- home
- Advanced Search
- Energy Research
- 15. Life on land
- 2. Zero hunger
- 14. Life underwater
- GB
- DE
- Sustainability
- Energy Research
- 15. Life on land
- 2. Zero hunger
- 14. Life underwater
- GB
- DE
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors: Zoe M. Harris; Yiannis Kountouris;doi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015Publisher:MDPI AG Sadroddin Alavipanah; Martin Wegmann; Salman Qureshi; Qihao Weng; Thomas Koellner;doi: 10.3390/su7044689
The Urban Heat Island (UHI) is the phenomenon of altered increased temperatures in urban areas compared to their rural surroundings. UHIs grow and intensify under extreme hot periods, such as during heat waves, which can affect human health and also increase the demand for energy for cooling. This study applies remote sensing and land use/land cover (LULC) data to assess the cooling effect of varying urban vegetation cover, especially during extreme warm periods, in the city of Munich, Germany. To compute the relationship between Land Surface Temperature (LST) and Land Use Land Cover (LULC), MODIS eight-day interval LST data for the months of June, July and August from 2002 to 2012 and the Corine Land Cover (CLC) database were used. Due to similarities in the behavior of surface temperature of different CLCs, some classes were reclassified and combined to form two major, rather simplified, homogenized classes: one of built-up area and one of urban vegetation. The homogenized map was merged with the MODIS eight-day interval LST data to compute the relationship between them. The results revealed that (i) the cooling effect accrued from urban vegetation tended to be non-linear; and (ii) a remarkable and stronger cooling effect in terms of LST was identified in regions where the proportion of vegetation cover was between seventy and almost eighty percent per square kilometer. The results also demonstrated that LST within urban vegetation was affected by the temperature of the surrounding built-up and that during the well-known European 2003 heat wave, suburb areas were cooler from the core of the urbanized region. This study concluded that the optimum green space for obtaining the lowest temperature is a non-linear trend. This could support urban planning strategies to facilitate appropriate applications to mitigate heat-stress in urban area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 134 citations 134 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Embargo end date: 14 Nov 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | Engineering Driven Sustai...UKRI| Engineering Driven Sustainable Supply Networks - A UK/India Collaborative StudyAuthors: Naoum Tsolakis; Foivos Anastasiadis; Jagjit Singh Srai;The purpose of this research is to introduce a qualitative sustainability performance assessment framework for food supply networks, based on the perception of their key stakeholders’ upper management. Moreover, the paper provides industry insights by exemplifying the value of the proposed framework for the UK food industry. A critical review on the most acknowledged sustainability assessment methodologies and tools resulted in the synthesis of the proposed framework. An illustrative application follows, based on data from semi-structured interviews with C-level executives from key players of the UK poultry sector. The results demonstrate an easy-to-use approach, with a comprehensive and sharp outcome on supply chain sustainability performance assessment. Industry insights demonstrate an adequate sustainability performance with respect to the entire supply chain. A detailed view on different echelons reveals specific areas that could be improved, such as the environmental performance at both farming (production) and processing levels. This work extends the scope of current sustainability performance assessment tools by providing a tangible triple bottom-line overview, as well as echelon-specific and indicator-specific details, in a user-friendly, yet straightforward, way. UK food industry insights are valuable for practitioners and academics. The illustration is based exclusively on C-level executives’ viewpoint; thus, any generalization of the results should be considered to this effect. Supply chain stakeholders, policy-makers, and researchers could perform a quick and reliable supply network sustainability performance assessment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:UKRI | Urban green infrastructur...UKRI| Urban green infrastructure: optimising local food and fuel production for regional sustainability and resilienceAuthors: Miriam C. Dobson; Philip H. Warren; Jill L. Edmondson;doi: 10.3390/su13052628
Interest in urban food production is growing; recent research has highlighted its potential to increase food security and reduce the environmental impact of food production. However, resource demands of urban horticulture are poorly understood. Here, we use allotment gardens in the United Kingdom to investigate resource demands of urban horticultural production across the country. We conducted a nationwide citizen science project using year-long allotment ‘diaries’ with allotment gardeners (n = 163). We analysed a variety of resources: transportation; time; water use; inputs of compost, manure and topsoil; and inputs of fertilisers, pest control and weed control. We found that, overall, an allotment demands 87 annual visits, travelling 139 km to and from the plot; 7 fertiliser additions; 4 pest control additions; and 2 weed control additions. On average, each kilogram of food produced used 0.4 hours’ labour, 16.9 L of water, 0.2 L of topsoil, 2.2 L of manure, and 1.9 L of compost. As interest in urban horticultural production grows, and policy makers build urban horticultural spaces into future sustainable cities, it is of key importance that this is carried out in a way that minimises resource requirements, and we demonstrate here that avenues exist for the diversion of municipal compostable waste and household-level city food waste for this purpose.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Authors: Jingzhong Li; Yongmei Liu; Mingming Cao; Bing Xue;doi: 10.3390/su70911967
Vegetation indicators and spatial distribution characteristics are the core and basis to study the complex human-natural coupled system. In this paper, with Landsat 5 and Landsat 8 remote sensing data, we quantitatively estimated vegetation coverage in Henan Province, China. According to the urbanization rate, altitude, slope degree, and slope exposure, we analyzed spatial and temporal variation laws of vegetation coverage under the action of different factors to provide a reference for the improvement of the ecological environment and the quality assessment of Chinese granary. From 2000 to 2013, the vegetation coverage in Henan Province declined by 30.49% and the ecological environment deteriorated. The spatial change of vegetation coverage was evenly distributed in Henan Province. The vegetation coverage was increased in the west, south, and southwest parts of Henan Province and slightly decreased in the central, east, and the eastern part of Taihang Mountain. Vegetation coverage in a city was related to its population urbanization rate. The population urbanization rate was often negatively correlated with the vegetation coverage. According to the results of terrain factors based analysis, the low-altitude areas were in a good vegetation cover condition with the high vegetation coverage grade; the areas with a smaller slope degree had the large vegetation coverage and the coverage decreased with the increase in the slope degree; the coverage showed no significant difference between sunny and shady slopes and was less limited by light, temperature, and humidity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70911967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70911967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 GermanyPublisher:MDPI AG Authors: Lukas Beule; Ena Lehtsaar; Anna Rathgeb; Petr Karlovsky;doi: 10.3390/su11102925
Background: Temperate agroforestry is regarded as a sustainable alternative to monoculture agriculture due to enhanced provisioning of ecosystem services. Plant health and food safety are crucial requirements for sustainable agriculture; however, studies of fungal diseases and mycotoxin contamination of crops grown under temperate agroforestry are lacking. This study therefore aimed to compare fungal colonization and mycotoxin contamination of crops grown in temperate agroforestry against conventional monoculture. Methods: The biomass of plant pathogenic fungi in oilseed rape plants and barley and wheat grain harvested in 2016 to 2018 at four paired agroforestry and monoculture sites was quantified using species-specific real-time PCR. Mycotoxin content of barley and wheat grain was determined by HPLC-MS/MS. Results: The colonization of oilseed rape plants with the vascular pathogen Verticillium longisporum and wheat grain with the head blight pathogen Fusarium tricinctum was lower in agroforestry than in conventional monoculture. Mycotoxin content of barley and wheat grain did not differ between agroforestry and monoculture systems and did not exceed the legal limits of the EU. Remarkably, fumonisin B1 was detected in wheat grains at two sites in two years, yet the low levels found do not raise food safety concerns. No differences were found between the two production systems with regard to infection of wheat and barley grain with five Fusarium species (F. avenaceum, F. culmorum, F. graminearum, F. poae, and F. proliferatum) and oilseed rape with fungal pathogens Leptosphaeria biglobosa, Leptosphaeria maculans, and Sclerotinia sclerotiorum. Conclusions: Temperate agroforestry does not negatively affect the infection of wheat, barley and oilseed rape with major fungal pathogens though it may suppress the infection of oilseed rape with V. longisporum and wheat grain with F. tricinctum. Furthermore, temperate agroforestry does not increase mycotoxin contamination of barley and wheat. Therefore, temperate agroforestry does not negatively affect food safety.
Sustainability arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthShu-Di Fan; Yue-Ming Hu; Lu Wang; Zhen-Hua Liu; Zhou Shi; Wen-Bin Wu; Yu-Chun Pan; Guang-Xing Wang; A-Xing Zhu; Bo Li;doi: 10.3390/su10103459
To increase the spatial resolution of Soil Moisture Active Passive (SMAP), this study modifies the downscaling factor model based on the Temperature Vegetation Drought Index (TVDI) using data from the Project for On-Board Autonomy (PROBA-V). In the modified model, TVDI parameters were derived from the temperature-vegetation space and the Enhanced Vegetation Index (EVI). This study was conducted in the north China region using SMAP, PROBA-V, and Moderate Resolution Imaging Spectroradiometer satellite images. The 9-km spatial resolution SMAP data was downscaled to 0.3-km spatial resolution soil moisture using a modified downscaling method. Downscaling accuracies from the original and modified downscaling factor models were compared based on field observations. The results show that both methods generated similar spatial distributions in which soil moisture estimates increased as vegetation coverage increased from built-up areas to forest. However, based on the root mean square error between observations and estimations, the modified model demonstrated an increased estimation accuracy of 4.2% for soil moisture compared to the original method. This study also implies that downscaled soil moisture shows promise as a data source for subsequent watershed scale studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:UKRI | Formulating Value Chains ...UKRI| Formulating Value Chains for Orphan Crops in AfricaAuthors: Cesar Revoredo-Giha; Hasibi Zavala-Nacul; Luiza Toma;doi: 10.3390/su14052704
Orphan crops are those crops that did not receive the same attention of the research community as in the case of staples such as wheat, maize, or rice despite their regional and nutritional importance. A relatively recent trend has been promoting their research to improve their productivity and resilience to environmental shocks. However, their impact on consumers’ nutrition has been analysed only considering the crops individually and not in the context of the diet. This is important because an increase in the consumption of one product may trigger changes in the other products that conform to the diet. The purpose of this paper is to assess the potential impact, in terms of food choices and nutrition, of increasing the consumption of orphan crops (represented by millet) in the Kenyan diet. This is carried out using a microeconomic-based methodology, which augments the original consumer problem with a constraint regarding the amount of the orphan crop on the diet. To compute the required elasticities for the method, three demand systems—i.e., for rural, less affluent urban, more affluent urban households—were estimated using the 2015–16 Kenyan Integrated Household Survey and the two-step approach to address the zero consumption for some food categories; the second step was modelled using the Linquad demand model. The results indicate that although the orphan crops have the capacity to improve some of the nutrients (e.g., vitamins and minerals), in net terms, as measured by the aggregated nutritional indicator the improvement is somewhat limited, the improvements occur in the rural and the less affluent population.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 11 Aug 2021 United KingdomPublisher:MDPI AG Scheren, Peter; Tyrrell, Peter; Brehony, Peadar; Allan, James R; Thorn, Jessica PR; Chinho, Tendai; Katerere, Yemi; Ushie, Vanessa; Worden, Jeffrey S;handle: 10023/24824
Africa has experienced unprecedented growth across a range of development indices for decades. However, this growth is often at the expense of Africa’s biodiversity and ecosystems, jeopardizing the livelihoods of millions of people depending on the goods and services provided by nature, with broader consequences for achieving the United Nations Sustainable Development Goals. Encouragingly, Africa can still take a more sustainable path. Here, we synthesize the key learnings from the African Ecological Futures project. We report results from a participatory scenario planning process around four collectively-owned scenarios and narratives for the evolution of Africa’s ecological resource base over the next 50 years. These scenarios provided a lens to review pressures on the natural environment, through the drivers, pressures, state, impacts, and responses (DPSIR) framework. Based on the outcomes from each of these steps, we discuss opportunities to reorient Africa’s development trajectories towards a sustainable path. These opportunities fall under the broad categories of “effective natural resource governance”, “strategic planning capabilities”, “investment safeguards and frameworks”, and “new partnership models”. Underpinning all these opportunities are “data, management information, and decision support frameworks”. This work can help inform collaborative action by a broad set of actors with an interest in ensuring a sustainable ecological future for Africa.
CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10023/24824Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 419 Powered bymore_vert CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10023/24824Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors: Zoe M. Harris; Yiannis Kountouris;doi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthKamalakanta Sahoo; Richard Bergman; Sevda Alanya-Rosenbaum; Hongmei Gu; Shaobo Liang;doi: 10.3390/su11174722
Climate change, environmental degradation, and limited resources are motivations for sustainable forest management. Forests, the most abundant renewable resource on earth, used to make a wide variety of forest-based products for human consumption. To provide a scientific measure of a product’s sustainability and environmental performance, the life cycle assessment (LCA) method is used. This article provides a comprehensive review of environmental performances of forest-based products including traditional building products, emerging (mass-timber) building products and nanomaterials using attributional LCA. Across the supply chain, the product manufacturing life-cycle stage tends to have the largest environmental impacts. However, forest management activities and logistics tend to have the greatest economic impact. In addition, environmental trade-offs exist when regulating emissions as indicated by the latest traditional wood building product LCAs. Interpretation of these LCA results can guide new product development using biomaterials, future (mass) building systems and policy-making on mitigating climate change. Key challenges include handling of uncertainties in the supply chain and complex interactions of environment, material conversion, resource use for product production and quantifying the emissions released.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11174722&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2015Publisher:MDPI AG Sadroddin Alavipanah; Martin Wegmann; Salman Qureshi; Qihao Weng; Thomas Koellner;doi: 10.3390/su7044689
The Urban Heat Island (UHI) is the phenomenon of altered increased temperatures in urban areas compared to their rural surroundings. UHIs grow and intensify under extreme hot periods, such as during heat waves, which can affect human health and also increase the demand for energy for cooling. This study applies remote sensing and land use/land cover (LULC) data to assess the cooling effect of varying urban vegetation cover, especially during extreme warm periods, in the city of Munich, Germany. To compute the relationship between Land Surface Temperature (LST) and Land Use Land Cover (LULC), MODIS eight-day interval LST data for the months of June, July and August from 2002 to 2012 and the Corine Land Cover (CLC) database were used. Due to similarities in the behavior of surface temperature of different CLCs, some classes were reclassified and combined to form two major, rather simplified, homogenized classes: one of built-up area and one of urban vegetation. The homogenized map was merged with the MODIS eight-day interval LST data to compute the relationship between them. The results revealed that (i) the cooling effect accrued from urban vegetation tended to be non-linear; and (ii) a remarkable and stronger cooling effect in terms of LST was identified in regions where the proportion of vegetation cover was between seventy and almost eighty percent per square kilometer. The results also demonstrated that LST within urban vegetation was affected by the temperature of the surrounding built-up and that during the well-known European 2003 heat wave, suburb areas were cooler from the core of the urbanized region. This study concluded that the optimum green space for obtaining the lowest temperature is a non-linear trend. This could support urban planning strategies to facilitate appropriate applications to mitigate heat-stress in urban area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 134 citations 134 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su7044689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2018Embargo end date: 14 Nov 2018 United KingdomPublisher:MDPI AG Funded by:UKRI | Engineering Driven Sustai...UKRI| Engineering Driven Sustainable Supply Networks - A UK/India Collaborative StudyAuthors: Naoum Tsolakis; Foivos Anastasiadis; Jagjit Singh Srai;The purpose of this research is to introduce a qualitative sustainability performance assessment framework for food supply networks, based on the perception of their key stakeholders’ upper management. Moreover, the paper provides industry insights by exemplifying the value of the proposed framework for the UK food industry. A critical review on the most acknowledged sustainability assessment methodologies and tools resulted in the synthesis of the proposed framework. An illustrative application follows, based on data from semi-structured interviews with C-level executives from key players of the UK poultry sector. The results demonstrate an easy-to-use approach, with a comprehensive and sharp outcome on supply chain sustainability performance assessment. Industry insights demonstrate an adequate sustainability performance with respect to the entire supply chain. A detailed view on different echelons reveals specific areas that could be improved, such as the environmental performance at both farming (production) and processing levels. This work extends the scope of current sustainability performance assessment tools by providing a tangible triple bottom-line overview, as well as echelon-specific and indicator-specific details, in a user-friendly, yet straightforward, way. UK food industry insights are valuable for practitioners and academics. The illustration is based exclusively on C-level executives’ viewpoint; thus, any generalization of the results should be considered to this effect. Supply chain stakeholders, policy-makers, and researchers could perform a quick and reliable supply network sustainability performance assessment.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu22 citations 22 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10093148&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:UKRI | Urban green infrastructur...UKRI| Urban green infrastructure: optimising local food and fuel production for regional sustainability and resilienceAuthors: Miriam C. Dobson; Philip H. Warren; Jill L. Edmondson;doi: 10.3390/su13052628
Interest in urban food production is growing; recent research has highlighted its potential to increase food security and reduce the environmental impact of food production. However, resource demands of urban horticulture are poorly understood. Here, we use allotment gardens in the United Kingdom to investigate resource demands of urban horticultural production across the country. We conducted a nationwide citizen science project using year-long allotment ‘diaries’ with allotment gardeners (n = 163). We analysed a variety of resources: transportation; time; water use; inputs of compost, manure and topsoil; and inputs of fertilisers, pest control and weed control. We found that, overall, an allotment demands 87 annual visits, travelling 139 km to and from the plot; 7 fertiliser additions; 4 pest control additions; and 2 weed control additions. On average, each kilogram of food produced used 0.4 hours’ labour, 16.9 L of water, 0.2 L of topsoil, 2.2 L of manure, and 1.9 L of compost. As interest in urban horticultural production grows, and policy makers build urban horticultural spaces into future sustainable cities, it is of key importance that this is carried out in a way that minimises resource requirements, and we demonstrate here that avenues exist for the diversion of municipal compostable waste and household-level city food waste for this purpose.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13052628&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:MDPI AG Authors: Jingzhong Li; Yongmei Liu; Mingming Cao; Bing Xue;doi: 10.3390/su70911967
Vegetation indicators and spatial distribution characteristics are the core and basis to study the complex human-natural coupled system. In this paper, with Landsat 5 and Landsat 8 remote sensing data, we quantitatively estimated vegetation coverage in Henan Province, China. According to the urbanization rate, altitude, slope degree, and slope exposure, we analyzed spatial and temporal variation laws of vegetation coverage under the action of different factors to provide a reference for the improvement of the ecological environment and the quality assessment of Chinese granary. From 2000 to 2013, the vegetation coverage in Henan Province declined by 30.49% and the ecological environment deteriorated. The spatial change of vegetation coverage was evenly distributed in Henan Province. The vegetation coverage was increased in the west, south, and southwest parts of Henan Province and slightly decreased in the central, east, and the eastern part of Taihang Mountain. Vegetation coverage in a city was related to its population urbanization rate. The population urbanization rate was often negatively correlated with the vegetation coverage. According to the results of terrain factors based analysis, the low-altitude areas were in a good vegetation cover condition with the high vegetation coverage grade; the areas with a smaller slope degree had the large vegetation coverage and the coverage decreased with the increase in the slope degree; the coverage showed no significant difference between sunny and shady slopes and was less limited by light, temperature, and humidity.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70911967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su70911967&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2019 GermanyPublisher:MDPI AG Authors: Lukas Beule; Ena Lehtsaar; Anna Rathgeb; Petr Karlovsky;doi: 10.3390/su11102925
Background: Temperate agroforestry is regarded as a sustainable alternative to monoculture agriculture due to enhanced provisioning of ecosystem services. Plant health and food safety are crucial requirements for sustainable agriculture; however, studies of fungal diseases and mycotoxin contamination of crops grown under temperate agroforestry are lacking. This study therefore aimed to compare fungal colonization and mycotoxin contamination of crops grown in temperate agroforestry against conventional monoculture. Methods: The biomass of plant pathogenic fungi in oilseed rape plants and barley and wheat grain harvested in 2016 to 2018 at four paired agroforestry and monoculture sites was quantified using species-specific real-time PCR. Mycotoxin content of barley and wheat grain was determined by HPLC-MS/MS. Results: The colonization of oilseed rape plants with the vascular pathogen Verticillium longisporum and wheat grain with the head blight pathogen Fusarium tricinctum was lower in agroforestry than in conventional monoculture. Mycotoxin content of barley and wheat grain did not differ between agroforestry and monoculture systems and did not exceed the legal limits of the EU. Remarkably, fumonisin B1 was detected in wheat grains at two sites in two years, yet the low levels found do not raise food safety concerns. No differences were found between the two production systems with regard to infection of wheat and barley grain with five Fusarium species (F. avenaceum, F. culmorum, F. graminearum, F. poae, and F. proliferatum) and oilseed rape with fungal pathogens Leptosphaeria biglobosa, Leptosphaeria maculans, and Sclerotinia sclerotiorum. Conclusions: Temperate agroforestry does not negatively affect the infection of wheat, barley and oilseed rape with major fungal pathogens though it may suppress the infection of oilseed rape with V. longisporum and wheat grain with F. tricinctum. Furthermore, temperate agroforestry does not increase mycotoxin contamination of barley and wheat. Therefore, temperate agroforestry does not negatively affect food safety.
Sustainability arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 30 citations 30 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Sustainability arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11102925&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthShu-Di Fan; Yue-Ming Hu; Lu Wang; Zhen-Hua Liu; Zhou Shi; Wen-Bin Wu; Yu-Chun Pan; Guang-Xing Wang; A-Xing Zhu; Bo Li;doi: 10.3390/su10103459
To increase the spatial resolution of Soil Moisture Active Passive (SMAP), this study modifies the downscaling factor model based on the Temperature Vegetation Drought Index (TVDI) using data from the Project for On-Board Autonomy (PROBA-V). In the modified model, TVDI parameters were derived from the temperature-vegetation space and the Enhanced Vegetation Index (EVI). This study was conducted in the north China region using SMAP, PROBA-V, and Moderate Resolution Imaging Spectroradiometer satellite images. The 9-km spatial resolution SMAP data was downscaled to 0.3-km spatial resolution soil moisture using a modified downscaling method. Downscaling accuracies from the original and modified downscaling factor models were compared based on field observations. The results show that both methods generated similar spatial distributions in which soil moisture estimates increased as vegetation coverage increased from built-up areas to forest. However, based on the root mean square error between observations and estimations, the modified model demonstrated an increased estimation accuracy of 4.2% for soil moisture compared to the original method. This study also implies that downscaled soil moisture shows promise as a data source for subsequent watershed scale studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:UKRI | Formulating Value Chains ...UKRI| Formulating Value Chains for Orphan Crops in AfricaAuthors: Cesar Revoredo-Giha; Hasibi Zavala-Nacul; Luiza Toma;doi: 10.3390/su14052704
Orphan crops are those crops that did not receive the same attention of the research community as in the case of staples such as wheat, maize, or rice despite their regional and nutritional importance. A relatively recent trend has been promoting their research to improve their productivity and resilience to environmental shocks. However, their impact on consumers’ nutrition has been analysed only considering the crops individually and not in the context of the diet. This is important because an increase in the consumption of one product may trigger changes in the other products that conform to the diet. The purpose of this paper is to assess the potential impact, in terms of food choices and nutrition, of increasing the consumption of orphan crops (represented by millet) in the Kenyan diet. This is carried out using a microeconomic-based methodology, which augments the original consumer problem with a constraint regarding the amount of the orphan crop on the diet. To compute the required elasticities for the method, three demand systems—i.e., for rural, less affluent urban, more affluent urban households—were estimated using the 2015–16 Kenyan Integrated Household Survey and the two-step approach to address the zero consumption for some food categories; the second step was modelled using the Linquad demand model. The results indicate that although the orphan crops have the capacity to improve some of the nutrients (e.g., vitamins and minerals), in net terms, as measured by the aggregated nutritional indicator the improvement is somewhat limited, the improvements occur in the rural and the less affluent population.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052704&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 11 Aug 2021 United KingdomPublisher:MDPI AG Scheren, Peter; Tyrrell, Peter; Brehony, Peadar; Allan, James R; Thorn, Jessica PR; Chinho, Tendai; Katerere, Yemi; Ushie, Vanessa; Worden, Jeffrey S;handle: 10023/24824
Africa has experienced unprecedented growth across a range of development indices for decades. However, this growth is often at the expense of Africa’s biodiversity and ecosystems, jeopardizing the livelihoods of millions of people depending on the goods and services provided by nature, with broader consequences for achieving the United Nations Sustainable Development Goals. Encouragingly, Africa can still take a more sustainable path. Here, we synthesize the key learnings from the African Ecological Futures project. We report results from a participatory scenario planning process around four collectively-owned scenarios and narratives for the evolution of Africa’s ecological resource base over the next 50 years. These scenarios provided a lens to review pressures on the natural environment, through the drivers, pressures, state, impacts, and responses (DPSIR) framework. Based on the outcomes from each of these steps, we discuss opportunities to reorient Africa’s development trajectories towards a sustainable path. These opportunities fall under the broad categories of “effective natural resource governance”, “strategic planning capabilities”, “investment safeguards and frameworks”, and “new partnership models”. Underpinning all these opportunities are “data, management information, and decision support frameworks”. This work can help inform collaborative action by a broad set of actors with an interest in ensuring a sustainable ecological future for Africa.
CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10023/24824Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 12visibility views 12 download downloads 419 Powered bymore_vert CORE arrow_drop_down University of St Andrews: Digital Research RepositoryArticle . 2022License: CC BYFull-Text: http://hdl.handle.net/10023/24824Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13168894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu