- home
- Advanced Search
- Energy Research
- medical and health sciences
- 7. Clean energy
- GB
- DE
- NL
- EU
- Energy Research
- medical and health sciences
- 7. Clean energy
- GB
- DE
- NL
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Funded by:NIH | CONFORMATIONAL CHANGES IN..., NSF | Photobiology of Vision & ..., NSF | PFC: Center for the Physi...NIH| CONFORMATIONAL CHANGES INVOLVED IN ELECTRON TRANSFER IN CYTOCHROME BC1 COMPLEXES ,NSF| Photobiology of Vision & Photosynthesis ,NSF| PFC: Center for the Physics of Living CellsArvi Freiberg; Melih Sener; Johan Strümpfer; Klaus Schulten; C. Neil Hunter; John A. Timney;Photosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.
Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Funded by:NIH | CONFORMATIONAL CHANGES IN..., NSF | Photobiology of Vision & ..., NSF | PFC: Center for the Physi...NIH| CONFORMATIONAL CHANGES INVOLVED IN ELECTRON TRANSFER IN CYTOCHROME BC1 COMPLEXES ,NSF| Photobiology of Vision & Photosynthesis ,NSF| PFC: Center for the Physics of Living CellsArvi Freiberg; Melih Sener; Johan Strümpfer; Klaus Schulten; C. Neil Hunter; John A. Timney;Photosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.
Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Vincent Brunner; Manuel Siegl; Dominik Geier; Thomas Becker;doi: 10.1002/bit.27454
pmid: 32510166
AbstractA common control strategy for the production of recombinant proteins in Pichia pastoris using the alcohol oxidase 1 (AOX1) promotor is to separate the bioprocess into two main phases: biomass generation on glycerol and protein production via methanol induction. This study reports the establishment of a soft sensor for the prediction of biomass concentration that adapts automatically to these distinct phases. A hybrid approach combining mechanistic (carbon balance) and data‐driven modeling (multiple linear regression) is used for this purpose. The model parameters are dynamically adapted according to the current process phase using a multilevel phase detection algorithm. This algorithm is based on the online data of CO2 in the off‐gas (absolute value and first derivative) and cumulative base feed. The evaluation of the model resulted in a mean relative prediction error of 5.52% and R² of .96 for the entire process. The resulting model was implemented as a soft sensor for the online monitoring of the P. pastoris bioprocess. The soft sensor can be used for quality control and as input to process control systems, for example, for methanol control.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Vincent Brunner; Manuel Siegl; Dominik Geier; Thomas Becker;doi: 10.1002/bit.27454
pmid: 32510166
AbstractA common control strategy for the production of recombinant proteins in Pichia pastoris using the alcohol oxidase 1 (AOX1) promotor is to separate the bioprocess into two main phases: biomass generation on glycerol and protein production via methanol induction. This study reports the establishment of a soft sensor for the prediction of biomass concentration that adapts automatically to these distinct phases. A hybrid approach combining mechanistic (carbon balance) and data‐driven modeling (multiple linear regression) is used for this purpose. The model parameters are dynamically adapted according to the current process phase using a multilevel phase detection algorithm. This algorithm is based on the online data of CO2 in the off‐gas (absolute value and first derivative) and cumulative base feed. The evaluation of the model resulted in a mean relative prediction error of 5.52% and R² of .96 for the entire process. The resulting model was implemented as a soft sensor for the online monitoring of the P. pastoris bioprocess. The soft sensor can be used for quality control and as input to process control systems, for example, for methanol control.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Authors: Shraddha Maitra; Bruce Dien; Stephen P. Long; Vijay Singh;doi: 10.1111/gcbb.12841
AbstractThe bioenergy crops such as energycane, miscanthus, and sorghum are being genetically modified using state of the art synthetic biotechnology techniques to accumulate energy‐rich molecules such as triacylglycerides (TAGs) in their vegetative cells to enhance their utility for biofuel production. During the initial genetic developmental phase, many hundreds of transgenic phenotypes are produced. The efficiency of the production pipeline requires early and minimally destructive determination of oil content in individuals. Current screening methods require time‐intensive sample preparation and extraction with chemical solvents for each plant tissue. A rapid screen will also be needed for developing industrial extraction as these crops become available. In the present study, we have devised a proton relaxation nuclear magnetic resonance (1H‐NMR) method for single‐step, non‐invasive, and chemical‐free characterization of in‐situ lipids in untreated and pretreated lignocellulosic biomass. The systematic evaluation of NMR relaxation time distribution provided insight into the proton environment associated with the lipids in the biomass. It resolved two distinct lipid‐associated subpopulations of proton nuclei that characterize total in‐situ lipids into bound and free oil based on their “molecular tumbling” rate. The T1T2 correlation spectra also facilitated the resolution of the influence of various pretreatment procedures on the chemical composition of molecular and local 1H population in each sample. Furthermore, we show that hydrothermally pretreated biomass is suitable for direct NMR analysis unlike dilute acid and alkaline pretreated biomass which needs an additional step for neutralization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Authors: Shraddha Maitra; Bruce Dien; Stephen P. Long; Vijay Singh;doi: 10.1111/gcbb.12841
AbstractThe bioenergy crops such as energycane, miscanthus, and sorghum are being genetically modified using state of the art synthetic biotechnology techniques to accumulate energy‐rich molecules such as triacylglycerides (TAGs) in their vegetative cells to enhance their utility for biofuel production. During the initial genetic developmental phase, many hundreds of transgenic phenotypes are produced. The efficiency of the production pipeline requires early and minimally destructive determination of oil content in individuals. Current screening methods require time‐intensive sample preparation and extraction with chemical solvents for each plant tissue. A rapid screen will also be needed for developing industrial extraction as these crops become available. In the present study, we have devised a proton relaxation nuclear magnetic resonance (1H‐NMR) method for single‐step, non‐invasive, and chemical‐free characterization of in‐situ lipids in untreated and pretreated lignocellulosic biomass. The systematic evaluation of NMR relaxation time distribution provided insight into the proton environment associated with the lipids in the biomass. It resolved two distinct lipid‐associated subpopulations of proton nuclei that characterize total in‐situ lipids into bound and free oil based on their “molecular tumbling” rate. The T1T2 correlation spectra also facilitated the resolution of the influence of various pretreatment procedures on the chemical composition of molecular and local 1H population in each sample. Furthermore, we show that hydrothermally pretreated biomass is suitable for direct NMR analysis unlike dilute acid and alkaline pretreated biomass which needs an additional step for neutralization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Frontiers Media SA Funded by:EC | SCALEEC| SCALEAuthors: Juan G. Rubalcaba; Blanca Jimeno; Blanca Jimeno;handle: 10261/304323
Environmental and intrinsic factors interact to determine energy requirements in vertebrates. Glucocorticoid hormones (GCs) are key mediators of this interaction, as they fluctuate with energetic demands and regulate physiological and behavioral responses to environmental challenges. While a great body of research has focused on GC variation among individuals, the mechanisms driving GC variation across species and at broad spatial scales remain largely unexplored. Here, we adopted a macrophysiological approach to investigate the environmental factors and life-history traits driving variation in baseline GCs across lizard species. We tested three hypotheses: (1) If GCs increase with body temperature to meet higher metabolic demand, we expect an association between average baseline GCs and the mean species’ body temperature in the field (GC-temperature dependence hypothesis); (2) If GCs mediate behavioral responses to avoid thermal extremes, we expect that individuals frequently exposed to extreme conditions exhibit higher baseline GC levels (Behavioral thermoregulation hypothesis); (3) If GCs increase to support higher energy demands in active foragers during their period of activity, we expect that active foraging species have higher baseline GCs than sit-and-wait foragers, and that GC levels increase in relation to the duration of daily activity windows (Activity hypothesis). We used biophysical models to calculate operative temperatures and the activity patterns of lizards in sun-exposed and shaded microenvironments. Then, we tested the association between baseline GCs, body temperature, operative temperatures, foraging mode, and activity windows across 37 lizard species, using data from HormoneBase. Our comparative analyses showed that variation in baseline GCs was primarily related to the mean field body temperature and foraging mode, with higher baseline GCs in active foragers with higher body temperatures. Our results suggest that body temperature and foraging mode drive GC variation through their effects on energy requirements across lizard species.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 48visibility views 48 download downloads 68 Powered bymore_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Frontiers Media SA Funded by:EC | SCALEEC| SCALEAuthors: Juan G. Rubalcaba; Blanca Jimeno; Blanca Jimeno;handle: 10261/304323
Environmental and intrinsic factors interact to determine energy requirements in vertebrates. Glucocorticoid hormones (GCs) are key mediators of this interaction, as they fluctuate with energetic demands and regulate physiological and behavioral responses to environmental challenges. While a great body of research has focused on GC variation among individuals, the mechanisms driving GC variation across species and at broad spatial scales remain largely unexplored. Here, we adopted a macrophysiological approach to investigate the environmental factors and life-history traits driving variation in baseline GCs across lizard species. We tested three hypotheses: (1) If GCs increase with body temperature to meet higher metabolic demand, we expect an association between average baseline GCs and the mean species’ body temperature in the field (GC-temperature dependence hypothesis); (2) If GCs mediate behavioral responses to avoid thermal extremes, we expect that individuals frequently exposed to extreme conditions exhibit higher baseline GC levels (Behavioral thermoregulation hypothesis); (3) If GCs increase to support higher energy demands in active foragers during their period of activity, we expect that active foraging species have higher baseline GCs than sit-and-wait foragers, and that GC levels increase in relation to the duration of daily activity windows (Activity hypothesis). We used biophysical models to calculate operative temperatures and the activity patterns of lizards in sun-exposed and shaded microenvironments. Then, we tested the association between baseline GCs, body temperature, operative temperatures, foraging mode, and activity windows across 37 lizard species, using data from HormoneBase. Our comparative analyses showed that variation in baseline GCs was primarily related to the mean field body temperature and foraging mode, with higher baseline GCs in active foragers with higher body temperatures. Our results suggest that body temperature and foraging mode drive GC variation through their effects on energy requirements across lizard species.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 48visibility views 48 download downloads 68 Powered bymore_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2001 NetherlandsPublisher:Elsevier BV Authors: de Groot, C.P.G.M.; West, C.E.; van Staveren, W.A.;pmid: 11311593
In old age, the complex relation of food consumption with energy and nutrient requirements finds expression in both single and multiple nutritional problems. Addressing conditions affecting intake -- either from foods or from supplements -- endogenous production, bioefficacy and/or requirements can benefit nutritional health in old age through balancing requirements and supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2001 NetherlandsPublisher:Elsevier BV Authors: de Groot, C.P.G.M.; West, C.E.; van Staveren, W.A.;pmid: 11311593
In old age, the complex relation of food consumption with energy and nutrient requirements finds expression in both single and multiple nutritional problems. Addressing conditions affecting intake -- either from foods or from supplements -- endogenous production, bioefficacy and/or requirements can benefit nutritional health in old age through balancing requirements and supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Preprint , Journal , Other literature type 2010Embargo end date: 01 Jan 2010 France, Australia, Netherlands, China (People's Republic of), United States, Italy, Italy, United States, France, Netherlands, Italy, Italy, Italy, France, France, Greece, Germany, France, Italy, France, Spain, Germany, Netherlands, Switzerland, Italy, France, France, Italy, Turkey, Australia, Italy, Netherlands, Belgium, Italy, Spain, China (People's Republic of), France, Italy, France, United States, United Kingdom, Germany, United States, United Kingdom, Germany, United Kingdom, France, Denmark, Italy, Netherlands, France, France, China (People's Republic of)Publisher:Springer Berlin Heidelberg Funded by:GSRI, FCT | LA 1, UKRI | SemenRate Canada/UK: Tran... +1 projectsGSRI ,FCT| LA 1 ,UKRI| SemenRate Canada/UK: Transforming Germplasm and Genetic Quality to Drive Livestock Productivity ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthG. AAD; E. ABAT; B. ABBOTT; J. ABDALLAH; A. A. ABDELALIM; A. ABDESSELAM; O. ABDINOV; B. ABI; M. ABOLINS; H. ABRAMOWICZ; H. ABREU; E. ACERBI; B. S. ACHARYA; M. ACKERS; D. L. ADAMS; T. N. ADDY; J. ADELMAN; M. ADERHOLZ; C. ADORISIO; P. ADRAGNA; T. ADYE; S. AEFSKY; J. A. AGUILAR SAAVEDRA; M. AHARROUCHE; S. P. AHLEN; F. AHLES; A. AHMAD; H. AHMED; M. AHSAN; G. AIELLI; T. AKDOGAN; P. F. AKESSON; T. P. A. AKESSON; G. AKIMOTO; A. V. AKIMOV; A. AKTAS; M. S. ALAM; M. A. ALAM; J. ALBERT; S. ALBRAND; M. ALEKSA; I. N. ALEKSANDROV; M. ALEPPO; F. ALESSANDRIA; C. ALEXA; G. ALEXANDER; G. ALEXANDRE; T. ALEXOPOULOS; M. ALHROOB; M. ALIEV; G. ALIMONTI; J. ALISON; M. ALIYEV; P. P. ALLPORT; S. E. ALLWOOD SPIERS; J. ALMOND; A. ALOISIO; R. ALON; A. ALONSO; J. ALONSO; M. G. ALVIGGI; K. AMAKO; P. AMARAL; G. AMBROSINI; G. AMBROSIO; C. AMELUNG; V. V. AMMOSOV; A. AMORIM; G. AMOROS; N. AMRAM; C. ANASTOPOULOS; T. ANDEEN; C. F. ANDERS; K. J. ANDERSON; A. ANDREAZZA; V. ANDREI; M. L. ANDRIEUX; X. S. ANDUAGA; A. ANGERAMI; F. ANGHINOLFI; N. ANJOS; A. ANNOVI; A. ANTONAKI; M. ANTONELLI; S. ANTONELLI; J. ANTOS; B. ANTUNOVIC; F. ANULLI; S. AOUN; G. ARABIDZE; I. ARACENA; Y. ARAI; A. T. H. ARCE; J. P. ARCHAMBAULT; S. ARFAOUI; J. F. ARGUIN; T. ARGYROPOULOS; E. ARIK; M. ARIK; A. J. ARMBRUSTER; K. E. ARMS; S. R. ARMSTRONG; O. ARNAEZ; C. ARNAULT; A. ARTAMONOV; D. ARUTINOV; M. ASAI; S. ASAI; R. ASFANDIYAROV; S. ASK; B. ASMAN; D. ASNER; L. ASQUITH; K. ASSAMAGAN; A. ASTBURY; A. ASTVATSATOUROV; B. ATHAR; G. ATOIAN; B. AUBERT; B. AUERBACH; E. AUGE; K. AUGSTEN; M. AUROUSSEAU; N. AUSTIN; G. AVOLIO; R. AVRAMIDOU; D. AXEN; C. AY; G. AZUELOS; Y. AZUMA; M. A. BAAK; G. BACCAGLIONI; C. BACCI; A. M. BACH; H. BACHACOU; K. BACHAS; G. BACHY; M. BACKES; E. BADESCU; P. BAGNAIA; Y. BAI; D. C. BAILEY; T. BAIN; J. T. BAINES; O. K. BAKER; M. D. BAKER; S. BAKER; F. BALTASAR DOS SANTOS PEDROSA; E. BANAS; P. BANERJEE; S. BANERJEE; D. BANFI; A. BANGERT; V. BANSAL; S. P. BARANOV; S. BARANOV; A. BARASHKOU; T. BARBER; E. L. BARBERIO; D. BARBERIS; M. BARBERO; D. Y. BARDIN; T. BARILLARI; M. BARISONZI; T. BARKLOW; N. BARLOW; B. M. BARNETT; R. M. BARNETT; A. BARONCELLI; M. BARONE; A. J. BARR; F. BARREIRO; J. BARREIRO GUIMARAES DA COSTA; P. BARRILLON; V. BARTHELD; H. BARTKO; R. BARTOLDUS; D. BARTSCH; R. L. BATES; S. BATHE; L. BATKOVA; J. R. BATLEY; A. BATTAGLIA; M. BATTISTIN; G. BATTISTONI; F. BAUER; H. S. BAWA; M. BAZALOVA; B. BEARE; T. BEAU; P. H. BEAUCHEMIN; R. BECCHERLE; N. BECERICI; P. BECHTLE; G. A. BECK; H. P. BECK; M. BECKINGHAM; K. H. BECKS; A. J. BEDDALL; A. BEDDALL;arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 ��m and a relative momentum resolution ��p/p = (4.83+/-0.16) \times 10-4 GeV-1 \times pT have been measured for high momentum tracks. 34 pages, 25 figures
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 21 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Preprint , Journal , Other literature type 2010Embargo end date: 01 Jan 2010 France, Australia, Netherlands, China (People's Republic of), United States, Italy, Italy, United States, France, Netherlands, Italy, Italy, Italy, France, France, Greece, Germany, France, Italy, France, Spain, Germany, Netherlands, Switzerland, Italy, France, France, Italy, Turkey, Australia, Italy, Netherlands, Belgium, Italy, Spain, China (People's Republic of), France, Italy, France, United States, United Kingdom, Germany, United States, United Kingdom, Germany, United Kingdom, France, Denmark, Italy, Netherlands, France, France, China (People's Republic of)Publisher:Springer Berlin Heidelberg Funded by:GSRI, FCT | LA 1, UKRI | SemenRate Canada/UK: Tran... +1 projectsGSRI ,FCT| LA 1 ,UKRI| SemenRate Canada/UK: Transforming Germplasm and Genetic Quality to Drive Livestock Productivity ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthG. AAD; E. ABAT; B. ABBOTT; J. ABDALLAH; A. A. ABDELALIM; A. ABDESSELAM; O. ABDINOV; B. ABI; M. ABOLINS; H. ABRAMOWICZ; H. ABREU; E. ACERBI; B. S. ACHARYA; M. ACKERS; D. L. ADAMS; T. N. ADDY; J. ADELMAN; M. ADERHOLZ; C. ADORISIO; P. ADRAGNA; T. ADYE; S. AEFSKY; J. A. AGUILAR SAAVEDRA; M. AHARROUCHE; S. P. AHLEN; F. AHLES; A. AHMAD; H. AHMED; M. AHSAN; G. AIELLI; T. AKDOGAN; P. F. AKESSON; T. P. A. AKESSON; G. AKIMOTO; A. V. AKIMOV; A. AKTAS; M. S. ALAM; M. A. ALAM; J. ALBERT; S. ALBRAND; M. ALEKSA; I. N. ALEKSANDROV; M. ALEPPO; F. ALESSANDRIA; C. ALEXA; G. ALEXANDER; G. ALEXANDRE; T. ALEXOPOULOS; M. ALHROOB; M. ALIEV; G. ALIMONTI; J. ALISON; M. ALIYEV; P. P. ALLPORT; S. E. ALLWOOD SPIERS; J. ALMOND; A. ALOISIO; R. ALON; A. ALONSO; J. ALONSO; M. G. ALVIGGI; K. AMAKO; P. AMARAL; G. AMBROSINI; G. AMBROSIO; C. AMELUNG; V. V. AMMOSOV; A. AMORIM; G. AMOROS; N. AMRAM; C. ANASTOPOULOS; T. ANDEEN; C. F. ANDERS; K. J. ANDERSON; A. ANDREAZZA; V. ANDREI; M. L. ANDRIEUX; X. S. ANDUAGA; A. ANGERAMI; F. ANGHINOLFI; N. ANJOS; A. ANNOVI; A. ANTONAKI; M. ANTONELLI; S. ANTONELLI; J. ANTOS; B. ANTUNOVIC; F. ANULLI; S. AOUN; G. ARABIDZE; I. ARACENA; Y. ARAI; A. T. H. ARCE; J. P. ARCHAMBAULT; S. ARFAOUI; J. F. ARGUIN; T. ARGYROPOULOS; E. ARIK; M. ARIK; A. J. ARMBRUSTER; K. E. ARMS; S. R. ARMSTRONG; O. ARNAEZ; C. ARNAULT; A. ARTAMONOV; D. ARUTINOV; M. ASAI; S. ASAI; R. ASFANDIYAROV; S. ASK; B. ASMAN; D. ASNER; L. ASQUITH; K. ASSAMAGAN; A. ASTBURY; A. ASTVATSATOUROV; B. ATHAR; G. ATOIAN; B. AUBERT; B. AUERBACH; E. AUGE; K. AUGSTEN; M. AUROUSSEAU; N. AUSTIN; G. AVOLIO; R. AVRAMIDOU; D. AXEN; C. AY; G. AZUELOS; Y. AZUMA; M. A. BAAK; G. BACCAGLIONI; C. BACCI; A. M. BACH; H. BACHACOU; K. BACHAS; G. BACHY; M. BACKES; E. BADESCU; P. BAGNAIA; Y. BAI; D. C. BAILEY; T. BAIN; J. T. BAINES; O. K. BAKER; M. D. BAKER; S. BAKER; F. BALTASAR DOS SANTOS PEDROSA; E. BANAS; P. BANERJEE; S. BANERJEE; D. BANFI; A. BANGERT; V. BANSAL; S. P. BARANOV; S. BARANOV; A. BARASHKOU; T. BARBER; E. L. BARBERIO; D. BARBERIS; M. BARBERO; D. Y. BARDIN; T. BARILLARI; M. BARISONZI; T. BARKLOW; N. BARLOW; B. M. BARNETT; R. M. BARNETT; A. BARONCELLI; M. BARONE; A. J. BARR; F. BARREIRO; J. BARREIRO GUIMARAES DA COSTA; P. BARRILLON; V. BARTHELD; H. BARTKO; R. BARTOLDUS; D. BARTSCH; R. L. BATES; S. BATHE; L. BATKOVA; J. R. BATLEY; A. BATTAGLIA; M. BATTISTIN; G. BATTISTONI; F. BAUER; H. S. BAWA; M. BAZALOVA; B. BEARE; T. BEAU; P. H. BEAUCHEMIN; R. BECCHERLE; N. BECERICI; P. BECHTLE; G. A. BECK; H. P. BECK; M. BECKINGHAM; K. H. BECKS; A. J. BEDDALL; A. BEDDALL;arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 ��m and a relative momentum resolution ��p/p = (4.83+/-0.16) \times 10-4 GeV-1 \times pT have been measured for high momentum tracks. 34 pages, 25 figures
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 21 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2015Publisher:Public Library of Science (PLoS) Authors: Zoran Nikoloski; Max Sajitz-Hermstein; Anne Arnold;Plants as sessile organisms cannot escape their environment and have to adapt to any changes in the availability of sunlight and nutrients. The quantification of synthesis costs of metabolites, in terms of consumed energy, is a prerequisite to understand trade-offs arising from energetic limitations. Here, we examine the energy consumption of amino acid synthesis in Arabidopsis thaliana. To quantify these costs in terms of the energy equivalent ATP, we introduce an improved cost measure based on flux balance analysis and apply it to three state-of-the-art metabolic reconstructions to ensure robust results. We present the first systematic in silico analysis of the effect of nitrogen supply (nitrate/ammonium) on individual amino acid synthesis costs as well as of the effect of photoautotrophic and heterotrophic growth conditions, integrating day/night-specific regulation. Our results identify nitrogen supply as a key determinant of amino acid costs, in agreement with experimental evidence. In addition, the association of the determined costs with experimentally observed growth patterns suggests that metabolite synthesis costs are involved in shaping regulation of plant growth. Finally, we find that simultaneous uptake of both nitrogen sources can lead to efficient utilization of energy source, which may be the result of evolutionary optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2015Publisher:Public Library of Science (PLoS) Authors: Zoran Nikoloski; Max Sajitz-Hermstein; Anne Arnold;Plants as sessile organisms cannot escape their environment and have to adapt to any changes in the availability of sunlight and nutrients. The quantification of synthesis costs of metabolites, in terms of consumed energy, is a prerequisite to understand trade-offs arising from energetic limitations. Here, we examine the energy consumption of amino acid synthesis in Arabidopsis thaliana. To quantify these costs in terms of the energy equivalent ATP, we introduce an improved cost measure based on flux balance analysis and apply it to three state-of-the-art metabolic reconstructions to ensure robust results. We present the first systematic in silico analysis of the effect of nitrogen supply (nitrate/ammonium) on individual amino acid synthesis costs as well as of the effect of photoautotrophic and heterotrophic growth conditions, integrating day/night-specific regulation. Our results identify nitrogen supply as a key determinant of amino acid costs, in agreement with experimental evidence. In addition, the association of the determined costs with experimentally observed growth patterns suggests that metabolite synthesis costs are involved in shaping regulation of plant growth. Finally, we find that simultaneous uptake of both nitrogen sources can lead to efficient utilization of energy source, which may be the result of evolutionary optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 NetherlandsPublisher:Springer Science and Business Media LLC de Vrije, G.J.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M.;The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content.Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75 degrees C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained.Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-2-12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 163 citations 163 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-2-12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 NetherlandsPublisher:Springer Science and Business Media LLC de Vrije, G.J.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M.;The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content.Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75 degrees C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained.Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-2-12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 163 citations 163 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-2-12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:UKRI | Defining Aqueous Habitabl...UKRI| Defining Aqueous Habitable Conditions in the UniverseAuthors: P. M. Higgins; C. S. Cockell;In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ( 10 9 − 10 6 cells l − 1 ) and total methane production ( 62 − 3 μ M ) despite an increase in peak growth rates ( 0.007 − 0.14 h − 1 ) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:UKRI | Defining Aqueous Habitabl...UKRI| Defining Aqueous Habitable Conditions in the UniverseAuthors: P. M. Higgins; C. S. Cockell;In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ( 10 9 − 10 6 cells l − 1 ) and total methane production ( 62 − 3 μ M ) despite an increase in peak growth rates ( 0.007 − 0.14 h − 1 ) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Oxford University Press (OUP) Authors: Barbara Bourgade; Nigel P Minton; M Ahsanul Islam;ABSTRACTUnabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
FEMS Microbiology Re... arrow_drop_down FEMS Microbiology ReviewsArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsre/fuab008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FEMS Microbiology Re... arrow_drop_down FEMS Microbiology ReviewsArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsre/fuab008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Oxford University Press (OUP) Authors: Barbara Bourgade; Nigel P Minton; M Ahsanul Islam;ABSTRACTUnabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
FEMS Microbiology Re... arrow_drop_down FEMS Microbiology ReviewsArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsre/fuab008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FEMS Microbiology Re... arrow_drop_down FEMS Microbiology ReviewsArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsre/fuab008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Funded by:NIH | CONFORMATIONAL CHANGES IN..., NSF | Photobiology of Vision & ..., NSF | PFC: Center for the Physi...NIH| CONFORMATIONAL CHANGES INVOLVED IN ELECTRON TRANSFER IN CYTOCHROME BC1 COMPLEXES ,NSF| Photobiology of Vision & Photosynthesis ,NSF| PFC: Center for the Physics of Living CellsArvi Freiberg; Melih Sener; Johan Strümpfer; Klaus Schulten; C. Neil Hunter; John A. Timney;Photosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.
Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Funded by:NIH | CONFORMATIONAL CHANGES IN..., NSF | Photobiology of Vision & ..., NSF | PFC: Center for the Physi...NIH| CONFORMATIONAL CHANGES INVOLVED IN ELECTRON TRANSFER IN CYTOCHROME BC1 COMPLEXES ,NSF| Photobiology of Vision & Photosynthesis ,NSF| PFC: Center for the Physics of Living CellsArvi Freiberg; Melih Sener; Johan Strümpfer; Klaus Schulten; C. Neil Hunter; John A. Timney;Photosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.
Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Vincent Brunner; Manuel Siegl; Dominik Geier; Thomas Becker;doi: 10.1002/bit.27454
pmid: 32510166
AbstractA common control strategy for the production of recombinant proteins in Pichia pastoris using the alcohol oxidase 1 (AOX1) promotor is to separate the bioprocess into two main phases: biomass generation on glycerol and protein production via methanol induction. This study reports the establishment of a soft sensor for the prediction of biomass concentration that adapts automatically to these distinct phases. A hybrid approach combining mechanistic (carbon balance) and data‐driven modeling (multiple linear regression) is used for this purpose. The model parameters are dynamically adapted according to the current process phase using a multilevel phase detection algorithm. This algorithm is based on the online data of CO2 in the off‐gas (absolute value and first derivative) and cumulative base feed. The evaluation of the model resulted in a mean relative prediction error of 5.52% and R² of .96 for the entire process. The resulting model was implemented as a soft sensor for the online monitoring of the P. pastoris bioprocess. The soft sensor can be used for quality control and as input to process control systems, for example, for methanol control.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 GermanyPublisher:Wiley Authors: Vincent Brunner; Manuel Siegl; Dominik Geier; Thomas Becker;doi: 10.1002/bit.27454
pmid: 32510166
AbstractA common control strategy for the production of recombinant proteins in Pichia pastoris using the alcohol oxidase 1 (AOX1) promotor is to separate the bioprocess into two main phases: biomass generation on glycerol and protein production via methanol induction. This study reports the establishment of a soft sensor for the prediction of biomass concentration that adapts automatically to these distinct phases. A hybrid approach combining mechanistic (carbon balance) and data‐driven modeling (multiple linear regression) is used for this purpose. The model parameters are dynamically adapted according to the current process phase using a multilevel phase detection algorithm. This algorithm is based on the online data of CO2 in the off‐gas (absolute value and first derivative) and cumulative base feed. The evaluation of the model resulted in a mean relative prediction error of 5.52% and R² of .96 for the entire process. The resulting model was implemented as a soft sensor for the online monitoring of the P. pastoris bioprocess. The soft sensor can be used for quality control and as input to process control systems, for example, for methanol control.
Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 13 citations 13 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Biotechnology and Bi... arrow_drop_down Biotechnology and BioengineeringArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/bit.27454&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Authors: Shraddha Maitra; Bruce Dien; Stephen P. Long; Vijay Singh;doi: 10.1111/gcbb.12841
AbstractThe bioenergy crops such as energycane, miscanthus, and sorghum are being genetically modified using state of the art synthetic biotechnology techniques to accumulate energy‐rich molecules such as triacylglycerides (TAGs) in their vegetative cells to enhance their utility for biofuel production. During the initial genetic developmental phase, many hundreds of transgenic phenotypes are produced. The efficiency of the production pipeline requires early and minimally destructive determination of oil content in individuals. Current screening methods require time‐intensive sample preparation and extraction with chemical solvents for each plant tissue. A rapid screen will also be needed for developing industrial extraction as these crops become available. In the present study, we have devised a proton relaxation nuclear magnetic resonance (1H‐NMR) method for single‐step, non‐invasive, and chemical‐free characterization of in‐situ lipids in untreated and pretreated lignocellulosic biomass. The systematic evaluation of NMR relaxation time distribution provided insight into the proton environment associated with the lipids in the biomass. It resolved two distinct lipid‐associated subpopulations of proton nuclei that characterize total in‐situ lipids into bound and free oil based on their “molecular tumbling” rate. The T1T2 correlation spectra also facilitated the resolution of the influence of various pretreatment procedures on the chemical composition of molecular and local 1H population in each sample. Furthermore, we show that hydrothermally pretreated biomass is suitable for direct NMR analysis unlike dilute acid and alkaline pretreated biomass which needs an additional step for neutralization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Wiley Authors: Shraddha Maitra; Bruce Dien; Stephen P. Long; Vijay Singh;doi: 10.1111/gcbb.12841
AbstractThe bioenergy crops such as energycane, miscanthus, and sorghum are being genetically modified using state of the art synthetic biotechnology techniques to accumulate energy‐rich molecules such as triacylglycerides (TAGs) in their vegetative cells to enhance their utility for biofuel production. During the initial genetic developmental phase, many hundreds of transgenic phenotypes are produced. The efficiency of the production pipeline requires early and minimally destructive determination of oil content in individuals. Current screening methods require time‐intensive sample preparation and extraction with chemical solvents for each plant tissue. A rapid screen will also be needed for developing industrial extraction as these crops become available. In the present study, we have devised a proton relaxation nuclear magnetic resonance (1H‐NMR) method for single‐step, non‐invasive, and chemical‐free characterization of in‐situ lipids in untreated and pretreated lignocellulosic biomass. The systematic evaluation of NMR relaxation time distribution provided insight into the proton environment associated with the lipids in the biomass. It resolved two distinct lipid‐associated subpopulations of proton nuclei that characterize total in‐situ lipids into bound and free oil based on their “molecular tumbling” rate. The T1T2 correlation spectra also facilitated the resolution of the influence of various pretreatment procedures on the chemical composition of molecular and local 1H population in each sample. Furthermore, we show that hydrothermally pretreated biomass is suitable for direct NMR analysis unlike dilute acid and alkaline pretreated biomass which needs an additional step for neutralization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcbb.12841&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Frontiers Media SA Funded by:EC | SCALEEC| SCALEAuthors: Juan G. Rubalcaba; Blanca Jimeno; Blanca Jimeno;handle: 10261/304323
Environmental and intrinsic factors interact to determine energy requirements in vertebrates. Glucocorticoid hormones (GCs) are key mediators of this interaction, as they fluctuate with energetic demands and regulate physiological and behavioral responses to environmental challenges. While a great body of research has focused on GC variation among individuals, the mechanisms driving GC variation across species and at broad spatial scales remain largely unexplored. Here, we adopted a macrophysiological approach to investigate the environmental factors and life-history traits driving variation in baseline GCs across lizard species. We tested three hypotheses: (1) If GCs increase with body temperature to meet higher metabolic demand, we expect an association between average baseline GCs and the mean species’ body temperature in the field (GC-temperature dependence hypothesis); (2) If GCs mediate behavioral responses to avoid thermal extremes, we expect that individuals frequently exposed to extreme conditions exhibit higher baseline GC levels (Behavioral thermoregulation hypothesis); (3) If GCs increase to support higher energy demands in active foragers during their period of activity, we expect that active foraging species have higher baseline GCs than sit-and-wait foragers, and that GC levels increase in relation to the duration of daily activity windows (Activity hypothesis). We used biophysical models to calculate operative temperatures and the activity patterns of lizards in sun-exposed and shaded microenvironments. Then, we tested the association between baseline GCs, body temperature, operative temperatures, foraging mode, and activity windows across 37 lizard species, using data from HormoneBase. Our comparative analyses showed that variation in baseline GCs was primarily related to the mean field body temperature and foraging mode, with higher baseline GCs in active foragers with higher body temperatures. Our results suggest that body temperature and foraging mode drive GC variation through their effects on energy requirements across lizard species.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 48visibility views 48 download downloads 68 Powered bymore_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Frontiers Media SA Funded by:EC | SCALEEC| SCALEAuthors: Juan G. Rubalcaba; Blanca Jimeno; Blanca Jimeno;handle: 10261/304323
Environmental and intrinsic factors interact to determine energy requirements in vertebrates. Glucocorticoid hormones (GCs) are key mediators of this interaction, as they fluctuate with energetic demands and regulate physiological and behavioral responses to environmental challenges. While a great body of research has focused on GC variation among individuals, the mechanisms driving GC variation across species and at broad spatial scales remain largely unexplored. Here, we adopted a macrophysiological approach to investigate the environmental factors and life-history traits driving variation in baseline GCs across lizard species. We tested three hypotheses: (1) If GCs increase with body temperature to meet higher metabolic demand, we expect an association between average baseline GCs and the mean species’ body temperature in the field (GC-temperature dependence hypothesis); (2) If GCs mediate behavioral responses to avoid thermal extremes, we expect that individuals frequently exposed to extreme conditions exhibit higher baseline GC levels (Behavioral thermoregulation hypothesis); (3) If GCs increase to support higher energy demands in active foragers during their period of activity, we expect that active foraging species have higher baseline GCs than sit-and-wait foragers, and that GC levels increase in relation to the duration of daily activity windows (Activity hypothesis). We used biophysical models to calculate operative temperatures and the activity patterns of lizards in sun-exposed and shaded microenvironments. Then, we tested the association between baseline GCs, body temperature, operative temperatures, foraging mode, and activity windows across 37 lizard species, using data from HormoneBase. Our comparative analyses showed that variation in baseline GCs was primarily related to the mean field body temperature and foraging mode, with higher baseline GCs in active foragers with higher body temperatures. Our results suggest that body temperature and foraging mode drive GC variation through their effects on energy requirements across lizard species.
Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 48visibility views 48 download downloads 68 Powered bymore_vert Frontiers in Ecology... arrow_drop_down Frontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAFrontiers in Ecology and EvolutionArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fevo.2022.1032083&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2001 NetherlandsPublisher:Elsevier BV Authors: de Groot, C.P.G.M.; West, C.E.; van Staveren, W.A.;pmid: 11311593
In old age, the complex relation of food consumption with energy and nutrient requirements finds expression in both single and multiple nutritional problems. Addressing conditions affecting intake -- either from foods or from supplements -- endogenous production, bioefficacy and/or requirements can benefit nutritional health in old age through balancing requirements and supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2001 NetherlandsPublisher:Elsevier BV Authors: de Groot, C.P.G.M.; West, C.E.; van Staveren, W.A.;pmid: 11311593
In old age, the complex relation of food consumption with energy and nutrient requirements finds expression in both single and multiple nutritional problems. Addressing conditions affecting intake -- either from foods or from supplements -- endogenous production, bioefficacy and/or requirements can benefit nutritional health in old age through balancing requirements and supply.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0378-5122(00)00193-6&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Preprint , Journal , Other literature type 2010Embargo end date: 01 Jan 2010 France, Australia, Netherlands, China (People's Republic of), United States, Italy, Italy, United States, France, Netherlands, Italy, Italy, Italy, France, France, Greece, Germany, France, Italy, France, Spain, Germany, Netherlands, Switzerland, Italy, France, France, Italy, Turkey, Australia, Italy, Netherlands, Belgium, Italy, Spain, China (People's Republic of), France, Italy, France, United States, United Kingdom, Germany, United States, United Kingdom, Germany, United Kingdom, France, Denmark, Italy, Netherlands, France, France, China (People's Republic of)Publisher:Springer Berlin Heidelberg Funded by:GSRI, FCT | LA 1, UKRI | SemenRate Canada/UK: Tran... +1 projectsGSRI ,FCT| LA 1 ,UKRI| SemenRate Canada/UK: Transforming Germplasm and Genetic Quality to Drive Livestock Productivity ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthG. AAD; E. ABAT; B. ABBOTT; J. ABDALLAH; A. A. ABDELALIM; A. ABDESSELAM; O. ABDINOV; B. ABI; M. ABOLINS; H. ABRAMOWICZ; H. ABREU; E. ACERBI; B. S. ACHARYA; M. ACKERS; D. L. ADAMS; T. N. ADDY; J. ADELMAN; M. ADERHOLZ; C. ADORISIO; P. ADRAGNA; T. ADYE; S. AEFSKY; J. A. AGUILAR SAAVEDRA; M. AHARROUCHE; S. P. AHLEN; F. AHLES; A. AHMAD; H. AHMED; M. AHSAN; G. AIELLI; T. AKDOGAN; P. F. AKESSON; T. P. A. AKESSON; G. AKIMOTO; A. V. AKIMOV; A. AKTAS; M. S. ALAM; M. A. ALAM; J. ALBERT; S. ALBRAND; M. ALEKSA; I. N. ALEKSANDROV; M. ALEPPO; F. ALESSANDRIA; C. ALEXA; G. ALEXANDER; G. ALEXANDRE; T. ALEXOPOULOS; M. ALHROOB; M. ALIEV; G. ALIMONTI; J. ALISON; M. ALIYEV; P. P. ALLPORT; S. E. ALLWOOD SPIERS; J. ALMOND; A. ALOISIO; R. ALON; A. ALONSO; J. ALONSO; M. G. ALVIGGI; K. AMAKO; P. AMARAL; G. AMBROSINI; G. AMBROSIO; C. AMELUNG; V. V. AMMOSOV; A. AMORIM; G. AMOROS; N. AMRAM; C. ANASTOPOULOS; T. ANDEEN; C. F. ANDERS; K. J. ANDERSON; A. ANDREAZZA; V. ANDREI; M. L. ANDRIEUX; X. S. ANDUAGA; A. ANGERAMI; F. ANGHINOLFI; N. ANJOS; A. ANNOVI; A. ANTONAKI; M. ANTONELLI; S. ANTONELLI; J. ANTOS; B. ANTUNOVIC; F. ANULLI; S. AOUN; G. ARABIDZE; I. ARACENA; Y. ARAI; A. T. H. ARCE; J. P. ARCHAMBAULT; S. ARFAOUI; J. F. ARGUIN; T. ARGYROPOULOS; E. ARIK; M. ARIK; A. J. ARMBRUSTER; K. E. ARMS; S. R. ARMSTRONG; O. ARNAEZ; C. ARNAULT; A. ARTAMONOV; D. ARUTINOV; M. ASAI; S. ASAI; R. ASFANDIYAROV; S. ASK; B. ASMAN; D. ASNER; L. ASQUITH; K. ASSAMAGAN; A. ASTBURY; A. ASTVATSATOUROV; B. ATHAR; G. ATOIAN; B. AUBERT; B. AUERBACH; E. AUGE; K. AUGSTEN; M. AUROUSSEAU; N. AUSTIN; G. AVOLIO; R. AVRAMIDOU; D. AXEN; C. AY; G. AZUELOS; Y. AZUMA; M. A. BAAK; G. BACCAGLIONI; C. BACCI; A. M. BACH; H. BACHACOU; K. BACHAS; G. BACHY; M. BACKES; E. BADESCU; P. BAGNAIA; Y. BAI; D. C. BAILEY; T. BAIN; J. T. BAINES; O. K. BAKER; M. D. BAKER; S. BAKER; F. BALTASAR DOS SANTOS PEDROSA; E. BANAS; P. BANERJEE; S. BANERJEE; D. BANFI; A. BANGERT; V. BANSAL; S. P. BARANOV; S. BARANOV; A. BARASHKOU; T. BARBER; E. L. BARBERIO; D. BARBERIS; M. BARBERO; D. Y. BARDIN; T. BARILLARI; M. BARISONZI; T. BARKLOW; N. BARLOW; B. M. BARNETT; R. M. BARNETT; A. BARONCELLI; M. BARONE; A. J. BARR; F. BARREIRO; J. BARREIRO GUIMARAES DA COSTA; P. BARRILLON; V. BARTHELD; H. BARTKO; R. BARTOLDUS; D. BARTSCH; R. L. BATES; S. BATHE; L. BATKOVA; J. R. BATLEY; A. BATTAGLIA; M. BATTISTIN; G. BATTISTONI; F. BAUER; H. S. BAWA; M. BAZALOVA; B. BEARE; T. BEAU; P. H. BEAUCHEMIN; R. BECCHERLE; N. BECERICI; P. BECHTLE; G. A. BECK; H. P. BECK; M. BECKINGHAM; K. H. BECKS; A. J. BEDDALL; A. BEDDALL;arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 ��m and a relative momentum resolution ��p/p = (4.83+/-0.16) \times 10-4 GeV-1 \times pT have been measured for high momentum tracks. 34 pages, 25 figures
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 21 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book , Article , Preprint , Journal , Other literature type 2010Embargo end date: 01 Jan 2010 France, Australia, Netherlands, China (People's Republic of), United States, Italy, Italy, United States, France, Netherlands, Italy, Italy, Italy, France, France, Greece, Germany, France, Italy, France, Spain, Germany, Netherlands, Switzerland, Italy, France, France, Italy, Turkey, Australia, Italy, Netherlands, Belgium, Italy, Spain, China (People's Republic of), France, Italy, France, United States, United Kingdom, Germany, United States, United Kingdom, Germany, United Kingdom, France, Denmark, Italy, Netherlands, France, France, China (People's Republic of)Publisher:Springer Berlin Heidelberg Funded by:GSRI, FCT | LA 1, UKRI | SemenRate Canada/UK: Tran... +1 projectsGSRI ,FCT| LA 1 ,UKRI| SemenRate Canada/UK: Transforming Germplasm and Genetic Quality to Drive Livestock Productivity ,UKRI| RootDetect: Remote Detection and Precision Management of Root HealthG. AAD; E. ABAT; B. ABBOTT; J. ABDALLAH; A. A. ABDELALIM; A. ABDESSELAM; O. ABDINOV; B. ABI; M. ABOLINS; H. ABRAMOWICZ; H. ABREU; E. ACERBI; B. S. ACHARYA; M. ACKERS; D. L. ADAMS; T. N. ADDY; J. ADELMAN; M. ADERHOLZ; C. ADORISIO; P. ADRAGNA; T. ADYE; S. AEFSKY; J. A. AGUILAR SAAVEDRA; M. AHARROUCHE; S. P. AHLEN; F. AHLES; A. AHMAD; H. AHMED; M. AHSAN; G. AIELLI; T. AKDOGAN; P. F. AKESSON; T. P. A. AKESSON; G. AKIMOTO; A. V. AKIMOV; A. AKTAS; M. S. ALAM; M. A. ALAM; J. ALBERT; S. ALBRAND; M. ALEKSA; I. N. ALEKSANDROV; M. ALEPPO; F. ALESSANDRIA; C. ALEXA; G. ALEXANDER; G. ALEXANDRE; T. ALEXOPOULOS; M. ALHROOB; M. ALIEV; G. ALIMONTI; J. ALISON; M. ALIYEV; P. P. ALLPORT; S. E. ALLWOOD SPIERS; J. ALMOND; A. ALOISIO; R. ALON; A. ALONSO; J. ALONSO; M. G. ALVIGGI; K. AMAKO; P. AMARAL; G. AMBROSINI; G. AMBROSIO; C. AMELUNG; V. V. AMMOSOV; A. AMORIM; G. AMOROS; N. AMRAM; C. ANASTOPOULOS; T. ANDEEN; C. F. ANDERS; K. J. ANDERSON; A. ANDREAZZA; V. ANDREI; M. L. ANDRIEUX; X. S. ANDUAGA; A. ANGERAMI; F. ANGHINOLFI; N. ANJOS; A. ANNOVI; A. ANTONAKI; M. ANTONELLI; S. ANTONELLI; J. ANTOS; B. ANTUNOVIC; F. ANULLI; S. AOUN; G. ARABIDZE; I. ARACENA; Y. ARAI; A. T. H. ARCE; J. P. ARCHAMBAULT; S. ARFAOUI; J. F. ARGUIN; T. ARGYROPOULOS; E. ARIK; M. ARIK; A. J. ARMBRUSTER; K. E. ARMS; S. R. ARMSTRONG; O. ARNAEZ; C. ARNAULT; A. ARTAMONOV; D. ARUTINOV; M. ASAI; S. ASAI; R. ASFANDIYAROV; S. ASK; B. ASMAN; D. ASNER; L. ASQUITH; K. ASSAMAGAN; A. ASTBURY; A. ASTVATSATOUROV; B. ATHAR; G. ATOIAN; B. AUBERT; B. AUERBACH; E. AUGE; K. AUGSTEN; M. AUROUSSEAU; N. AUSTIN; G. AVOLIO; R. AVRAMIDOU; D. AXEN; C. AY; G. AZUELOS; Y. AZUMA; M. A. BAAK; G. BACCAGLIONI; C. BACCI; A. M. BACH; H. BACHACOU; K. BACHAS; G. BACHY; M. BACKES; E. BADESCU; P. BAGNAIA; Y. BAI; D. C. BAILEY; T. BAIN; J. T. BAINES; O. K. BAKER; M. D. BAKER; S. BAKER; F. BALTASAR DOS SANTOS PEDROSA; E. BANAS; P. BANERJEE; S. BANERJEE; D. BANFI; A. BANGERT; V. BANSAL; S. P. BARANOV; S. BARANOV; A. BARASHKOU; T. BARBER; E. L. BARBERIO; D. BARBERIS; M. BARBERO; D. Y. BARDIN; T. BARILLARI; M. BARISONZI; T. BARKLOW; N. BARLOW; B. M. BARNETT; R. M. BARNETT; A. BARONCELLI; M. BARONE; A. J. BARR; F. BARREIRO; J. BARREIRO GUIMARAES DA COSTA; P. BARRILLON; V. BARTHELD; H. BARTKO; R. BARTOLDUS; D. BARTSCH; R. L. BATES; S. BATHE; L. BATKOVA; J. R. BATLEY; A. BATTAGLIA; M. BATTISTIN; G. BATTISTONI; F. BAUER; H. S. BAWA; M. BAZALOVA; B. BEARE; T. BEAU; P. H. BEAUCHEMIN; R. BECCHERLE; N. BECERICI; P. BECHTLE; G. A. BECK; H. P. BECK; M. BECKINGHAM; K. H. BECKS; A. J. BEDDALL; A. BEDDALL;arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
arXiv: 1004.5293 , http://arxiv.org/abs/1004.5293
handle: 2066/83974 , 11245/1.333190 , https://repository.ubn.ru.nl/handle/2066/83974 , 10261/378091 , 2434/149370 , 2078.1/138150 , 20.500.11770/156635 , 11390/884357 , 2108/15258 , 11590/131913 , 11573/357211 , 11567/295714 , 11568/136991 , 11587/345051 , 11585/95160 , 11571/279505 , 20.500.12575/69680 , 1721.1/116463 , 2440/112846
The ATLAS Inner Detector is a composite tracking system consisting of silicon pixels, silicon strips and straw tubes in a 2 T magnetic field. Its installation was completed in August 2008 and the detector took part in data- taking with single LHC beams and cosmic rays. The initial detector operation, hardware commissioning and in-situ calibrations are described. Tracking performance has been measured with 7.6 million cosmic-ray events, collected using a tracking trigger and reconstructed with modular pattern-recognition and fitting software. The intrinsic hit efficiency and tracking trigger efficiencies are close to 100%. Lorentz angle measurements for both electrons and holes, specific energy-loss calibration and transition radiation turn-on measurements have been performed. Different alignment techniques have been used to reconstruct the detector geometry. After the initial alignment, a transverse impact parameter resolution of 22.1+/-0.9 ��m and a relative momentum resolution ��p/p = (4.83+/-0.16) \times 10-4 GeV-1 \times pT have been measured for high momentum tracks. 34 pages, 25 figures
Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 97 citations 97 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
visibility 12visibility views 12 download downloads 21 Powered bymore_vert Archivio della Ricer... arrow_drop_down Archivio della Ricerca - Università di PisaArticle . 2010License: CC BY NCData sources: Archivio della Ricerca - Università di PisaUniversity of California: eScholarshipArticle . 2010License: CC BYFull-Text: https://escholarship.org/uc/item/2nr9956hData sources: Bielefeld Academic Search Engine (BASE)Ankara University Open Archive SystemArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)DSpace@MIT (Massachusetts Institute of Technology)Article . 2018License: CC BYData sources: Bielefeld Academic Search Engine (BASE)The University of Adelaide: Digital LibraryArticle . 2010License: CC BY NCFull-Text: http://hdl.handle.net/2440/112846Data sources: Bielefeld Academic Search Engine (BASE)https://publications.goettinge...Part of book or chapter of bookLicense: CC BYData sources: UnpayWallEuropean Physical Journal C: Particles and FieldsArticle . 2010 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)European Physical Journal C: Particles and FieldsArticle . 2010Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2010Data sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2010Data sources: Oxford University Research ArchivePublikationenserver der Georg-August-Universität GöttingenArticle . 2010 . Peer-reviewedINRIA a CCSD electronic archive serverArticle . 2010Data sources: INRIA a CCSD electronic archive serverUniversiteit van Amsterdam Digital Academic RepositoryArticle . 2010Data sources: Universiteit van Amsterdam Digital Academic RepositoryeScholarship - University of CaliforniaArticle . 2010Data sources: eScholarship - University of CaliforniaUniversiteit van Amsterdam: Digital Academic Repository (UvA DARE)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archivio Istituzionale dell'Università della CalabriaArticle . 2010Data sources: Archivio Istituzionale dell'Università della CalabriaArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della Ricerca - Università degli Studi Roma TreArticle . 2010Data sources: Archivio della Ricerca - Università degli Studi Roma TreArchivio della ricerca- Università di Roma La SapienzaArticle . 2010Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2010Data sources: The University of Manchester - Institutional RepositoryUniversity of Copenhagen: ResearchArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2011 . Peer-reviewedData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2010License: arXiv Non-Exclusive DistributionData sources: DatacitePublikationenserver der Georg-August-Universität GöttingenArticle . 2019Göttingen Research Online PublicationsArticle . 2019Data sources: Göttingen Research Online PublicationsArchivio della Ricerca - Università di Roma Tor vergataArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)IRIS UNIPV (Università degli studi di Pavia)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)Archive de l'Observatoire de Paris (HAL)Article . 2010Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2010Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-642-22116-3_2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2015Publisher:Public Library of Science (PLoS) Authors: Zoran Nikoloski; Max Sajitz-Hermstein; Anne Arnold;Plants as sessile organisms cannot escape their environment and have to adapt to any changes in the availability of sunlight and nutrients. The quantification of synthesis costs of metabolites, in terms of consumed energy, is a prerequisite to understand trade-offs arising from energetic limitations. Here, we examine the energy consumption of amino acid synthesis in Arabidopsis thaliana. To quantify these costs in terms of the energy equivalent ATP, we introduce an improved cost measure based on flux balance analysis and apply it to three state-of-the-art metabolic reconstructions to ensure robust results. We present the first systematic in silico analysis of the effect of nitrogen supply (nitrate/ammonium) on individual amino acid synthesis costs as well as of the effect of photoautotrophic and heterotrophic growth conditions, integrating day/night-specific regulation. Our results identify nitrogen supply as a key determinant of amino acid costs, in agreement with experimental evidence. In addition, the association of the determined costs with experimentally observed growth patterns suggests that metabolite synthesis costs are involved in shaping regulation of plant growth. Finally, we find that simultaneous uptake of both nitrogen sources can lead to efficient utilization of energy source, which may be the result of evolutionary optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type , Journal 2015Publisher:Public Library of Science (PLoS) Authors: Zoran Nikoloski; Max Sajitz-Hermstein; Anne Arnold;Plants as sessile organisms cannot escape their environment and have to adapt to any changes in the availability of sunlight and nutrients. The quantification of synthesis costs of metabolites, in terms of consumed energy, is a prerequisite to understand trade-offs arising from energetic limitations. Here, we examine the energy consumption of amino acid synthesis in Arabidopsis thaliana. To quantify these costs in terms of the energy equivalent ATP, we introduce an improved cost measure based on flux balance analysis and apply it to three state-of-the-art metabolic reconstructions to ensure robust results. We present the first systematic in silico analysis of the effect of nitrogen supply (nitrate/ammonium) on individual amino acid synthesis costs as well as of the effect of photoautotrophic and heterotrophic growth conditions, integrating day/night-specific regulation. Our results identify nitrogen supply as a key determinant of amino acid costs, in agreement with experimental evidence. In addition, the association of the determined costs with experimentally observed growth patterns suggests that metabolite synthesis costs are involved in shaping regulation of plant growth. Finally, we find that simultaneous uptake of both nitrogen sources can lead to efficient utilization of energy source, which may be the result of evolutionary optimization.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0116536&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 NetherlandsPublisher:Springer Science and Business Media LLC de Vrije, G.J.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M.;The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content.Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75 degrees C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained.Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-2-12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 163 citations 163 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-2-12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2009 NetherlandsPublisher:Springer Science and Business Media LLC de Vrije, G.J.; Bakker, R.R.; Budde, M.A.W.; Lai, M.H.; Mars, A.E.; Claassen, P.A.M.;The production of hydrogen from biomass by fermentation is one of the routes that can contribute to a future sustainable hydrogen economy. Lignocellulosic biomass is an attractive feedstock because of its abundance, low production costs and high polysaccharide content.Batch cultures of Caldicellulosiruptor saccharolyticus and Thermotoga neapolitana produced hydrogen, carbon dioxide and acetic acid as the main products from soluble saccharides in Miscanthus hydrolysate. The presence of fermentation inhibitors, such as furfural and 5-hydroxylmethyl furfural, in this lignocellulosic hydrolysate was avoided by the mild alkaline-pretreatment conditions at a low temperature of 75 degrees C. Both microorganisms simultaneously and completely utilized all pentoses, hexoses and oligomeric saccharides up to a total concentration of 17 g l-1 in pH-controlled batch cultures. T. neapolitana showed a preference for glucose over xylose, which are the main sugars in the hydrolysate. Hydrogen yields of 2.9 to 3.4 mol H2 per mol of hexose, corresponding to 74 to 85% of the theoretical yield, were obtained in these batch fermentations. The yields were higher with cultures of C. saccharolyticus compared to T. neapolitana. In contrast, the rate of substrate consumption and hydrogen production was higher with T. neapolitana. At substrate concentrations exceeding 30 g l-1, sugar consumption was incomplete, and lower hydrogen yields of 2.0 to 2.4 mol per mol of consumed hexose were obtained.Efficient hydrogen production in combination with simultaneous and complete utilization of all saccharides has been obtained during the growth of thermophilic bacteria on hydrolysate of the lignocellulosic feedstock Miscanthus. The use of thermophilic bacteria will therefore significantly contribute to the energy efficiency of a bioprocess for hydrogen production from biomass.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-2-12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 163 citations 163 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/1754-6834-2-12&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:UKRI | Defining Aqueous Habitabl...UKRI| Defining Aqueous Habitable Conditions in the UniverseAuthors: P. M. Higgins; C. S. Cockell;In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ( 10 9 − 10 6 cells l − 1 ) and total methane production ( 62 − 3 μ M ) despite an increase in peak growth rates ( 0.007 − 0.14 h − 1 ) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Funded by:UKRI | Defining Aqueous Habitabl...UKRI| Defining Aqueous Habitable Conditions in the UniverseAuthors: P. M. Higgins; C. S. Cockell;In order to grow, reproduce and evolve life requires a supply of energy and nutrients. Astrobiology has the challenge of studying life on Earth in environments which are poorly characterized or extreme, usually both, and predicting the habitability of extraterrestrial environments. We have developed a general astrobiological model for assessing the energetic and nutrient availability of poorly characterized environments to predict their potential biological productivity. NutMEG (nutrients, maintenance, energy and growth) can be used to estimate how much biomass an environment could host, and how that life might affect the local chemistry. It requires only an overall catabolic reaction and some knowledge of the local environment to begin making estimations, with many more customizable parameters, such as microbial adaptation. In this study, the model was configured to replicate laboratory data on the growth of methanogens. It was used to predict the effect of temperature and energy/nutrient limitation on their microbial growth rates, total biomass levels, and total biosignature production in laboratory-like conditions to explore how it could be applied to astrobiological problems. As temperature rises from 280 to 330 K, NutMEG predicts exponential drops in final biomass ( 10 9 − 10 6 cells l − 1 ) and total methane production ( 62 − 3 μ M ) despite an increase in peak growth rates ( 0.007 − 0.14 h − 1 ) for a typical methanogen in ideal conditions. This is caused by the increasing cost of microbial maintenance diverting energy away from growth processes. Restricting energy and nutrients exacerbates this trend. With minimal assumptions NutMEG can reliably replicate microbial growth behaviour, but better understanding of the synthesis and maintenance costs life must overcome in different extremes is required to improve its results further. NutMEG can help us assess the theoretical habitability of extraterrestrial environments and predict potential biomass and biosignature production, for example on exoplanets using minimum input parameters to guide observations.
Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of The Royal... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rsif.2020.0588&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Oxford University Press (OUP) Authors: Barbara Bourgade; Nigel P Minton; M Ahsanul Islam;ABSTRACTUnabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
FEMS Microbiology Re... arrow_drop_down FEMS Microbiology ReviewsArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsre/fuab008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FEMS Microbiology Re... arrow_drop_down FEMS Microbiology ReviewsArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsre/fuab008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Journal 2021Publisher:Oxford University Press (OUP) Authors: Barbara Bourgade; Nigel P Minton; M Ahsanul Islam;ABSTRACTUnabated mining and utilisation of petroleum and petroleum resources and their conversion to essential fuels and chemicals have drastic environmental consequences, contributing to global warming and climate change. In addition, fossil fuels are finite resources, with a fast-approaching shortage. Accordingly, research efforts are increasingly focusing on developing sustainable alternatives for chemicals and fuels production. In this context, bioprocesses, relying on microorganisms, have gained particular interest. For example, acetogens use the Wood-Ljungdahl pathway to grow on single carbon C1-gases (CO2 and CO) as their sole carbon source and produce valuable products such as acetate or ethanol. These autotrophs can, therefore, be exploited for large-scale fermentation processes to produce industrially relevant chemicals from abundant greenhouse gases. In addition, genetic tools have recently been developed to improve these chassis organisms through synthetic biology approaches. This review will focus on the challenges of genetically and metabolically modifying acetogens. It will first discuss the physical and biochemical obstacles complicating successful DNA transfer in these organisms. Current genetic tools developed for several acetogens, crucial for strain engineering to consolidate and expand their catalogue of products, will then be described. Recent tool applications for metabolic engineering purposes to allow redirection of metabolic fluxes or production of non-native compounds will lastly be covered.
FEMS Microbiology Re... arrow_drop_down FEMS Microbiology ReviewsArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsre/fuab008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 43 citations 43 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert FEMS Microbiology Re... arrow_drop_down FEMS Microbiology ReviewsArticle . 2021 . Peer-reviewedLicense: OUP Standard Publication ReuseData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/femsre/fuab008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu