- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- CN
- GB
- University of North Texas
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- CN
- GB
- University of North Texas
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:Wenliang Wang;
Wenliang Wang;Wenliang Wang
Wenliang Wang in OpenAIREYonghao Ni;
Yonghao Ni; +8 AuthorsYonghao Ni
Yonghao Ni in OpenAIREWenliang Wang;
Wenliang Wang;Wenliang Wang
Wenliang Wang in OpenAIREYonghao Ni;
Yonghao Ni; Hailong Yu; Liping Cai;Yonghao Ni
Yonghao Ni in OpenAIREChao Duan;
Zhenhao Ma; Xinping Li; Xubiao Wang; Shiwei Liu; Sheldon Q. Shi;Chao Duan
Chao Duan in OpenAIREAbstract Lignin is considered as a renewable and sustainable resource for producing value-added aromatic chemicals and functional carbon materials. Herein, we develop a one-step catalyst-free depolymerization strategy to convert lignin into aryl monomers and carbon nanospheres simultaneously. Importantly, microwave-assisted depolymerization (MAD) in conjunction with dichloromethane (CH2Cl2) vapors is developed. The total mass yield of guaiacols reached the highest amount of 225.1 mg/g at 600 °C, and the highest yields of phenols (49.0 mg/g) and aromatic hydrocarbons (155.1 mg/g) were obtained at 700 °C. Hydrogen radicals and hydrogen chloride (HCl) are in-situ formed from CH2Cl2, significantly decreasing the activation barrier and reforming pyrolysis vapors to promote the formation of aryl monomers. Interestingly, uniform carbon nanospheres with an average size of 140 nm were produced as co-products at 700 °C. The microwave “hot-spots”, allied with the continuous surface erosion and the decrease in surface energy of lignin-derived carbon precursors by CH2Cl2 vapor, can be considered the driving force for the ultimate formation of carbon nanospheres. The CH2Cl2/MAD system produces aryl monomers (26.8 wt% yield) and carbon nanospheres (36.6 wt% yield) at 700 °C. We provide a facile, intriguing and scalable approach to convert lignin to valuable aryl monomers and sustainable carbon materials that can be applied in the chemistry, energy and environmental fields.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.119211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu34 citations 34 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.fuel.2020.119211&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Preprint , Journal , Other literature type 2010Embargo end date: 01 Jan 2010 France, Australia, Netherlands, China (People's Republic of), United States, Italy, Italy, United States, France, Netherlands, Italy, Italy, Italy, France, France, Greece, Germany, France, Italy, France, Spain, Germany, Netherlands, Switzerland, Italy, France, France, Italy, Turkey, Australia, Italy, Netherlands, Belgium, Italy, Spain, China (People's Republic of), France, Italy, France, United States, United Kingdom, Germany, United States, United Kingdom, Germany, United Kingdom, France, Denmark, Italy, Netherlands, France, France, China (People's Republic of)Publisher:Springer Berlin Heidelberg Funded by:GSRI, FCT | LA 1, UKRI | SemenRate Canada/UK: Tran... +1 projectsGSRI ,FCT| LA 1 ,UKRI| SemenRate Canada/UK: Transforming Germplasm and Genetic Quality to Drive Livestock Productivity ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthG. AAD;
E. ABAT; B. ABBOTT; J. ABDALLAH;A. A. ABDELALIM;
A. ABDESSELAM; O. ABDINOV;A. A. ABDELALIM
A. A. ABDELALIM in OpenAIREB. ABI;
M. ABOLINS; H. ABRAMOWICZ; H. ABREU; E. ACERBI;B. S. ACHARYA;
M. ACKERS; D. L. ADAMS; T. N. ADDY; J. ADELMAN; M. ADERHOLZ; C. ADORISIO; P. ADRAGNA;B. S. ACHARYA
B. S. ACHARYA in OpenAIRET. ADYE;
S. AEFSKY;J. A. AGUILAR SAAVEDRA;
M. AHARROUCHE;J. A. AGUILAR SAAVEDRA
J. A. AGUILAR SAAVEDRA in OpenAIRES. P. AHLEN;
F. AHLES; A. AHMAD; H. AHMED; M. AHSAN;S. P. AHLEN
S. P. AHLEN in OpenAIREG. AIELLI;
T. AKDOGAN; P. F. AKESSON;G. AIELLI
G. AIELLI in OpenAIRET. P. A. AKESSON;
G. AKIMOTO; A. V. AKIMOV; A. AKTAS; M. S. ALAM; M. A. ALAM;T. P. A. AKESSON
T. P. A. AKESSON in OpenAIREJ. ALBERT;
S. ALBRAND; M. ALEKSA; I. N. ALEKSANDROV; M. ALEPPO; F. ALESSANDRIA; C. ALEXA; G. ALEXANDER; G. ALEXANDRE; T. ALEXOPOULOS;J. ALBERT
J. ALBERT in OpenAIREM. ALHROOB;
M. ALIEV; G. ALIMONTI; J. ALISON; M. ALIYEV;M. ALHROOB
M. ALHROOB in OpenAIREP. P. ALLPORT;
S. E. ALLWOOD SPIERS; J. ALMOND; A. ALOISIO; R. ALON;P. P. ALLPORT
P. P. ALLPORT in OpenAIREA. ALONSO;
J. ALONSO; M. G. ALVIGGI; K. AMAKO; P. AMARAL; G. AMBROSINI; G. AMBROSIO; C. AMELUNG; V. V. AMMOSOV;A. ALONSO
A. ALONSO in OpenAIREA. AMORIM;
G. AMOROS; N. AMRAM; C. ANASTOPOULOS; T. ANDEEN;A. AMORIM
A. AMORIM in OpenAIREC. F. ANDERS;
K. J. ANDERSON; A. ANDREAZZA; V. ANDREI; M. L. ANDRIEUX; X. S. ANDUAGA;C. F. ANDERS
C. F. ANDERS in OpenAIREA. ANGERAMI;
F. ANGHINOLFI;A. ANGERAMI
A. ANGERAMI in OpenAIREN. ANJOS;
A. ANNOVI; A. ANTONAKI; M. ANTONELLI; S. ANTONELLI; J. ANTOS;N. ANJOS
N. ANJOS in OpenAIREB. ANTUNOVIC;
F. ANULLI; S. AOUN; G. ARABIDZE; I. ARACENA; Y. ARAI; A. T. H. ARCE; J. P. ARCHAMBAULT; S. ARFAOUI; J. F. ARGUIN; T. ARGYROPOULOS; E. ARIK; M. ARIK; A. J. ARMBRUSTER; K. E. ARMS; S. R. ARMSTRONG; O. ARNAEZ; C. ARNAULT; A. ARTAMONOV; D. ARUTINOV; M. ASAI; S. ASAI; R. ASFANDIYAROV; S. ASK; B. ASMAN; D. ASNER;B. ANTUNOVIC
B. ANTUNOVIC in OpenAIREL. ASQUITH;
K. ASSAMAGAN; A. ASTBURY; A. ASTVATSATOUROV; B. ATHAR; G. ATOIAN; B. AUBERT; B. AUERBACH; E. AUGE; K. AUGSTEN; M. AUROUSSEAU; N. AUSTIN;L. ASQUITH
L. ASQUITH in OpenAIREG. AVOLIO;
G. AVOLIO
G. AVOLIO in OpenAIRER. AVRAMIDOU;
D. AXEN; C. AY;R. AVRAMIDOU
R. AVRAMIDOU in OpenAIREG. AZUELOS;
Y. AZUMA; M. A. BAAK; G. BACCAGLIONI; C. BACCI; A. M. BACH;G. AZUELOS
G. AZUELOS in OpenAIREH. BACHACOU;
H. BACHACOU
H. BACHACOU in OpenAIREK. BACHAS;
G. BACHY; M. BACKES; E. BADESCU; P. BAGNAIA; Y. BAI; D. C. BAILEY; T. BAIN;K. BACHAS
K. BACHAS in OpenAIREJ. T. BAINES;
O. K. BAKER; M. D. BAKER;J. T. BAINES
J. T. BAINES in OpenAIRES. BAKER;
F. BALTASAR DOS SANTOS PEDROSA;S. BAKER
S. BAKER in OpenAIREE. BANAS;
P. BANERJEE;E. BANAS
E. BANAS in OpenAIRES. BANERJEE;
D. BANFI; A. BANGERT; V. BANSAL; S. P. BARANOV; S. BARANOV; A. BARASHKOU; T. BARBER;S. BANERJEE
S. BANERJEE in OpenAIREE. L. BARBERIO;
D. BARBERIS; M. BARBERO; D. Y. BARDIN; T. BARILLARI; M. BARISONZI; T. BARKLOW; N. BARLOW; B. M. BARNETT; R. M. BARNETT; A. BARONCELLI; M. BARONE;E. L. BARBERIO
E. L. BARBERIO in OpenAIREA. J. BARR;
A. J. BARR
A. J. BARR in OpenAIREF. BARREIRO;
J. BARREIRO GUIMARAES DA COSTA; P. BARRILLON; V. BARTHELD; H. BARTKO; R. BARTOLDUS; D. BARTSCH; R. L. BATES; S. BATHE; L. BATKOVA; J. R. BATLEY; A. BATTAGLIA; M. BATTISTIN; G. BATTISTONI; F. BAUER; H. S. BAWA;F. BARREIRO
F. BARREIRO in OpenAIREM. BAZALOVA;
B. BEARE;M. BAZALOVA
M. BAZALOVA in OpenAIRET. BEAU;
P. H. BEAUCHEMIN; R. BECCHERLE; N. BECERICI; P. BECHTLE; G. A. BECK;H. P. BECK;
M. BECKINGHAM; K. H. BECKS; A. J. BEDDALL;H. P. BECK
H. P. BECK in OpenAIREA. BEDDALL;
A. BEDDALL
A. BEDDALL in OpenAIREarXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 ��m and a relative momentum resolution ��p/p = (4.83+/-0.16) \times 10-4 GeV-1 \times pT have been measured for high momentum tracks. 34 pages, 25 figures
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 21 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2007 United StatesPublisher:AIP Publishing Zhong, Hexiang; Chen, Xiaobo; Zhang, Huamin; Wang, Meiri;Mao,Samuel S.;
Mao,Samuel S.
Mao,Samuel S. in OpenAIREdoi: 10.1063/1.2800288
Polymer electrolyte membrane fuel cells (PEMFCs) are energy conversion devices that produce electricity from a supply of fuel, such as hydrogen. One of the major challenges in achieving efficient energy conversion is the development of cost-effective materials that can act as electrocatalysts for PEMFCs. In this letter, we demonstrate that, instead of conventional noble metals, such as platinum, chromium nitride nanocrystals of fcc structure exhibit attractive catalytic activity for PEMFCs. Device testing indicates good stability of nitride nanocrystals in low temperature fuel cell operational environment.
Applied Physics Lett... arrow_drop_down eScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.2800288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Physics Lett... arrow_drop_down eScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2007Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1063/1.2800288&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Springer Science and Business Media LLC Lower-cost alternatives to platinum electrocatalysts are being explored for the sustainable production of hydrogen, but often trial-and-error approaches are used for their development. Now, principles are elucidated that suggest pathways to rationally design efficient metal-free electrocatalysts based on doped graphene.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu58 citations 58 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nenergy.2016.155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 1994 United StatesPublisher:Office of Scientific and Technical Information (OSTI) David T. Bui; Charles L. Hakes; Steven L. Rickman; Lubert J. Leger; Donald Hunton; Steven L. Koontz; Jon B. Cross;doi: 10.2172/10142585
The Evaluation of Oxygen Interactions with Materials 3 (EOIM-3) flight experiment was developed to obtain benchmark atomic oxygen/material reactivity data. The experiment was conducted during Space Shuttle mission 46 (STS-46), which flew July 31 to August 7, 1992. Quantitative interpretation of the materials reactivity measurements requires a complete and accurate definition of the space environment exposure, including the thermal history of the payload, the solar ultraviolet exposure, the atomic oxygen fluence, and any spacecraft outgassing contamination effects. The thermal history of the payload was measured using twelve thermocouple sensors placed behind selected samples and on the EOIM-3 payload structure. The solar ultraviolet exposure history of the EOIM-3 payload was determined by analysis of the as-flown orbit and vehicle attitude combined with daily average solar ultraviolet and vacuum ultraviolet (UV/VUV) fluxes. The atomic oxygen fluence was assessed in three different ways. First, the O-atom fluence was calculated using a program that incorporates the MSIS-86 atmospheric model, the as-flown Space Shuttle trajectory, and solar activity parameters. Second, the oxygen atom fluence was estimated directly from Kapton film erosion. Third, ambient oxygen atom measurements were made using the quadrupole mass spectrometer on the EOIM-3 payload. Our best estimate of the oxygen atom fluence as of this writing is 2.3 +/- 0.3 x 10(exp 20) atoms/sq cm. Finally, results of post-flight X-ray photoelectron spectroscopy (XPS) surface analyses of selected samples indicate low levels of contamination on the payload surface.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10142585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/10142585&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 United StatesPublisher:Wiley Authors: Judy Lai; Chris Marnay;Michael Stadler;
Michael Stadler
Michael Stadler in OpenAIREAfzal S. Siddiqui;
+3 AuthorsAfzal S. Siddiqui
Afzal S. Siddiqui in OpenAIREJudy Lai; Chris Marnay;Michael Stadler;
Michael Stadler
Michael Stadler in OpenAIREAfzal S. Siddiqui;
Afzal S. Siddiqui;Afzal S. Siddiqui
Afzal S. Siddiqui in OpenAIREHirohisa Aki;
Hirohisa Aki;Hirohisa Aki
Hirohisa Aki in OpenAIREdoi: 10.1002/etep.418
AbstractThe U.S. Department of Energy has launched the commercial building initiative (CBI) in pursuit of its research goal of achieving zero‐net‐energy commercial buildings (ZNEB), i.e., ones that produce as much energy as they use. Its objective is to make these buildings marketable by 2025 such that they minimize their energy use through cutting‐edge, energy‐efficiency technologies and meet their remaining energy needs through on‐site renewable energy generation. This paper examines how such buildings may be implemented within the context of a cost‐ or CO2‐minimizing microgrid that is able to adopt and operate various technologies: photovoltaic (PV) modules and other on‐site generation, heat exchangers, solar thermal collectors, absorption chillers, and passive/demand‐response technologies. A mixed‐integer linear program (MILP) that has a multi‐criteria objective function is used. The objective is minimization of a weighted average of the building's annual energy costs and CO2 emissions. The MILP's constraints ensure energy balance and capacity limits. In addition, constraining the building's energy consumed to equal its energy exports enables us to explore how energy sales and demand‐response measures may enable compliance with the ZNEB objective. Using a commercial test site in northern California with existing tariff rates and technology data, we find that a ZNEB requires ample PV capacity installed to ensure electricity sales during the day. This is complemented by investment in energy‐efficient combined heat and power (CHP) equipment, while occasional demand response saves energy consumption. A large amount of storage is also adopted, which may be impractical. Nevertheless, it shows the nature of the solutions and costs necessary to achieve a ZNEB. Additionally, the ZNEB approach does not necessary lead to zero‐carbon (ZC) buildings as is frequently argued. We also show a multi‐objective frontier for the CA example, which allows us to estimate the needed technologies and costs for achieving a ZC building or microgrid. Copyright © 2010 John Wiley & Sons, Ltd.
European Transaction... arrow_drop_down European Transactions on Electrical PowerArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/etep.418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert European Transaction... arrow_drop_down European Transactions on Electrical PowerArticle . 2011 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/etep.418&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006 China (People's Republic of), China (People's Republic of), United States, China (People's Republic of)Publisher:Informa UK Limited Authors: Fisk, W.J.; Faulkner, D.; Sullivan, D.P.;Chao, Christopher Yu Hang;
+3 AuthorsChao, Christopher Yu Hang
Chao, Christopher Yu Hang in OpenAIREFisk, W.J.; Faulkner, D.; Sullivan, D.P.;Chao, Christopher Yu Hang;
Chao, Christopher Yu Hang
Chao, Christopher Yu Hang in OpenAIREWan, M.P.;
Zagreus, L.; Webster, T.;Wan, M.P.
Wan, M.P. in OpenAIREUnderfloor air distribution (UFAD) is a new method of supplying heated or cooled air throughout a building. Reported advantages of UFAD include energy savings and improved indoor air quality (IAQ). We measured several aspects of the performance of an UFAD system installed in a medium-size office building. The measured air change effectiveness was very close to unity, which is comparable to that measured in buildings with typical overhead air distribution. The pollutant removal efficiency for carbon dioxide was 13% higher than expected in a space with well-mixed air, suggesting a 13% reduction in exposures to occupant generated pollutants. The increase in indoor air temperatures with height above the floor was only 1 to 2 C. This amount of thermal stratification could reduce the sensible energy requirements for cooling of outdoor air by approximately 10%. The occupant's level of satisfaction with thermal conditions was well above average and this high satisfaction rating could possibly be due, in all or part, to the use of a UFAD system. The results of this study provide some evidence of moderate energy and IAQ-related benefits of UFAD. Before general conclusions are drawn, the benefits need to be confirmed in other studies.
International Journa... arrow_drop_down eScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14733315.2006.11683746&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 7 citations 7 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down eScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of CaliforniaeScholarship - University of CaliforniaArticle . 2005Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/14733315.2006.11683746&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2013 United Kingdom, SpainPublisher:Wiley Authors: Vanhercke, T.; El Tahchy, A.;Liu, Q.;
Zhou, X-R.;
+14 AuthorsZhou, X-R.
Zhou, X-R. in OpenAIREVanhercke, T.; El Tahchy, A.;Liu, Q.;
Zhou, X-R.;
Zhou, X-R.
Zhou, X-R. in OpenAIREShrestha, P.;
Divi, U. K.; Ral, J-P.; Mansour, M. P.; Nichols, P. D.; James, C. N.; Horn, P. J.;Shrestha, P.
Shrestha, P. in OpenAIREChapman, K. D.;
Beaudoin, F.;Chapman, K. D.
Chapman, K. D. in OpenAIRERuiz-Lopez, N.;
Ruiz-Lopez, N.
Ruiz-Lopez, N. in OpenAIRELarkin, P. J.;
De Feyter, R. C.;Larkin, P. J.
Larkin, P. J. in OpenAIRESingh, S. P.;
Petrie, J. R.;Singh, S. P.
Singh, S. P. in OpenAIRESummaryHigh biomass crops have recently attracted significant attention as an alternative platform for the renewable production of high energy storage lipids such as triacylglycerol (TAG). While TAG typically accumulates in seeds as storage compounds fuelling subsequent germination, levels in vegetative tissues are generally low. Here, we report the accumulation of more than 15% TAG (17.7% total lipids) by dry weight in Nicotiana tabacum (tobacco) leaves by the co‐expression of three genes involved in different aspects of TAG production without severely impacting plant development. These yields far exceed the levels found in wild‐type leaf tissue as well as previously reported engineered TAG yields in vegetative tissues of Arabidopsis thaliana and N. tabacum. When translated to a high biomass crop, the current levels would translate to an oil yield per hectare that exceeds those of most cultivated oilseed crops. Confocal fluorescence microscopy and mass spectrometry imaging confirmed the accumulation of TAG within leaf mesophyll cells. In addition, we explored the applicability of several existing oil‐processing methods using fresh leaf tissue. Our results demonstrate the technical feasibility of a vegetative plant oil production platform and provide for a step change in the bioenergy landscape, opening new prospects for sustainable food, high energy forage, biofuel and biomaterial applications.
Plant Biotechnology ... arrow_drop_down Plant Biotechnology JournalArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pbi.12131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 273 citations 273 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 33visibility views 33 download downloads 17 Powered bymore_vert Plant Biotechnology ... arrow_drop_down Plant Biotechnology JournalArticle . 2013 . Peer-reviewedLicense: CC BY NC NDData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2014 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/pbi.12131&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Report , Other literature type 2012 United StatesPublisher:Office of Scientific and Technical Information (OSTI) Authors: Cao, Jian; Xia, Z. Cedric; Gutowski, Timothy G.; Roth, John;doi: 10.2172/1039329
The objectives of this project are to establish the scientific bases, engineering technologies and energy/emission impact of a novel dieless forming process, Double side Incremental Forming (DSIF), and to explore the effectiveness of its hybrid variation, Electrical-Assisted Double Side Incremental Forming (EADSIF), on increasing the formability of metallic sheets. The scope of this project includes: (1) the analysis of environmental performance of the proposed new process as compared to conventional sheet metal forming processes; (2) the experimental investigation of the process capabilities of DSIF and EADSIF via the self-designed and newly established lab-scale EADSIF equipment; (3) the development of the essential software in executing the new proposed process, i.e., the toolpath generation algorithms; and finally (4) the exploration of the electricity effect on material deformation. The major accomplishments, findings and conclusions obtained through this one and a half years exploratory project are: (1) The first industrial medium-size-scale DSIF machine using two hexapods, capable of handling a sheet area up to 675 mm x 675 mm, was successfully completed at Ford. (2) The lab-scale of the DSIF machine was designed, fabricated and assembled to form a workpiece up to 250 mm x 250 mm. (3) Parts with arbitrary freeform double-curvatures using the genetic, not geometric-specific tooling were successfully formed using both machines. (4) The methodology of the life cycle analysis of DSIF was developed and energy consumption was measured and compared to conventional forming processes. It was found that the DSIF process can achieve 40% to 90% saving when the number of parts produced is less than 50. Sensitivity analysis was performed and showed that even at very large number of produced parts (greater than 2000), incremental forming saves at least 5% of the energy used in conventional forming. (5) It was proposed to use the offset between the two universal tools in DSIF to actively create a squeezing effect on sheet metal and therefore, increase the geometric accuracy. The idea was confirmed through both experimental and numerical validations. (6) A novel toolpath strategy, i.e., the so-called In-to-out toolpath or accumulative toolpath, was proposed to further increase formability and geometric accuracy compared to the SPIF configuration. A dimensional form accuracy of 1 mm can be achieved using the new strategy. (7) The effect of electricity on magnesium alloy was experimentally investigated. It was found that the formability has a ridge with respect to the applied current density and pulse duration. This finding implies that there are multiple choices of process parameters that are workable depending on the desired microstructure. The above results demonstrated that DSIF/EADSIF is a promising forming technology that can create impacts in revolutionizing how the prototyping and small volume production of sheet metals will be fabricated, i.e., it can (1) eliminate the need of casting and machining of drawing dies; (2) tailor material utilization to function requirement therefore achieving a light weight product; (3) reduce the amount of sheet metal scraps; and (4) shorten the engineering and manufacturing time for sheet metal parts from the current 8 {approx} 25 weeks to less than 1 week after the technology is fully developed. DSIF/EADSIF can be implemented in aerospace, automotive and appliance industries, or be used for producing personalized and point-of-use products in medical industry. Our analysis has shown that once developed, verified and demonstrated, the implementation and growth of DSIF will increase U.S. manufacturing competitiveness, advance machine tool and software industries, and create opportunities for emerging clean energy and low-carbon economy with estimated energy savings of 11 TBtu and CO2 reduction of 1 million tons per year. The work has been disseminated into three (3) journal articles and two (2) provisional patent submissions. A new company has been spun off from this research group aiming to commercialize the technology. A team, consisted of Northwestern Kellogg Business school students and Northwestern McCormick Engineering school graduate students, has independently examined business facts and business models, and has assisted in developing go-to-market strategy. One of the key recommendations for utilizing the full potential of this work is to demonstrate the DSIF/EADSIF concept in a true large-scale industrial setup, i.e., being able to form sheet size of 1.5 m x 1.5 m, where technical challenges, such as machine design, shape compensation, dynamic effect on geometrical accuracy, need to be further explored.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1039329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu9 citations 9 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2172/1039329&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Frontiers Media SA Often touted as the most promising next-generation energy storage systems, lithium (Li) metal batteries have drawn extensive interest due to their energy densities beyond those of Li-ion batteries. The use of Li metal, however, presents a major hurdle since it is susceptible to Li dendrite growths, corrosive interfacial reactions, and uncontrolled volume changes. Li-metal protection is an important issue in overcoming those challenges. In particular, studies have shown that molybdenum disulfide (MoS2) can significantly improve the performance and safety of Li metal batteries when used as a protective coating for anodes, separator modification, and stable interfacial layer between solid-electrolytes and Li metal. Herein, we review the successful implementation of MoS2 for improved Li metal batteries including those of the liquid-type and the solid-state cells. We also provide opportunities and prospects of MoS2 applications for safe and practical Li metal batteries.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.645403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fenrg.2021.645403&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu