- home
- Advanced Search
- Energy Research
- physical sciences
- GB
- EU
- Energy Research
- physical sciences
- GB
- EU
description Publicationkeyboard_double_arrow_right Article , Journal 2011 ItalyPublisher:Optica Publishing Group Authors:Marini, Andrea;
Marini, Andrea
Marini, Andrea in OpenAIRESkryabin, Dmitry V.;
Malomed, Boris;Skryabin, Dmitry V.
Skryabin, Dmitry V. in OpenAIREUsing a combination of numerical and analytical techniques we demonstrate that a metal stripe surrounded by the active and passive dielectrics supports propagation of stable spatial surface-plasmon solitons. Our analytical methods include the multiple scale reduction of the Maxwell's equations to the coupled Ginzburg-Landau system, and the soliton perturbation theory developed in the framework of the latter.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.19.006616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.19.006616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 United KingdomPublisher:Optica Publishing Group doi: 10.1364/oe.20.028707
pmid: 23263108
Optical potential energy landscapes created using acousto-optical deflectors are characterized via solvent-driven colloidal particles. The full potential energy of both single optical traps and complex landscapes composed of multiple overlapping traps are determined using a simple force balance argument. The potential of a single trap is shown to be well described by a Gaussian trap with stiffness found to be consistent with those obtained by a thermal equilibrium method. We also obtain directly the depth of the well, which (as with stiffness) varies with laser power. Finally, various complex systems ranging from double-well potentials to random landscapes are generated from individually controlled optical traps. Predictions of these landscapes as a sum of single Gaussian wells are shown to be a good description of experimental results, offering the potential for fully controlled design of optical landscapes, constructed from single optical traps.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.20.028707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1364/oe.20.028707&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2010Publisher:Elsevier BV Funded by:NIH | CONFORMATIONAL CHANGES IN..., NSF | Photobiology of Vision & ..., NSF | PFC: Center for the Physi...NIH| CONFORMATIONAL CHANGES INVOLVED IN ELECTRON TRANSFER IN CYTOCHROME BC1 COMPLEXES ,NSF| Photobiology of Vision & Photosynthesis ,NSF| PFC: Center for the Physics of Living CellsAuthors:Arvi Freiberg;
Melih Sener; Johan Strümpfer; Klaus Schulten; +2 AuthorsArvi Freiberg
Arvi Freiberg in OpenAIREArvi Freiberg;
Melih Sener; Johan Strümpfer; Klaus Schulten; C. Neil Hunter; John A. Timney;Arvi Freiberg
Arvi Freiberg in OpenAIREPhotosynthetic chromatophore vesicles found in some purple bacteria constitute one of the simplest light-harvesting systems in nature. The overall architecture of chromatophore vesicles and the structural integration of vesicle function remain poorly understood despite structural information being available on individual constituent proteins. An all-atom structural model for an entire chromatophore vesicle is presented, which improves upon earlier models by taking into account the stoichiometry of core and antenna complexes determined by the absorption spectrum of intact vesicles in Rhodobacter sphaeroides, as well as the well-established curvature-inducing properties of the dimeric core complex. The absorption spectrum of low-light-adapted vesicles is shown to correspond to a light-harvesting-complex 2 to reaction center ratio of 3:1. A structural model for a vesicle consistent with this stoichiometry is developed and used in the computation of excitonic properties. Considered also is the packing density of antenna and core complexes that is high enough for efficient energy transfer and low enough for quinone diffusion from reaction centers to cytochrome bc(1) complexes.
Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 60 citations 60 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Biophysical Journal arrow_drop_down Biophysical JournalArticle . 2010License: Elsevier Non-CommercialData sources: BASE (Open Access Aggregator)Biophysical JournalArticle . 2010 . Peer-reviewedLicense: Elsevier Non-CommercialData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.bpj.2010.04.013&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Preprint , Journal 2012Embargo end date: 01 Jan 2012 Italy, France, Spain, Italy, France, Italy, France, Italy, Netherlands, United Kingdom, Spain, Italy, Italy, Italy, Spain, United Kingdom, Italy, Switzerland, Spain, France, United Kingdom, United Kingdom, United Kingdom, France, France, Italy, Spain, Netherlands, France, France, France, Italy, Netherlands, FrancePublisher:Springer Science and Business Media LLC Publicly fundedFunded by:SNSF | Search for New Physics in..., SNSF | High Precision CP Violati..., SNSF | Particle Physics in the L...SNSF| Search for New Physics in Electroweak Penguin Transitions at LHCb ,SNSF| High Precision CP Violation Physics at LHCb ,SNSF| Particle Physics in the LHC EraAlexey Novoselov; J. Magnin; V. N. La Thi; Naylya Sagidova; Antonio Falabella; Albert Bursche; M. Matveev;Evelina Gersabeck;
Evelina Gersabeck
Evelina Gersabeck in OpenAIREV. Tisserand;
Maximilian Schlupp;V. Tisserand
V. Tisserand in OpenAIREC. Potterat;
C. Potterat
C. Potterat in OpenAIRECristina Lazzeroni;
U. Kerzel; Marie Helene Schune; B. Schmidt;Cristina Lazzeroni
Cristina Lazzeroni in OpenAIREC. J. Parkinson;
C. J. Parkinson
C. J. Parkinson in OpenAIREB. Sciascia;
F. Xing; G. N. Patrick; Massimiliano Ferro-Luzzi;B. Sciascia
B. Sciascia in OpenAIRER. Vazquez Gomez;
P. M. Bjørnstad; O. Francisco; J. Dickens; B. Pietrzyk; Jessica Prisciandaro; J. Buytaert; Nazim Hussain; Marcin Kucharczyk; Marcin Kucharczyk; Marcin Kucharczyk;R. Vazquez Gomez
R. Vazquez Gomez in OpenAIRET. E. Latham;
I. R. Kenyon; H. Ruiz;T. E. Latham
T. E. Latham in OpenAIRED. Souza;
F. Eisele; Th. S. Bauer; E. van Herwijnen; A. Bates; N. A. Smith; R. Silva Coutinho; Marc-Olivier Bettler; Alessia Satta; J. Anderson; Leonid Kravchuk; C. D'Ambrosio; D. Savrina; J. Panman;D. Souza
D. Souza in OpenAIREManuel Schiller;
Z. Mathe; Alexey Zhelezov;Manuel Schiller
Manuel Schiller in OpenAIREE. Grauges;
Timothy Gershon; Timothy Gershon; S. C. Haines; David Ward;E. Grauges
E. Grauges in OpenAIREA. Puig Navarro;
D. Wiedner; T. Huse; K. Hennessy; P. Rodriguez Perez; Andrey Vorobyev; Po-Hsun Chen; Po-Hsun Chen;A. Puig Navarro
A. Puig Navarro in OpenAIREEvgeny Gushchin;
Jack Benton; Sebastian Bachmann; R. S. Huston; H. Dijkstra; A. D. Nguyen; Gregory Ciezarek; N. Chiapolini; A. Borgia;Evgeny Gushchin
Evgeny Gushchin in OpenAIREAdriano Lai;
S. Eidelman; Ronan McNulty; Daniel Lacarrere; J. Rouvinet; Krzysztof Grzegorz Sobczak; Minh Tâm Tran; A. D. Webber;Adriano Lai
Adriano Lai in OpenAIRET. Lesiak;
Y.Y. Li;T. Lesiak
T. Lesiak in OpenAIREMikhail Zavertyaev;
Ph. Charpentier; Ronan Wallace;Mikhail Zavertyaev
Mikhail Zavertyaev in OpenAIREGiulia Manca;
Marcin Chrzaszcz; P. Diniz Batista; Dmitry Popov; C. Voß;Giulia Manca
Giulia Manca in OpenAIREV. V. Gligorov;
V. V. Gligorov
V. V. Gligorov in OpenAIREIvan Belyaev;
Ivan Belyaev
Ivan Belyaev in OpenAIREAndrey Golutvin;
Andrey Golutvin; Andrey Golutvin; W. Witzeling;Andrey Golutvin
Andrey Golutvin in OpenAIREAlessandro Petrolini;
Alessandro Petrolini
Alessandro Petrolini in OpenAIREJ. van Tilburg;
Thomas Blake;J. van Tilburg
J. van Tilburg in OpenAIREA. Nomerotski;
A. Nomerotski;A. Nomerotski
A. Nomerotski in OpenAIRER. Lefèvre;
V.G. Shevchenko; Jing Wang; Robert Currie;R. Lefèvre
R. Lefèvre in OpenAIRES. Roiser;
Rustem Dzhelyadin; Edwige Tournefier; Edwige Tournefier; K. De Bruyn; A. Gomes; Giacomo Graziani; A. Richards; Marc S. Williams;S. Roiser
S. Roiser in OpenAIREPatrick Owen;
A. Palano; Piotr Morawski; J. P. Lees; P. Shatalov; T. Brambach;Patrick Owen
Patrick Owen in OpenAIREM. Seco;
Nikolay Bondar; Marco Clemencic; K. Ciba; E. Lanciotti; Iurii Raniuk; P. Henrard;G. Raven;
C. Langenbruch; V. Fave; Andrew Cook; G. D. Patel; Miriam Gandelman; S. Belogurov; Harry Cliff; Sandra Amato; David Websdale; F. Dupertuis; O. Kochebina;G. Raven
G. Raven in OpenAIREV. A. Kudryavtsev;
Neville Harnew; E. Ben-Haim;V. A. Kudryavtsev
V. A. Kudryavtsev in OpenAIREOlaf Steinkamp;
Oleg Yushchenko; Haonan Lu; Chung Nguyen-Mau; A. Camboni; Oliver Grünberg; Ilya Komarov; J. A. Hernando Morata;Olaf Steinkamp
Olaf Steinkamp in OpenAIRERoberta Santacesaria;
Carla Göbel;Roberta Santacesaria
Roberta Santacesaria in OpenAIREFrancesca Dordei;
Francesca Dordei
Francesca Dordei in OpenAIREDaniel Charles Craik;
Daniel Charles Craik
Daniel Charles Craik in OpenAIREJ. J. Saborido Silva;
J. J. Saborido Silva
J. J. Saborido Silva in OpenAIRED. A. Milanes;
S. Schleich; A. Sparkes; Rolf Lindner; Vitaly Vorobyev; T. M. Karbach; A. Dosil Suárez; Hamish Gordon; M. Whitehead;D. A. Milanes
D. A. Milanes in OpenAIREGiampiero Mancinelli;
L. A. Granado Cardoso;Giampiero Mancinelli
Giampiero Mancinelli in OpenAIREBiagio Saitta;
Mehul Patel;Biagio Saitta
Biagio Saitta in OpenAIREA. N. Solomin;
A. N. Solomin
A. N. Solomin in OpenAIRED. Gascon;
D. Voong;D. Gascon
D. Gascon in OpenAIREX. Cid Vidal;
Lain-Jong Li; Thierry Gys; R. Muresan; E. Teodorescu; Tjeerd Ketel; T. Pilař; Guy Wilkinson; Thomas Ruf;X. Cid Vidal
X. Cid Vidal in OpenAIREV. Obraztsov;
V. Obraztsov
V. Obraztsov in OpenAIREVincenzo Vagnoni;
B. Gui; J. Mylroie-Smith; Oleg Maev; Oleg Maev; M. Calvi; A. Martens;Vincenzo Vagnoni
Vincenzo Vagnoni in OpenAIREPaolo Gandini;
Pierluigi Campana; Raymond Mountain; A. Mac Raighne;Paolo Gandini
Paolo Gandini in OpenAIREKonstantin Belous;
Mikhail Shapkin;Konstantin Belous
Konstantin Belous in OpenAIREA. A. Alves;
D. Elsby;A. A. Alves
A. A. Alves in OpenAIREG. D. Lafferty;
D. van Eijk; C. Hadjivasiliou;G. D. Lafferty
G. D. Lafferty in OpenAIREarXiv: http://arxiv.org/abs/1206.5160 , 1206.5160
The charged-particle production ratios $\bar{p}/p$, $K^-/K^+$, $��^-/��^+$, $(p + \bar{p})/(��^+ + ��^-)$, $(K^+ + K^-)/(��^+ + ��^-)$ and $(p + \bar{p})/(K^+ + K^-)$ are measured with the LHCb detector using $0.3 {\rm nb^{-1}}$ of $pp$ collisions delivered by the LHC at $\sqrt{s} = 0.9$ TeV and $1.8 {\rm nb^{-1}}$ at $\sqrt{s} = 7$ TeV. The measurements are performed as a function of transverse momentum $p_{\rm T}$ and pseudorapidity $��$. The production ratios are compared to the predictions of several Monte Carlo generator settings, none of which are able to describe adequately all observables. The ratio $\bar{p}/p$ is also considered as a function of rapidity loss, $��y \equiv y_{\rm beam} - y$, and is used to constrain models of baryon transport. Incorrect entries in Table 2 corrected. No consequences for rest of paper
CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 248visibility views 248 download downloads 237 Powered bymore_vert CORE arrow_drop_down COREArticle . 2012License: CC BYFull-Text: https://eprints.gla.ac.uk/80224/1/80224.pdfData sources: COREWarwick Research Archives Portal RepositoryArticle . 2012License: CC BY NDData sources: CORE (RIOXX-UK Aggregator)EnlightenArticle . 2012License: CC BYFull-Text: http://eprints.gla.ac.uk/80224/1/80224.pdfData sources: CORE (RIOXX-UK Aggregator)European Physical Journal C: Particles and FieldsArticle . 2012 . Peer-reviewedData sources: CrossrefEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: DANS (Data Archiving and Networked Services)Recolector de Ciencia Abierta, RECOLECTAArticle . 2012License: CC BYData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTAEuropean Physical Journal C: Particles and FieldsArticle . 2012European Physical Journal C: Particles and FieldsArticle . 2012License: CC BYData sources: Maastricht University | MUMC+ Research InformationSpiral - Imperial College Digital RepositoryArticle . 2012Data sources: Spiral - Imperial College Digital RepositoryEuropean Physical Journal C: Particles and FieldsArticle . 2012Data sources: Oxford University Research ArchiveINRIA a CCSD electronic archive serverArticle . 2012Data sources: INRIA a CCSD electronic archive serverZurich Open Repository and ArchiveArticle . 2012 . Peer-reviewedData sources: Zurich Open Repository and ArchiveDiposit Digital de la Universitat de BarcelonaArticle . 2012License: CC BYData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAArchivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Archivio della Ricerca - Università di Roma Tor vergataArchivio della ricerca- Università di Roma La SapienzaArticle . 2012Data sources: Archivio della ricerca- Università di Roma La SapienzaThe University of Manchester - Institutional RepositoryArticle . 2012Data sources: The University of Manchester - Institutional RepositoryDAU - Arxiu Digital de la URLArticle . 2021License: CC BYData sources: DAU - Arxiu Digital de la URLUniversità degli Studi di Bari Aldo Moro: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Université Savoie Mont Blanc: HALArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Università degli Studi della Basilicata: CINECA IRISArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)Archivio della Ricerca - Università di Roma Tor vergataArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1140/epjc/s10052-012-2168-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal , Other literature type 2021Publisher:MDPI AG Funded by:EC | MegaRollerEC| MegaRollerAuthors:Välisalo, Tero;
Välisalo, Tero
Välisalo, Tero in OpenAIRETiusanen, Risto;
Tiusanen, Risto
Tiusanen, Risto in OpenAIRESarsama, Janne;
Räikkönen; +2 AuthorsSarsama, Janne
Sarsama, Janne in OpenAIREVälisalo, Tero;
Välisalo, Tero
Välisalo, Tero in OpenAIRETiusanen, Risto;
Tiusanen, Risto
Tiusanen, Risto in OpenAIRESarsama, Janne;
Räikkönen; Minna;Sarsama, Janne
Sarsama, Janne in OpenAIREHeikkilä, Eetu;
Heikkilä, Eetu
Heikkilä, Eetu in OpenAIREdoi: 10.3390/jmse9050552
Wave power is a potential technology for generating sustainable renewable energy. Several types of wave energy converters (WECs) have been proposed for this purpose. WECs operate in a harsh maritime environment that sets strict limitations on how and when the device can be economically and safely reached for maintenance. Thus, to ensure profitable energy generation over the system life cycle, system reliability is a key aspect to be considered in WEC development. In this article, we describe a reliability analysis approach for WEC development, based on the use of reliability block diagram (RBD) modelling. We apply the approach in a case study involving a submerged oscillating wave surge converter device concept that utilizes hydraulics in its power take-off system. In addition to describing the modelling approach, we discuss the data sources that were used for gathering reliability data for the components used in a novel system concept with very limited historical or experimental data available. This includes considerations of the data quality from various sources. As a result, we present examples of applying the RBD modelling approach in the context of WEC development and discuss the applicability of the approach in supporting the development of new technologies.
Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/552/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-1312/9/5/552/pdfData sources: SygmaJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Marine Science and EngineeringArticle . 2021License: CC BYData sources: VTT Research Information SystemJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 6 Powered bymore_vert Journal of Marine Sc... arrow_drop_down Journal of Marine Science and EngineeringOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/2077-1312/9/5/552/pdfData sources: Multidisciplinary Digital Publishing InstituteJournal of Marine Science and EngineeringArticleLicense: CC BYFull-Text: https://www.mdpi.com/2077-1312/9/5/552/pdfData sources: SygmaJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Marine Science and EngineeringArticle . 2021License: CC BYData sources: VTT Research Information SystemJournal of Marine Science and EngineeringArticle . 2021 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/jmse9050552&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Publicly fundedFunded by:EC | SCOREEC| SCOREAuthors:Tasneem Ahmed;
Tasneem Ahmed
Tasneem Ahmed in OpenAIRELeo Creedon;
Leo Creedon
Leo Creedon in OpenAIRESalem Gharbia;
Salem Gharbia
Salem Gharbia in OpenAIREUnequivocal change in the climate system has put coastal regions around the world at increasing risk from climate-related hazards. Monitoring the coast is often difficult and expensive, resulting in sparse monitoring equipment lacking in sufficient temporal and spatial coverage. Thus, low-cost methods to monitor the coast at finer temporal and spatial resolution are imperative for climate resilience along the world’s coasts. Exploiting such low-cost methods for the development of early warning support could be invaluable to coastal settlements. This paper aims to provide the most up-to-date low-cost techniques developed and used in the last decade for monitoring coastal hazards and their forcing agents via systematic review of the peer-reviewed literature in three scientific databases: Scopus, Web of Science and ScienceDirect. A total of 60 papers retrieved from these databases through the preferred reporting items for systematic reviews and meta-analyses (PRISMA) protocol were analysed in detail to yield different categories of low-cost sensors. These sensors span the entire domain for monitoring coastal hazards, as they focus on monitoring coastal zone characteristics (e.g., topography), forcing agents (e.g., water levels), and the hazards themselves (e.g., coastal flooding). It was found from the meta-analysis of the retrieved papers that terrestrial photogrammetry, followed by aerial photogrammetry, was the most widely used technique for monitoring different coastal hazards, mainly coastal erosion and shoreline change. Different monitoring techniques are available to monitor the same hazard/forcing agent, for instance, unmanned aerial vehicles (UAVs), time-lapse cameras, and wireless sensor networks (WSNs) for monitoring coastal morphological changes such as beach erosion, creating opportunities to not only select but also combine different techniques to meet specific monitoring objectives. The sensors considered in this paper are useful for monitoring the most pressing challenges in coastal zones due to the changing climate. Such a review could be extended to encompass more sensors and variables in the future due to the systematic approach of this review. This study is the first to systematically review a wide range of low-cost sensors available for the monitoring of coastal zones in the context of changing climate and is expected to benefit coastal researchers and managers to choose suitable low-cost sensors to meet their desired objectives for the regular monitoring of the coast to increase climate resilience.
Sensors arrow_drop_down SensorsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1424-8220/23/3/1717/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23031717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 8 Powered bymore_vert Sensors arrow_drop_down SensorsArticleLicense: CC BYFull-Text: https://www.mdpi.com/1424-8220/23/3/1717/pdfData sources: Sygmaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/s23031717&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2000Publisher:Wiley Authors: Frank N. Coton; Tongguang Wang;doi: 10.1002/we.35
AbstractA low‐order panel method and a prescribed wake vortex model have been combined into a coupled model capable of assessing the basic effect of wind tunnel walls on wind turbine flow and performance. The wind tunnel walls are discretised into a series of panels, and sources distributed on these panels simulate the constraint effect of the wind tunnel walls. The wind turbine and its wake are represented by the prescribed wake model. The source strengths are related to the induced velocities at the panel control points due to the turbine vortex system by satisfying the boundary condition of zero normal velocity on the solid tunnel wall. The vortex‐induced and source‐induced velocities at the blade are summed to determine an interim turbine wake using the prescription functions. The effects of the disturbance velocities due to the source panels are then superposed upon the prescribed wake to obtain the final wake geometry under the influence of wind tunnel wall interference. The model developed in this study is compared with wind turbine wake measurements made in a low‐speed wind tunnel. Generally, the model is found to compare well with experiment, although some discrepancies are noted. Finally, possible future improvements to the combined method are recommended. Copyright © 2001 John Wiley & Sons, Ltd.
Wind Energy arrow_drop_down Wind EnergyArticle . 2000 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.35&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert Wind Energy arrow_drop_down Wind EnergyArticle . 2000 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/we.35&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 NetherlandsPublisher:Elsevier BV Funded by:EC | EUROfusionEC| EUROfusionAuthors:J.G.A. Scholte;
J.G.A. Scholte
J.G.A. Scholte in OpenAIREM. Balden;
M. Balden
M. Balden in OpenAIREB. Böswirth;
S. Elgeti; +11 AuthorsB. Böswirth
B. Böswirth in OpenAIREJ.G.A. Scholte;
J.G.A. Scholte
J.G.A. Scholte in OpenAIREM. Balden;
M. Balden
M. Balden in OpenAIREB. Böswirth;
S. Elgeti; H. Greuner; A. Herrmann;B. Böswirth
B. Böswirth in OpenAIREK. Hunger;
K. Hunger
K. Hunger in OpenAIREK. Krieger;
P. Leitenstern; A. Manhard;K. Krieger
K. Krieger in OpenAIRER. Neu;
R.C. van Schaik; V. Rohde; I. Zammuto;T.W. Morgan;
T.W. Morgan
T.W. Morgan in OpenAIREUsing liquid metals confined in capillary porous structures (CPSs) as a plasma-facing component (PFC) could prolong the lifetime of the divertor in the high heat flux area. However, the high atomic number of tin (Sn) limits its acceptable fraction in the main plasma. Therefore, a crucial step in developing this concept is to test it in a tokamak environment, particularly in the diverted plasma region, e.g. ASDEX Upgrade (AUG). In this paper, the design of liquid tin module (LTM) is explained, and the testing in the high heat flux device GLADIS before its use in AUG is presented. The LTM was additively manufactured using selective laser melting, consisting of a 1.5mm porous layer tungsten (W) directly attached to a solid W bulk. The LTM has a plasma-facing area of 16×40mm2 and was filled with 1.54g of Sn. In GLADIS, the module was exposed to power loads between 2 and 8MWm−2 for 1 up to 10s, first unfilled and later filled with Sn. The surface temperature was monitored with infrared imaging and pyrometry. The thermal response was used to compare with simulations in Ansys Mechanical, enabling a determination of the module’s effective thermal properties. Sn droplets could be observed on the infrared camera, until a surface temperature of about a 1000°C was reached. The enhanced wetting of tin on the plasma-facing surface, which was observed by a visible camera, suggests that there is a conditioning of the surface, possibly due to the removal of impurities and oxides. Subsequent examinations of the adjacent tile revealed minor Sn leakages emanating from the module’s edge. Furthermore, the module showed no indication of mechanical failure. Therefore, these results indicated that the LTM qualifies for the heat fluxes expected in ASDEX Upgrade.
Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Nuclear Materials an... arrow_drop_down Nuclear Materials and EnergyArticle . 2023License: CC BYData sources: Eindhoven University of Technology Research PortalNuclear Materials and EnergyArticle . 2024 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.nme.2023.101528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 Finland, FinlandPublisher:American Chemical Society (ACS) Funded by:AKA | Proton powered motors: le..., AKA | Genes or environment: How..., EC | BioExcel-2AKA| Proton powered motors: learning from biology with multi-scale modeling (PROTOMOT) ,AKA| Genes or environment: How the protein surroundings affects their function. ,EC| BioExcel-2Authors:Buslaev, Pavel;
Buslaev, Pavel
Buslaev, Pavel in OpenAIREJansen, Anton;
Jansen, Anton
Jansen, Anton in OpenAIREBauer, Paul;
Bauer, Paul
Bauer, Paul in OpenAIREGroenhof, Gerrit;
+3 AuthorsGroenhof, Gerrit
Groenhof, Gerrit in OpenAIREBuslaev, Pavel;
Buslaev, Pavel
Buslaev, Pavel in OpenAIREJansen, Anton;
Jansen, Anton
Jansen, Anton in OpenAIREBauer, Paul;
Bauer, Paul
Bauer, Paul in OpenAIREGroenhof, Gerrit;
Hess; Berk;Groenhof, Gerrit
Groenhof, Gerrit in OpenAIREAho, Noora;
Aho, Noora
Aho, Noora in OpenAIREMolecular dynamics (MD) computer simulations are used routinely to compute atomistic trajectories of complex systems. Systems are simulated in various ensembles, depending on the experimental conditions one aims to mimic. While constant energy, temperature, volume, and pressure are rather straightforward to model, pH, which is an equally important parameter in experiments, is more difficult to account for in simulations. Although a constant pH algorithm based on the $\lambda$-dynamics approach by Brooks and co-workers was implemented in a fork of the GROMACS molecular dynamics program, uptake has been rather limited, presumably due to the poor scaling of that code with respect to the number of titratable sites. To overcome this limitation, we implemented an alternative scheme for interpolating the Hamiltonians of the protonation states that makes the constant pH molecular dynamics simulations almost as fast as a normal MD simulation with GROMACS. In addition, we implemented a simpler scheme, called multisite representation, for modeling side chains with multiple titratable sites, such as imidazole rings. This scheme, which is based on constraining the sum of the $\lambda$-coordinates, not only reduces the complexity associated with parameterizing the intra-molecular interactions between the sites, but is also easily extendable to other molecules with multiple titratable sites. With the combination of a more efficient interpolation scheme and multisite representation of titratable groups, we anticipate a rapid uptake of constant pH molecular dynamics simulations within the GROMACS user community.
https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu82 citations 82 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert https://doi.org/10.2... arrow_drop_down https://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Chemical Theory and ComputationArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefJyväskylä University Digital ArchiveArticle . 2022 . Peer-reviewedData sources: Jyväskylä University Digital Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv-2022-n025t&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2022Embargo end date: 01 Jan 2021 FrancePublisher:Springer Science and Business Media LLC Funded by:EC | KAIROS, ANR | AmplitudesEC| KAIROS ,ANR| AmplitudesAuthors: Korchemsky, Gregory P.;Zhiboedov, Alexander;
Zhiboedov, Alexander
Zhiboedov, Alexander in OpenAIREAbstract We analyze the commutation relations of light-ray operators in conformal field theories. We first establish the algebra of light-ray operators built out of higher spin currents in free CFTs and find explicit expressions for the corresponding structure constants. The resulting algebras are remarkably similar to the generalized Zamolodchikov’s W∞ algebra in a two-dimensional conformal field theory. We then compute the commutator of generalized energy flow operators in a generic, interacting CFTs in d > 2. We show that it receives contribution from the energy flow operator itself, as well as from the light-ray operators built out of scalar primary operators of dimension ∆ ≤ d − 2, that are present in the OPE of two stress-energy tensors. Commutators of light-ray operators considered in the present paper lead to CFT sum rules which generalize the superconvergence relations and naturally connect to the dispersive sum rules, both of which have been studied recently.
Journal of High Ener... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPreprint . 2021Journal of High Energy PhysicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep02(2022)140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Journal of High Ener... arrow_drop_down Mémoires en Sciences de l'Information et de la CommunicationPreprint . 2021Journal of High Energy PhysicsArticle . 2022 . Peer-reviewedData sources: European Union Open Data Portaladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/jhep02(2022)140&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu