- home
- Advanced Search
- Energy Research
- 2. Zero hunger
- 1. No poverty
- GB
- FR
- Energy Research
- 2. Zero hunger
- 1. No poverty
- GB
- FR
Research data keyboard_double_arrow_right Dataset 2017Publisher:NERC Environmental Information Data Centre Authors:Reinsch, S.;
Koller, E.; Sowerby, A.; De Dato, G.; +17 AuthorsReinsch, S.
Reinsch, S. in OpenAIREReinsch, S.;
Koller, E.; Sowerby, A.; De Dato, G.; Estiarte, M.; Guidolotti, G.; Kovács-Láng, E.; Kröel-Dula, G; Lellei-Kovács, E.; Larsen, K.S.; Liberati, D.; Ogaya, R; Peñuelas, J.; Ransijn, J.;Reinsch, S.
Reinsch, S. in OpenAIRERobinson, D.A.;
Schmidt, I.K.; Smith, A.R.; Tietema, A.; Dukes, J.S.; Beier, C.;Robinson, D.A.
Robinson, D.A. in OpenAIREEmmett, B.A.;
Emmett, B.A.
Emmett, B.A. in OpenAIREThe data consists of annual measurements of standing aboveground plant biomass, annual aboveground net primary productivity and annual soil respiration between 1998 and 2012. Data were collected from seven European shrublands that were subject to the climate manipulations drought and warming. Sites were located in the United Kingdom (UK), the Netherlands (NL), Denmark ( two sites, DK-B and DK-M), Hungary (HU), Spain (SP) and Italy (IT). All field sites consisted of untreated control plots, plots where the plant canopy air is artificially warmed during night time hours, and plots where rainfall is excluded from the plots at least during the plants growing season. Standing aboveground plant biomass (grams biomass per square metre) was measured in two undisturbed areas within the plots using the pin-point method (UK, DK-M, DK-B), or along a transect (IT, SP, HU, NL). Aboveground net primary productivity was calculated from measurements of standing aboveground plant biomass estimates and litterfall measurements. Soil respiration was measured in pre-installed opaque soil collars bi-weekly, monthly, or in measurement campaigns (SP only). The datasets provided are the basis for the data analysis presented in Reinsch et al. (2017) Shrubland primary production and soil respiration diverge along European climate gradient. Scientific Reports 7:43952 https://doi.org/10.1038/srep43952 Standing biomass was measured using the non-destructive pin-point method to assess aboveground biomass. Measurements were conducted at the state of peak biomass specific for each site. Litterfall was measured annually using litterfall traps. Litter collected in the traps was dried and the weight was measured. Aboveground biomass productivity was estimated as the difference between the measured standing biomass in year x minus the standing biomass measured the previous year. Soil respiration was measured bi-weekly or monthly, or in campaigns (Spain only). It was measured on permanently installed soil collars in treatment plots. The Gaussen Index of Aridity (an index that combines information on rainfall and temperature) was calculated using mean annual precipitation, mean annual temperature. The reduction in precipitation and increase in temperature for each site was used to calculate the Gaussen Index for the climate treatments for each site. Data of standing biomass and soil respiration was provided by the site responsible. Data from all sites were collated into one data file for data analysis. A summary data set was combined with information on the Gaussen Index of Aridity Data were then exported from these Excel spreadsheet to .csv files for ingestion into the EIDC.
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/b902e25a-ffec-446f-a270-03cc2501fe1d&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2023Publisher:SEANOE Authors:Long, Marc;
Lelong, Aurélie;Long, Marc
Long, Marc in OpenAIREBucciarelli, Eva;
Bucciarelli, Eva
Bucciarelli, Eva in OpenAIRELe Grand, Fabienne;
+2 AuthorsLe Grand, Fabienne
Le Grand, Fabienne in OpenAIRELong, Marc;
Lelong, Aurélie;Long, Marc
Long, Marc in OpenAIREBucciarelli, Eva;
Bucciarelli, Eva
Bucciarelli, Eva in OpenAIRELe Grand, Fabienne;
Le Grand, Fabienne
Le Grand, Fabienne in OpenAIREHegaret, Helene;
Hegaret, Helene
Hegaret, Helene in OpenAIRESoudant, Philippe;
Soudant, Philippe
Soudant, Philippe in OpenAIREdoi: 10.17882/94472
This dataset contains the data used in the manuscript "Physiological adaptation of the diatom Pseudo-nitzschia delicatissima under copper starvation" accepted for publication in April 2023 in Marine Environmental Research. In the open ocean and particularly in iron (Fe)-limited environment, copper (Cu) deficiency might limit the growth of phytoplankton species. Cu is an essential trace metal used in electron-transfer reactions, such as respiration and photosynthesis, when bound to specific enzymes. Some phytoplankton species, such as the diatom Pseudo-nitzschia spp. can cope with Cu starvation through adaptative strategies. This dataset contains the data collected during the experimental starvation of a strain of the diatom P. delicatissima under laboratory controlled conditions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/94472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.17882/94472&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 30 Jan 2022Publisher:Dryad Authors:Barreaux, Antoine;
Barreaux, Antoine
Barreaux, Antoine in OpenAIREHigginson, Andrew;
Higginson, Andrew
Higginson, Andrew in OpenAIREBonsall, Michael;
English, Sinead;Bonsall, Michael
Bonsall, Michael in OpenAIREHere, we investigate how stochasticity and age-dependence in energy dynamics influence maternal allocation in iteroparous females. We develop a state-dependent model to calculate the optimal maternal allocation strategy with respect to maternal age and energy reserves, focusing on allocation in a single offspring at a time. We introduce stochasticity in energetic costs– in terms of the amount of energy required to forage successfully and individual differences in metabolism – and in feeding success. We systematically assess how allocation is influenced by age-dependence in energetic costs, feeding success, energy intake per successful feeding attempt, and environmentally-driven mortality. First, using stochastic dynamic programming, we calculate the optimal amount of reserves M that mothers allocate to each offspring depending on their own reserves R and age A. The optimal life history strategy is then the set of allocation decisions M(R, A) over the whole lifespan which maximizes the total reproductive success of distant descendants. Second, we simulated the life histories of 1000 mothers following the optimisation strategy and the reserves at the start of adulthood R1, the distribution of which was determined, the distribution of which was determined using an iterative procedure as described . For each individual, we calculated maternal allocation Mt, maternal reserves Rt, and relative allocation Mt⁄Rt at each time period t. The relative allocation helps us to understand how resources are partitioned between mother and offspring. Third, we consider how the optimal strategy varies when there is age-dependence in resource acquisition, energetic costs and survival. Specifically, we include varying scenarios with an age-dependent increase or a decrease with age in energetic costs (c_t), feeding success (q_t), energy intake per successful feeding attempt (y_t), and environmentally-driven extrinsic mortality rate (d_t) (Table 2). We consider the age-dependence of parameters one at a time or in pairs, altering the slope, intercept, or asymptote of the age-dependence (linear or asymptotic function). Our aim is to identify whether the observed reproductive senescence can arise from optimal maternal allocation. As such, we do not impose a decline in selection in later life as all offspring are equally valuable at all ages (for a given maternal allocation), and there are no mutations. For each scenario, we run the backward iteration process with these age-dependent functions, obtain the allocation strategy, and simulate the life history of 1000 individuals based on the novel strategy. We then fit quadratic and linear models to the reproduction of these 1000 individuals using the lme function, nlme package in R. For these models, the response variable is the maternal allocation Mt and explanatory variables are the time period t and t2 (for the quadratic fit only), with individual identity as a random term. We use likelihood ratio tests to compare linear and quadratic models using the anova function (package nlme) with the maximum-likelihood method. If the comparison is significant (p-value <0.05), we considered the quadratic model to have a better fit, otherwise the linear model is considered more parsimonious. We were particularly interested in identifying scenarios where the fit was quadratic with a negative quadratic term. For each scenario, the pseudo R2 conditional value (proportion of variance explained by the fixed and random terms, accounting for individual identity) is calculated to assess the goodness-of-fit of the lme model, on a scale from 0 to 1, using the “r.squared” function, package gabtool. All calculations and coding are done in R. Iteroparous parents face a trade-off between allocating current resources to reproduction versus maximizing survival to produce further offspring. Optimal allocation varies across age, and follows a hump-shaped pattern across diverse taxa, including mammals, birds and invertebrates. This non-linear allocation pattern lacks a general theoretical explanation, potentially because most studies focus on offspring number rather than quality and do not incorporate uncertainty or age-dependence in energy intake or costs. Here, we develop a life history model of maternal allocation in iteroparous animals. We identify the optimal allocation strategy in response to stochasticity when energetic costs, feeding success, energy intake, and environmentally-driven mortality risk are age-dependent. As a case study, we use tsetse, a viviparous insect that produces one offspring per reproductive attempt and relies on an uncertain food supply of vertebrate blood. Diverse scenarios generate a hump-shaped allocation: when energetic costs and energy intake increase with age; and also when energy intake decreases, and energetic costs increase or decrease. Feeding success and mortality risk have little influence on age-dependence in allocation. We conclude that ubiquitous evidence for age-dependence in these influential traits can explain the prevalence of non-linear maternal allocation across diverse taxonomic groups.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 47visibility views 47 download downloads 60 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.v41ns1rxr&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Embargo end date: 07 Dec 2022Publisher:Dryad Authors:Shao, Junjiong;
Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; +9 AuthorsShao, Junjiong
Shao, Junjiong in OpenAIREShao, Junjiong;
Zhou, Xuhui; van Groenigen, Kees; Zhou, Guiyao; Zhou, Huimin; Zhou, Lingyan; Lu, Meng; Xia, Jianyang; Jiang, Lin; Hungate, Bruce; Luo, Yiqi; He, Fangliang; Thakur, Madhav;Shao, Junjiong
Shao, Junjiong in OpenAIREAim: Climate warming and biodiversity loss both alter plant productivity, yet we lack an understanding of how biodiversity regulates the responses of ecosystems to warming. In this study, we examine how plant diversity regulates the responses of grassland productivity to experimental warming using meta-analytic techniques. Location: Global Major taxa studied: Grassland ecosystems Methods: Our meta-analysis is based on warming responses of 40 different plant communities obtained from 20 independent studies on grasslands across five continents. Results: Our results show that plant diversity and its responses to warming were the most important factors regulating the warming effects on plant productivity, among all the factors considered (plant diversity, climate and experimental settings). Specifically, warming increased plant productivity when plant diversity (indicated by effective number of species) in grasslands was lesser than 10, whereas warming decreased plant productivity when plant diversity was greater than 10. Moreover, the structural equation modelling showed that the magnitude of warming enhanced plant productivity by increasing the performance of dominant plant species in grasslands of diversity lesser than 10. The negative effects of warming on productivity in grasslands with plant diversity greater than 10 were partly explained by diversity-induced decline in plant dominance. Main Conclusions: Our findings suggest that the positive or negative effect of warming on grassland productivity depends on how biodiverse a grassland is. This could mainly owe to differences in how warming may affect plant dominance and subsequent shifts in interspecific interactions in grasslands of different plant diversity levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 14visibility views 14 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.gtht76hms&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:MDPI AG Funded by:UKRI | Assessing the feasibility...UKRI| Assessing the feasibility of vertical farming for second generation bioenergy cropsAuthors:Zoe M. Harris;
Zoe M. Harris
Zoe M. Harris in OpenAIREYiannis Kountouris;
Yiannis Kountouris
Yiannis Kountouris in OpenAIREdoi: 10.3390/su12198193
The Intergovernmental Panel on Climate Change (IPCC) report that to limit warming to 1.5 °C, Bioenergy with Carbon Capture and Storage (BECCS) is required. Integrated assessment models (IAMS) predict that a land area between the size of Argentina and Australia is required for bioenergy crops, a 3–7 time increase in the current bioenergy planting area globally. The authors pose the question of whether vertical farming (VF) technology can enable BECCS deployment, either via land sparing or supply. VF involves indoor controlled environment cultivation, and can increase productivity per unit land area by 5–10 times. VF is predominantly being used to grow small, high value leafy greens with rapid growth cycles. Capital expenditure, operational expenditure, and sustainability are challenges in current VF industries, and will affect the ability to utilise this technology for other crops. The authors argue that, whilst challenging, VF could help reach wider climate goals. Application of VF for bioenergy crops could be a game changer in delivering BECCS technologies and may reduce the land footprint required as well as the subsequent associated negative environmental impacts. VF bioenergy could allow us to cultivate the future demand for bioenergy for BECCS on the same, or less, land area than is currently used globally.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 9 citations 9 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su12198193&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 FrancePublisher:Informa UK Limited Chia, E.L.; Somorin, O.A.; Sonwa, D.J.; Bele, M.Y.; Tiani, A.M.;handle: 10568/95716
In Cameroon, as in other countries of the Congo basin region, policy processes and activities related to climate change have been hitherto geared mostly towards mitigation and related questions, with limited concern about adaptation issues. However, the increasing vulnerability of Cameroon to climate variability and change makes adaptation significant to its national climate-change policy. Nonetheless, it remains a challenge to make both adaptation and mitigation occupy the same policy space in Cameroon. This paper builds partly on studies carried out in two community forest carbon initiatives in the southern rainforest of Cameroon. It also argues, supported by existing literature on adaptation and mitigation, that mitigation activities have the potential to produce adaptation outcomes; a situation which avoids duplication of efforts and waste of financial and technical resources, if synergetic options are anticipated and planned. However, whether such integrated approaches succeed and are subsequently reflected in national-level climate policy depends on how actors across different sectors and at different levels engage and carry out their roles. The paper discusses these roles and how they can support each other in pursuing integrated initiatives – a context which is vital for Cameroon.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17565529.2014.918867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 39 citations 39 popularity Top 1% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1080/17565529.2014.918867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Emerald Authors:Mubasher Iqbal;
Rukhsana Kalim; Shajara Ul-Durar; Arup Varma;Mubasher Iqbal
Mubasher Iqbal in OpenAIREPurpose This study aims to consider environmental sustainability, a global challenge under the preview of sustainable development goals, highlighting the significance of knowledge economy in attaining sustainable aggregate demand behavior globally. For this purpose, 155 countries that have data available from 1995 to 2021 were selected. The purpose of selecting these countries is to test the global responsibility of the knowledge economy to attain environmental sustainability. Design/methodology/approach Results are estimated with the help of panel quantile regression. The empirical existence of aggregate demand-based environmental Kuznets curve (EKC) was tested using non-linear tests. Moreover, principal component analysis has been incorporated to construct the knowledge economy index. Findings U-shaped aggregate demand-based EKC at global level is validated. However, environmental deterioration increases with an additional escalation after US$497.945m in aggregate demand. As a determinant, the knowledge economy is reducing CO2 emissions. The knowledge economy has played a significant role in global responsibility, shifting the EKC downward and extending the CO2 reduction phase for every selected country. Further, urbanization, energy intensity, financial development and trade openness significantly deteriorate the environmental quality. Originality/value This study contains the empirical existence of aggregate demand-based EKC. The role of the knowledge economy is examined through an index which is calculated by using four pillars of the knowledge economy (technology, innovations, education and institutions). This study is based on a combined panel of all the countries for which the data was available.
Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Journal of Global Re... arrow_drop_down Journal of Global ResponsibilityArticle . 2023 . Peer-reviewedLicense: Emerald Insight Site PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1108/jgr-02-2023-0018&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2019Embargo end date: 26 Jun 2019 United KingdomPublisher:University of Strathclyde This dataset currently consists of a single excel file which contains the Scottish Social Accounting Matrix for 2013, with households being disaggregated into quintiles based on their weekly income. The dataset has been used to study the impact of Energy Efficient Scotland programme and associated work that explored how the anticipated impacts may change due to Brexit
University of Strath... arrow_drop_down University of Strathclyde KnowledgeBase DatasetsDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15129/38c90098-3e67-4c93-9b74-a77d6fdc54d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert University of Strath... arrow_drop_down University of Strathclyde KnowledgeBase DatasetsDataset . 2019License: CC BYData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.15129/38c90098-3e67-4c93-9b74-a77d6fdc54d9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2022Publisher:NERC EDS Environmental Information Data Centre Authors:Greenfield, L.M.;
Greenfield, L.M.
Greenfield, L.M. in OpenAIREGraf, M.;
Rengaraj, S.;Graf, M.
Graf, M. in OpenAIREBargiela, R.;
+4 AuthorsBargiela, R.
Bargiela, R. in OpenAIREGreenfield, L.M.;
Greenfield, L.M.
Greenfield, L.M. in OpenAIREGraf, M.;
Rengaraj, S.;Graf, M.
Graf, M. in OpenAIREBargiela, R.;
Williams, G.B.;Bargiela, R.
Bargiela, R. in OpenAIREGolyshin, P.N.;
Golyshin, P.N.
Golyshin, P.N. in OpenAIREChadwick, D.R.;
Chadwick, D.R.
Chadwick, D.R. in OpenAIREJones, D.L.;
Jones, D.L.
Jones, D.L. in OpenAIREData was either measured in situ in the field (N2O flux, soil moisture, rainfall and air temperature) or samples were taken, processed, and analysed in the laboratory (soil pH, electrical conductivity (EC), ammonium, nitrate, microbial community composition and crop yield). N2O flux data was measured on a mobile gas chromatograph (GC) system and integrated to obtain peak areas on Peak490Win10Canabis programme. The times, peak areas and sample ID were then exported into a .CHR file and imported into Flux.NET.3.3 which calculated N2O flux as an output in Excel which was exported as .csv file for deposit in EIDC. N2O flux was used to calculate cumulative N2O flux using trapezoidal integration in Excel and saved in a separate .csv file for deposit in EIDC. Soil moisture was measured on Accilmas with data stored as a .csv on a DataSnap that was downloaded and sorted by treatment and saved as a .csv file. Rainfall and air temperature were downloaded from the weather station as .csv file. Soil pH and EC were recorded manually into a notebook and input into an Excel spreadsheet and exported as a .csv file. Soil ammonium and nitrate content was measured using the microplate method using a programme called Gen5. Date was exported into an Excel spreadsheet and absorbance units used to calculate ammonium/nitrate content in milligrams per kilogram using a calibration curve from a set of standards in an Excel spreadsheet. This was exported as a .csv file. Crop growth data was recorded in the field in a notebook and input into an Excel spreadsheet and exported as a .csv file. Crop yield was recorded in a notebook and input into an Excel spreadsheet and exported as a .csv file. Microbial community composition was measured using 16S gene sequencing on an Illumina MiSeq. This generated raw sequencing reads which were processed using Python and filtered using QIIME v1.3.1. creating asv.count.table.csv of counts of each Amplicon Sequence Variants (ASVs) per sample and taxa.table.csv of the taxonomic lineage for each ASVs. This dataset contains field data on nitrous oxide (N2O) emissions, microbial community composition, crop yield and growth and soil biochemical properties. The field trial consisted of three different treatments of control, conventional microplastic addition and biodegradable microplastic addition where winter barley was grown. The data presented are from field and laboratory measurements. Data was collected by the data authors. The field trial was carried out from September 2020 to July 2021 at Henfaes Field Centre, UK. Research was funded through NERC Grant NE/V005871/1. Do agricultural microplastics undermine food security and sustainable development in developing countries?
https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/a5410834-1c38-455b-a850-3fb3434d4bb0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dx.doi.org/1... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5285/a5410834-1c38-455b-a850-3fb3434d4bb0&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Part of book or chapter of book 2017 France, India, FrancePublisher:Springer International Publishing Somda, Jacques; Zougmoré, Robert B.; Sawadogo, Issa; Bationo, B. André; Buah, Saaka S.J.; Tougiani, Abasse;handle: 10568/79445
This chapter focuses on the evaluation of adaptive capacities of community-level human systems related to agriculture and food security. It highlights findings regarding approaches and domains to monitor and evaluate behavioral changes from CGIAR’s research program on climate change, agriculture and food security (CCAFS). This program, implemented in five West African countries, is intended to enhance adaptive capacities in agriculture management of natural resources and food systems. In support of participatory action research on climate-smart agriculture, a monitoring and evaluation plan was designed with the participation of all stakeholders to track changes in behavior of the participating community members. Individuals’ and groups’ stories of changes were collected using most significant change tools. The collected stories of changes were substantiated through field visits and triangulation techniques. Frequencies of the occurrence of characteristics of behavioral changes in the stories were estimated. The results show that smallholder farmers in the intervention areas adopted various characteristics of behavior change grouped into five domains: knowledge, practices, access to assets, partnership and organization. These characteristics can help efforts to construct quantitative indicators of climate change adaptation at local level. Further, the results suggest that application of behavioral change theories can facilitate the development of climate change adaptation indicators that are complementary to indicators of development outcomes. We conclude that collecting stories on behavioral changes can contribute to biophysical adaptation monitoring and evaluation.
CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2017License: CC BY NCFull-Text: https://hdl.handle.net/10568/79445Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BY NCData sources: UnpayWallICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-43702-6_14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 13 citations 13 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert CGIAR CGSpace (Consu... arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Part of book or chapter of book . 2017License: CC BY NCFull-Text: https://hdl.handle.net/10568/79445Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1007/978-3-...Part of book or chapter of book . 2017 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://link.springer.com/cont...Part of book or chapter of bookLicense: CC BY NCData sources: UnpayWallICRISAT (International Crops Research Institute for the Semi-Arid Tropics): Open Access RepositoryPart of book or chapter of book . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/978-3-319-43702-6_14&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu