fatigue properties of dry and water-saturated glass fibre reinforced laminates are experimentally evaluated and incorporated into tidal blade design. The fatigue lives of pitch- and stall-regulated tidal turbine blades are found to be altered by seawater immersion. Water saturation is shown to reduce blade life about 3 years for stall-regulated blades and by about 1-2 years for pitch-regulated blades. The effect of water ingress can be compensated by increased laminate thickness. The tidal turbine blade design methodology presented here can be used for evaluation of blade life expectancy and tidal device energy production. (C) 2018 Elsevier Ltd. All rights reserved.
National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Kochkin, B; Malkovsky, V; Yudintsev, S; Petrov, V; Ojovan, M;handle: 10044/1/91615
Abstract An overview is given of status of projects for the disposal of radioactive waste in very deep boreholes in crystalline rocks which demonstrates all main pros and cons of this technology. New opportunities offered by drilling long horizontal drillholes in ductile formations can provide the basis for projects that have the potential to overcome many of the disadvantages of deep boreholes. The concept of disposal in horizontal drillholes brings together the technologies of borehole and mined repositories using the advantages of both, and therefore deserves an expert discussion at international level.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 11 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2015Publisher:IEEE Tapani Ristaniemi; Zhenyu Zhou; Zheng Chang; Xijuan Guo; Qianqian Zhang;In this work, we consider the practical issues of resource allocation problem in OFDMA two-way relay networks: the inaccuracy of channel-state information (CSI) available to the transmitters. Instead, only the estimated channel status is known by the transmitters. In this context, a joint optimization of subcarrier pairing and allocation, relay selection and transmit power allocation is formulated in the OFDMA two-way amplify-and-forward relay networks. Moreover, to ensure the Quality of Service (QoS) requirement, the energy consumption must be minimized without compromising the QoS. Therefore, by applying convex optimization techniques, energy efficient algorithms are developed with the objective to minimize the total transmit power while guaranteeing the required data rates. Through simulation studies, energy consumption performance of the systems under the proposed schemes are investigated. It is shown that the proposed scheme can improve the energy consumption performance without scarifying the QoS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/milcom.2015.7357502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/milcom.2015.7357502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Zhen Qin; Xiaoran Tang; Yu-Ting Wu; Sung-Ki Lyu;doi: 10.3390/en15218042
Renewable energy provides an effective solution to the problem existing between energy and environmental protection. Tidal energy has great potential as a form of renewable energy. Tidal current generation (TCG) technology is the earliest renewable energy power generation technology. The advancement of science and technology has led to TCG rapidly developing since its emergence in the last century. This paper investigates the development of TCG in recent years based on the key components of TCG systems, both in terms of tidal energy harvesting research and power generation unit research. A summary of tidal energy harvesting is presented, investigating the main tidal energy harvesting units currently available. In addition, research on generators and generator control is summarized. Lastly, a comparison between horizontal and vertical axis turbines is carried out, and predictions are made about the future trends in TCG development. The purpose of this review is to summarize the research status and research methods of key components in tidal energy power generation technology and to provide insight into the research of tidal energy-related technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Lijun Gao; Yunze Li; Huijuan Xu; Xin Zhang; Man Yuan; Xianwen Ning;doi: 10.3390/en12234562
The contaminant-insensitive sublimator (CIS) is a novel water sublimator in development, which uses two porous substrates to separate the sublimation point from the pressure-control point and provide long-life effective cooling for spacecraft. Many essential studies need to be carried out in the field. To overcome the reliability issues such as ice breakthrough caused by large temperature or pressure differences, the CIS development unit model, the mathematical models of heat and mass transfer and the evaluation coefficient have been established. Numerical investigations have been implemented aiming at the impacts of physical properties of porous substrate, physical properties of working fluid, orifice layouts and orifice-structure parameters on the characteristics of flow field and temperature field. The numerical investigation shows some valuable conclusion, such as the temperature uniformity coefficient at the bottom surface of the large pore substrate is 0.997669 and the pressure uniformity coefficient at the same surface is 0.85361267. These numerical results can provide structure and data reference for the CIS design of lunar probe or spacesuit.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Oliveira, Pablo Resende; Santos, Júlio Cesar dos; Filho, Sergio Luiz Moni Ribeiro; Ferreira, Bruna Torres; +2 AuthorsOliveira, Pablo Resende; Santos, Júlio Cesar dos; Filho, Sergio Luiz Moni Ribeiro; Ferreira, Bruna Torres; Panzera, Tulio Hallak; Scarpa, Fabrizio L;This is the first attempt to combine disposed bottle caps and natural fibres into sandwich panels. A full factorial design is performed to identify the effects of the skin type (aluminium or coir fibre reinforced laminates) and bottle cap core packing (cubic and orthotropic) on the mechanical properties of the proposed panels. The coir fibre composite skin provides maximum core shear strength, 29 % higher than the aluminium-based panels, in cubic packing, while the flexural modulus is reduced by 45 %. An interlocking effect between the skin and the core is evidenced when coir fibre composites are used. In addition, the cubic cell packing increases the specific mechanical properties, even though with a higher density. The results highlight a promising association of green components and plastic bottle caps for secondary structural applications.
Fibers and Polymers arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12221-020-9818-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fibers and Polymers arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12221-020-9818-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Donaldson, Ross Martin; Lord, Richard;The Government run UK Renewable Heat Incentive (RHI) scheme allows cash back payments to be made to producers of renewable heat. As a world first for renewable heat, it aims to tackle head on the issues surrounding emissions, energy use, and climate change targets. However, whilst the scheme goes a long way towards meeting these climate change targets, issues have been identified that may compromise its effectiveness. This paper aims to examine the progress of the RHI since its launch in November 2011, and avenues towards a more effective deployment
CORE arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 108 Powered bymore_vert CORE arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Springer Science and Business Media LLC Funded by:AKA | Energy Efficient Resource..., AKA | Software Defined Hyper Ce...AKA| Energy Efficient Resource Allocation for Heterogeneous Multi-RAT Networks ,AKA| Software Defined Hyper Cellular Architecture for Green and Smart Service Provisioning in 5G Networks / Consortium: Hyper5GAuthors: Zheng Chang; Qianqian Zhang; Tapani Ristaniemi; Xijuan Guo;Most of the existed works on the radio resource allocation (RRA) problem commonly assume the channel-state information (CSI) can be perfectly obtained by the transmission source. However, such assumption is not practical in the realistic wireless systems. In this work, we consider the practical implementation issues of resource allocation in orthogonal frequency division multiple access (OFDMA) two-way relay networks: the inaccuracy of channel-state information (CSI) available to the source. Instead, only the estimated channel status is known by the source. In this context, a joint optimization of subcarrier pairing and allocation, relay selection, and transmit power allocation is formulated in OFDMA two-way amplify-and-forward relay networks. Moreover, the objective of this work is to minimize the energy consumption of the overall system. Further, to ensure the quality of service (QoS) or data rate requirement, the energy consumption must be minimized without compromising the QoS. Therefore, by applying convex optimization techniques, energy-efficient algorithms are developed with the objective to minimize the total transmit power with guaranteeing the required data rates. Through simulation studies, energy consumption performance of the systems under the proposed schemes is investigated. It can be observed that our proposed scheme can improve the energy consumption performance of the considered system.
EURASIP Journal on W... arrow_drop_down EURASIP Journal on Wireless Communications and NetworkingArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: UnpayWallEURASIP Journal on Wireless Communications and NetworkingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13638-015-0455-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 8 citations 8 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert EURASIP Journal on W... arrow_drop_down EURASIP Journal on Wireless Communications and NetworkingArticle . 2015 . Peer-reviewedLicense: CC BYData sources: CrossrefEURASIP Journal on Wireless Communications and NetworkingArticleLicense: CC BYData sources: UnpayWallEURASIP Journal on Wireless Communications and NetworkingJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s13638-015-0455-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Masilu Marupi; Munira Batool; Morteza Alizadeh; Noor Zanib;doi: 10.3390/en16020689
The global climate protection policy aimed at achieving a zero greenhouse gas emissions target has led to the fast incorporation of large-scale photovoltaics into the power network. The conventional AC grid was not modeled to be incorporated with large-scale non-synchronous inverter-based energy resources (IBR). Incorporating inertia-free IBR into the grid leads to technical issues such as the degradation of system strength and inertia, therefore affecting the safety and reliability of the electrical power system. This research introduced a new solution to incorporate a flywheel in the rotor of a synchronous machine to improve the dynamic inertia control during a system disruption and to maintain the constancy of the system. The objective of this work is to enhance large-scale photovoltaic systems in such a way that they can avoid failures during a fault. A model of transient constancy with two synchronous generators and a LSPV is established in PowerWorld modeling software. A line-to-ground and three-phase fault are simulated in a system with up to 50% IBR penetration. The outcomes showed that the power network was able to ride through faults (RTFs) and that the stability of frequency and voltage are enhanced because of a flywheel that improved grid inertia and strength.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Shuai Zhang; Dexuan Song; Zhuoyu Yu; Yifan Song; Shubo Du; Li Yang;doi: 10.3390/en16031325
Approximately 40% of the overall energy consumption of society is consumed by buildings. Most building energy usage is due to poor envelope performance. In regions with cold winters, the corners of structures typically have the lowest interior surface temperature. In corners, condensation, frost, and mold are common. This has a substantial effect on building energy usage and residents’ comfort. In this study, the heat loss of corner envelopes is evaluated, and a suitable insulation construction of wall corners is constructed to increase the surface temperature of the envelope interior. Computational Fluid Dynamics simulation has been used to examine the heat transmission in a corner of an ultra-low energy building in this study. By comparing the indoor surface temperature to the soil temperature beneath the building, the insulation construction of wall corners has been tuned. The study results indicate that the planned insulation construction of wall corners can enhance the internal surface temperature in the corner and the soil temperature under the structure by approximately 8.5 °C, thereby decreasing the indoor–outdoor temperature differential and the heat transfer at ground level. In extremely cold places, the insulation horizontal extension belt installation can help prevent the earth beneath the building from freezing throughout the winter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16031325&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Elsevier BV Publicly fundedFunded by:SFI | Marine Renewable Energy I...SFI| Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy ResearchAuthors: Ciaran R. Kennedy; Vesna Jaksic; Sean B. Leen; Conchúr M.Ó. Brádaigh;handle: 10379/15593
Tidal turbine blades are subject to harsh loading and environmental conditions, including large thrust and torsional loadings, relative to wind turbine blades, due to the high density of seawater, among other factors. The complex combination of these loadings, as well as water ingress and associated composite laminate saturation, have significant implications for blade design, affecting overall device design, stability, scalability, energy production and cost-effectiveness. This study investigates the effect of seawater ingress on composite material properties, and the associated design and life expectancy of tidal turbine blades in operating conditions. The fatigue properties of dry and water-saturated glass fibre reinforced laminates are experimentally evaluated and incorporated into tidal blade design. The fatigue lives of pitch- and stall-regulated tidal turbine blades are found to be altered by seawater immersion. Water saturation is shown to reduce blade life about 3 years for stall-regulated blades and by about 1-2 years for pitch-regulated blades. The effect of water ingress can be compensated by increased laminate thickness. The tidal turbine blade design methodology presented here can be used for evaluation of blade life expectancy and tidal device energy production. (C) 2018 Elsevier Ltd. All rights reserved.
National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Kochkin, B; Malkovsky, V; Yudintsev, S; Petrov, V; Ojovan, M;handle: 10044/1/91615
Abstract An overview is given of status of projects for the disposal of radioactive waste in very deep boreholes in crystalline rocks which demonstrates all main pros and cons of this technology. New opportunities offered by drilling long horizontal drillholes in ductile formations can provide the basis for projects that have the potential to overcome many of the disadvantages of deep boreholes. The concept of disposal in horizontal drillholes brings together the technologies of borehole and mined repositories using the advantages of both, and therefore deserves an expert discussion at international level.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 11 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2015Publisher:IEEE Tapani Ristaniemi; Zhenyu Zhou; Zheng Chang; Xijuan Guo; Qianqian Zhang;In this work, we consider the practical issues of resource allocation problem in OFDMA two-way relay networks: the inaccuracy of channel-state information (CSI) available to the transmitters. Instead, only the estimated channel status is known by the transmitters. In this context, a joint optimization of subcarrier pairing and allocation, relay selection and transmit power allocation is formulated in the OFDMA two-way amplify-and-forward relay networks. Moreover, to ensure the Quality of Service (QoS) requirement, the energy consumption must be minimized without compromising the QoS. Therefore, by applying convex optimization techniques, energy efficient algorithms are developed with the objective to minimize the total transmit power while guaranteeing the required data rates. Through simulation studies, energy consumption performance of the systems under the proposed schemes are investigated. It is shown that the proposed scheme can improve the energy consumption performance without scarifying the QoS.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/milcom.2015.7357502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/milcom.2015.7357502&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Zhen Qin; Xiaoran Tang; Yu-Ting Wu; Sung-Ki Lyu;doi: 10.3390/en15218042
Renewable energy provides an effective solution to the problem existing between energy and environmental protection. Tidal energy has great potential as a form of renewable energy. Tidal current generation (TCG) technology is the earliest renewable energy power generation technology. The advancement of science and technology has led to TCG rapidly developing since its emergence in the last century. This paper investigates the development of TCG in recent years based on the key components of TCG systems, both in terms of tidal energy harvesting research and power generation unit research. A summary of tidal energy harvesting is presented, investigating the main tidal energy harvesting units currently available. In addition, research on generators and generator control is summarized. Lastly, a comparison between horizontal and vertical axis turbines is carried out, and predictions are made about the future trends in TCG development. The purpose of this review is to summarize the research status and research methods of key components in tidal energy power generation technology and to provide insight into the research of tidal energy-related technologies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218042&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Lijun Gao; Yunze Li; Huijuan Xu; Xin Zhang; Man Yuan; Xianwen Ning;doi: 10.3390/en12234562
The contaminant-insensitive sublimator (CIS) is a novel water sublimator in development, which uses two porous substrates to separate the sublimation point from the pressure-control point and provide long-life effective cooling for spacecraft. Many essential studies need to be carried out in the field. To overcome the reliability issues such as ice breakthrough caused by large temperature or pressure differences, the CIS development unit model, the mathematical models of heat and mass transfer and the evaluation coefficient have been established. Numerical investigations have been implemented aiming at the impacts of physical properties of porous substrate, physical properties of working fluid, orifice layouts and orifice-structure parameters on the characteristics of flow field and temperature field. The numerical investigation shows some valuable conclusion, such as the temperature uniformity coefficient at the bottom surface of the large pore substrate is 0.997669 and the pressure uniformity coefficient at the same surface is 0.85361267. These numerical results can provide structure and data reference for the CIS design of lunar probe or spacesuit.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en12234562&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Oliveira, Pablo Resende; Santos, Júlio Cesar dos; Filho, Sergio Luiz Moni Ribeiro; Ferreira, Bruna Torres; +2 AuthorsOliveira, Pablo Resende; Santos, Júlio Cesar dos; Filho, Sergio Luiz Moni Ribeiro; Ferreira, Bruna Torres; Panzera, Tulio Hallak; Scarpa, Fabrizio L;This is the first attempt to combine disposed bottle caps and natural fibres into sandwich panels. A full factorial design is performed to identify the effects of the skin type (aluminium or coir fibre reinforced laminates) and bottle cap core packing (cubic and orthotropic) on the mechanical properties of the proposed panels. The coir fibre composite skin provides maximum core shear strength, 29 % higher than the aluminium-based panels, in cubic packing, while the flexural modulus is reduced by 45 %. An interlocking effect between the skin and the core is evidenced when coir fibre composites are used. In addition, the cubic cell packing increases the specific mechanical properties, even though with a higher density. The results highlight a promising association of green components and plastic bottle caps for secondary structural applications.
Fibers and Polymers arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12221-020-9818-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fibers and Polymers arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12221-020-9818-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Donaldson, Ross Martin; Lord, Richard;The Government run UK Renewable Heat Incentive (RHI) scheme allows cash back payments to be made to producers of renewable heat. As a world first for renewable heat, it aims to tackle head on the issues surrounding emissions, energy use, and climate change targets. However, whilst the scheme goes a long way towards meeting these climate change targets, issues have been identified that may compromise its effectiveness. This paper aims to examine the progress of the RHI since its launch in November 2011, and avenues towards a more effective deployment
CORE arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 108 Powered bymore_vert CORE arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu