- home
- Advanced Search
- Energy Research
- Restricted
- Embargo
- IN
- GB
- Aalborg University
- Energy Research
- Restricted
- Embargo
- IN
- GB
- Aalborg University
description Publicationkeyboard_double_arrow_right Article , Journal 2013 DenmarkPublisher:Elsevier BV Funded by:EC | MAREXEC| MAREXRischer, Heiko; Eriksen, Niels T.; Wiebe; Marilyn; Wang, Yanming;pmid: 23907064
The oleaginous alga Chlorella protothecoides accumulates lipid in its biomass when grown in nitrogen-restricted conditions. To assess the relationship between nitrogen provision and lipid accumulation and to determine the contribution of photosynthesis in mixotrophic growth, C. protothecoides was grown in mixo- and heterotrophic nitrogen-limited continuous flow cultures. Lipid content increased with decreasing C/N, while biomass yield on glucose was not affected. Continuous production of high lipid levels (57% of biomass) was possible at high C/N (87-94). However, the lipid production rate (2.48 g L(-1) d(-1)) was higher at D=0.84 d(-1) with C/N 37 than at D=0.44 d(-1) and C/N 87 even though the lipid content of the biomass was lower (38%). Photosynthesis contributed to biomass and lipid production in mixotrophic conditions, resulting in 13-38% reduction in CO2 production compared with heterotrophic cultures, demonstrating that photo- and heterotrophic growth occurred simultaneously in the same population.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.07.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.07.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Kristian Rost Albert; Dan Bruhn; Dan Bruhn; Per Ambus; Teis Nørgaard Mikkelsen;Abstract Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20–50 nmol m−2 h−1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2014.09.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2014.09.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998 DenmarkPublisher:Elsevier BV Authors: Swift, R. J.; Wiebe, Marilyn; Robson, G. D.; Trinci, A. P. J.;pmid: 9974221
The production of glucoamylase (GAM) by Aspergillus niger B1, a genetic transformant containing an additional 20 copies of the homologous glucoamylase gene (glaA) was studied in nutrient (maltodextrin)-limited chemostat and nutrient-excess pH auxostat cultures. In these culture systems the specific production rate of GAM increased with dilution rate and reached a maximum (up to 15.0 mg GAM [g biomass]-1 h-1) when A. niger B1 was grown at its maximum specific growth rate in pH auxostat culture, indicating that GAM is a growth-associated product. The appearance of spontaneous morphological mutants was observed in all continuous flow cultures grown at pH 5.4, with a light brown mutant always displacing the parental strain. However, no morphological mutants were observed in cultures grown at pH 4.0. Further, when A. niger B1 was grown in pH auxostat culture, the specific production rate of GAM was 31% higher at pH 4.0 than at pH 5.4. Southern blot analyses showed that some morphological mutants (including the light brown mutant) isolated from a pH auxostat culture had lost copies of the glaA genes.
VBN arrow_drop_down Fungal Genetics and BiologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1006/fgbi.1998.1089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down Fungal Genetics and BiologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1006/fgbi.1998.1089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2011 DenmarkPublisher:Elsevier BV Hariklia N. Gavala; Hariklia N. Gavala; Ioannis V. Skiadas; Ioannis V. Skiadas; Gerasimos Lyberatos; Georgia Antonopoulou;Abstract The aim of the present study was to assess the influence of substrate concentration on the fermentative hydrogen production from sweet sorghum extract, in a continuous stirred tank bioreactor. The reactor was operated at a Hydraulic Retention Time (HRT) of 12 h and carbohydrate concentrations ranging from 9.89 to 20.99 g/L, in glucose equivalents. The maximum hydrogen production rate and yield were obtained at the concentration of 17.50 g carbohydrates/L and were 2.93 ± 0.09 L H 2 /L reactor/d and 0.74 ± 0.02 mol H 2 /mol glucose consumed, corresponding to 8.81 ± 0.02 L H 2 /kg sweet sorghum, respectively. The main metabolic product at all steady states was butyric acid, while ethanol production was high at high substrate concentrations. The experiments showed that hydrogen productivity depends significantly on the initial carbohydrate concentration, which also influences the distribution of the metabolic products.
VBN arrow_drop_down International Journal of Hydrogen EnergyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2011.01.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down International Journal of Hydrogen EnergyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2011.01.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 DenmarkPublisher:SAGE Publications Authors: Prapaspongsa, Trakarn; Poulsen, Tjalfe; Hansen, Jens Aage; Christensen, Per;pmid: 19723830
Improper management of pig manure has resulted in environmental problems such as surface water eutrophication, ground water pollution, and greenhouse gas emissions. This study develops and compares 14 alternative manure management scenarios aiming at energy and nutrient extraction. The scenarios based on combinations of thermal pretreatment, anaerobic digestion, anaerobic co-digestion, liquid/solid separation, drying, incineration, and thermal gasification were compared with respect to their energy, nutrient and greenhouse gas balances. Both sole pig manure and pig manure mixed with other types of waste materials were considered. Data for the analyses were obtained from existing waste treatment facilities, experimental plants, laboratory measurements and literature. The assessment reveals that incineration combined with liquid/solid separation and drying of the solids is a promising management option yielding a high potential energy utilization rate and greenhouse gas savings. If maximum electricity production is desired, anaerobic digestion is advantageous as the biogas can be converted to electricity at high efficiency in a gas engine while allowing production of heat for operation of the digestion process. In conclusion, this study shows that the choice of technology has a strong influence on energy, nutrient and greenhouse gas balances. Thus, to get the most reliable results, it is important to consider the most representative (and up-to-date) technology combined with data representing the area or region in question.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x09338728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x09338728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 DenmarkPublisher:Elsevier BV Toor, Saqib; Reddy, H.; Deng, S.; Hoffmann, Jessica; Spangsmark, D.; Madsen, L. B.; Holm-Nielsen, Jens Bo; Rosendahl, Lasse;pmid: 23376205
Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220–375 °C, 20–255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid residue, and recycling process water for algae cultivation. GC–MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on N. salina at 350 °C and 175 bar. For S. platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for N. salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.12.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 206 citations 206 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.12.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 DenmarkPublisher:Elsevier BV Publicly fundedAsam, Zaki-ul-Zaman; Poulsen, Tjalfe; Nizami, Abdul-Sattar; Rafique, Rashad; Kiely, Ger; Murphy, Jerry D.;Abstract Biogas production is one of the number of tools that may be used to alleviate the problems of global warming, energy security and waste management. Biogas plants can be difficult to sustain from a financial perspective. The facilities must be financially optimized through use of substrates with high biogas potential, low water content and low retention requirement. This research carried out in laboratory scale batch digesters assessed the biogas potential of energy crops (maize and grass silage) and solid manure fractions from manure separation units. The ultimate methane productivity in terms of volatile solids (VS) was determined as 330, 161, 230, 236, 361 L/kg VS from raw pig slurry, filter pressed manure fiber (FPMF), chemically precipitated manure fiber (CPMF), maize silage and grass silage respectively. Methane productivity based on mass (L/kg substrate) was significantly higher in FPMF (55 L/kg substrate), maize silage (68 L/kg substrate) and grass silage (45–124 L/kg substrate (depending on dry solids of feedstock)) as in comparison to raw pig slurry (10 L/kg substrate). The use of these materials as co-substrates with raw pig slurry will increase significantly the biomethane yield per unit feedstock in the biogas plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2010.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 154 citations 154 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2010.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 DenmarkPublisher:Springer Science and Business Media LLC Authors: Eriksen, Niels T.;pmid: 18478186
This review outlines the current status and recent developments in the technology of microalgal culturing in enclosed photobioreactors. Light distribution and mixing are the primary variables that affect productivities of photoautotrophic cultures and have strong impacts on photobioreactor designs. Process monitoring and control, physiological engineering, and heterotrophic microalgae are additional aspects of microalgal culturing, which have gained considerable attention in recent years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10529-008-9740-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 256 citations 256 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10529-008-9740-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 DenmarkPublisher:SAGE Publications Authors: Johnson, Bjørn; Poulsen, Tjalfe; Hansen, Jens Aage; Lehmann, Martin;pmid: 21890877
There is a strong connection between economic growth and development of cities. Economic growth tends to stimulate city growth, and city economies have often shaped innovative environments that in turn support economic growth. Simultaneously, social and environmental problems related to city growth can be serious threats to the realization of the socio-economic contributions that cities can make. However, as a result of considerable diversity of competences combined with interactive learning and innovation, cities may also solve these problems. The ‘urban order’ may form a platform for innovative problem solving and potential spill-over effects, which may stimulate further economic growth and development. This paper discusses how waste problems of cities can be transformed to become part of new, more sustainable solutions. Two cases are explored: Aalborg in Denmark and Malmö in Sweden. It is shown that the cities have the potential to significantly contribute to a more sustainable development through increased material recycling and energy recovery. Waste prevention may increase this potential. For example, instead of constituting 3% of the total greenhouse gas emission problem, it seems possible for modern European cities to contribute to greenhouse gas emission reduction by 15% through up to date technology and integrated waste management systems for material and energy recovery. Going from being part of the problem to providing solutions; however, is not an easy endeavour. It requires political will and leadership, supportive regulatory frameworks, realistic timetables/roadmaps, and a diverse set of stakeholders that can provide the right creative and innovative mix to make it possible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x11417488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x11417488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999 DenmarkPublisher:Wiley Bocking, S. P.; Wiebe, Marilyn; Robson, G. D.; Hansen, Klaus; Christiansen, L. H.; Trinci, A. P. J.;Highly branched mutants of two strains of Aspergillus oryzae (IFO4177, which produces alpha-amylase, and a transformant of IFO4177 [AMG#13], which produces heterologous glucoamylase in addition to alpha-amylase) were generated by UV or nitrous acid mutagenesis. Four mutants of the parental strain (IFO4177), which were 10 to 50% more branched than the parental strain, were studied in stirred batch culture and no differences were observed in either the amount or the rate of enzyme production. Five mutants of the transformed parental strain (AMG#13), which were 20 to 58% more branched than the parental strain, were studied in either batch, fed-batch or continuous culture. In batch culture, three of the mutants produced more glucoamylase than the transformed parental strain, although only two mutants produced more glucoamylase and alpha-amylase combined. No increase in enzyme production was observed in either chemostat or fed-batch culture. Cultures of highly branched mutants were less viscous than those of the parental and transformed parental strains. A linear relationship was found between the degree of branching (measured as hyphal growth unit length) and culture viscosity (measured as the torque exerted on the rheometer impeller) for these strains. DOT-controlled fed-batch cultures (in which the medium feed rate was determined by the DOT) were thus inoculated with either the transformed parent or highly branched mutants of the transformed parent to determine whether the reduced viscosity would improve aeration and give higher enzyme yields. The average rate of medium addition was higher for the two highly branched mutants (ca. 8.3 g medium h(-1)) than for the parental strain (5.7 g medium h(-1)). Specific enzyme production in the DOT controlled fed-batch cultures was similar for all three strains (approx. 0.24 g alpha-amylase and glucoamylase [g of biomass](-1)), but one of the highly branched mutants made more total enzyme (24.3 +/- 0.2 g alpha-amylase and glucoamylase) than the parental strain (21.7 +/- 0.4 g alpha-amylase and glucoamylase).
VBN arrow_drop_down Biotechnology and BioengineeringArticle . 1999 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/(sici)1097-0290(19991220)65:6<638::aid-bit4>3.0.co;2-k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down Biotechnology and BioengineeringArticle . 1999 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/(sici)1097-0290(19991220)65:6<638::aid-bit4>3.0.co;2-k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013 DenmarkPublisher:Elsevier BV Funded by:EC | MAREXEC| MAREXRischer, Heiko; Eriksen, Niels T.; Wiebe; Marilyn; Wang, Yanming;pmid: 23907064
The oleaginous alga Chlorella protothecoides accumulates lipid in its biomass when grown in nitrogen-restricted conditions. To assess the relationship between nitrogen provision and lipid accumulation and to determine the contribution of photosynthesis in mixotrophic growth, C. protothecoides was grown in mixo- and heterotrophic nitrogen-limited continuous flow cultures. Lipid content increased with decreasing C/N, while biomass yield on glucose was not affected. Continuous production of high lipid levels (57% of biomass) was possible at high C/N (87-94). However, the lipid production rate (2.48 g L(-1) d(-1)) was higher at D=0.84 d(-1) with C/N 37 than at D=0.44 d(-1) and C/N 87 even though the lipid content of the biomass was lower (38%). Photosynthesis contributed to biomass and lipid production in mixotrophic conditions, resulting in 13-38% reduction in CO2 production compared with heterotrophic cultures, demonstrating that photo- and heterotrophic growth occurred simultaneously in the same population.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.07.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 46 citations 46 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2013.07.027&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 DenmarkPublisher:Elsevier BV Kristian Rost Albert; Dan Bruhn; Dan Bruhn; Per Ambus; Teis Nørgaard Mikkelsen;Abstract Nitrous oxide (N2O) is an important long-lived greenhouse gas and precursor of stratospheric ozone-depleting mono-nitrogen oxides. The atmospheric concentration of N2O is persistently increasing; however, large uncertainties are associated with the distinct source strengths. Here we investigate for the first time N2O emission from terrestrial vegetation in response to natural solar ultra violet radiation. We conducted field site measurements to investigate N2O atmosphere exchange from grass vegetation exposed to solar irradiance with and without UV-screening. Further laboratory tests were conducted with a range of species to study the controls and possible loci of UV-induced N2O emission from plants. Plants released N2O in response to natural sunlight at rates of c. 20–50 nmol m−2 h−1, mostly due to the UV component. The emission response to UV-A is of the same magnitude as that to UV-B. Therefore, UV-A is more important than UV-B given the natural UV-spectrum at Earth's surface. Plants also emitted N2O in darkness, although at reduced rates. The emission rate is temperature dependent with a rather high activation energy indicative for an abiotic process. The prevailing zone for the N2O formation appears to be at the very surface of leaves. However, only c. 26% of the UV-induced N2O appears to originate from plant-N. Further, the process is dependent on atmospheric oxygen concentration. Our work demonstrates that ecosystem emission of the important greenhouse gas, N2O, may be up to c. 30% higher than hitherto assumed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2014.09.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.atmosenv.2014.09.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1998 DenmarkPublisher:Elsevier BV Authors: Swift, R. J.; Wiebe, Marilyn; Robson, G. D.; Trinci, A. P. J.;pmid: 9974221
The production of glucoamylase (GAM) by Aspergillus niger B1, a genetic transformant containing an additional 20 copies of the homologous glucoamylase gene (glaA) was studied in nutrient (maltodextrin)-limited chemostat and nutrient-excess pH auxostat cultures. In these culture systems the specific production rate of GAM increased with dilution rate and reached a maximum (up to 15.0 mg GAM [g biomass]-1 h-1) when A. niger B1 was grown at its maximum specific growth rate in pH auxostat culture, indicating that GAM is a growth-associated product. The appearance of spontaneous morphological mutants was observed in all continuous flow cultures grown at pH 5.4, with a light brown mutant always displacing the parental strain. However, no morphological mutants were observed in cultures grown at pH 4.0. Further, when A. niger B1 was grown in pH auxostat culture, the specific production rate of GAM was 31% higher at pH 4.0 than at pH 5.4. Southern blot analyses showed that some morphological mutants (including the light brown mutant) isolated from a pH auxostat culture had lost copies of the glaA genes.
VBN arrow_drop_down Fungal Genetics and BiologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1006/fgbi.1998.1089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 38 citations 38 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down Fungal Genetics and BiologyArticle . 1998 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1006/fgbi.1998.1089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Conference object 2011 DenmarkPublisher:Elsevier BV Hariklia N. Gavala; Hariklia N. Gavala; Ioannis V. Skiadas; Ioannis V. Skiadas; Gerasimos Lyberatos; Georgia Antonopoulou;Abstract The aim of the present study was to assess the influence of substrate concentration on the fermentative hydrogen production from sweet sorghum extract, in a continuous stirred tank bioreactor. The reactor was operated at a Hydraulic Retention Time (HRT) of 12 h and carbohydrate concentrations ranging from 9.89 to 20.99 g/L, in glucose equivalents. The maximum hydrogen production rate and yield were obtained at the concentration of 17.50 g carbohydrates/L and were 2.93 ± 0.09 L H 2 /L reactor/d and 0.74 ± 0.02 mol H 2 /mol glucose consumed, corresponding to 8.81 ± 0.02 L H 2 /kg sweet sorghum, respectively. The main metabolic product at all steady states was butyric acid, while ethanol production was high at high substrate concentrations. The experiments showed that hydrogen productivity depends significantly on the initial carbohydrate concentration, which also influences the distribution of the metabolic products.
VBN arrow_drop_down International Journal of Hydrogen EnergyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2011.01.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down International Journal of Hydrogen EnergyArticle . 2011 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ijhydene.2011.01.077&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 DenmarkPublisher:SAGE Publications Authors: Prapaspongsa, Trakarn; Poulsen, Tjalfe; Hansen, Jens Aage; Christensen, Per;pmid: 19723830
Improper management of pig manure has resulted in environmental problems such as surface water eutrophication, ground water pollution, and greenhouse gas emissions. This study develops and compares 14 alternative manure management scenarios aiming at energy and nutrient extraction. The scenarios based on combinations of thermal pretreatment, anaerobic digestion, anaerobic co-digestion, liquid/solid separation, drying, incineration, and thermal gasification were compared with respect to their energy, nutrient and greenhouse gas balances. Both sole pig manure and pig manure mixed with other types of waste materials were considered. Data for the analyses were obtained from existing waste treatment facilities, experimental plants, laboratory measurements and literature. The assessment reveals that incineration combined with liquid/solid separation and drying of the solids is a promising management option yielding a high potential energy utilization rate and greenhouse gas savings. If maximum electricity production is desired, anaerobic digestion is advantageous as the biogas can be converted to electricity at high efficiency in a gas engine while allowing production of heat for operation of the digestion process. In conclusion, this study shows that the choice of technology has a strong influence on energy, nutrient and greenhouse gas balances. Thus, to get the most reliable results, it is important to consider the most representative (and up-to-date) technology combined with data representing the area or region in question.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x09338728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x09338728&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2013 DenmarkPublisher:Elsevier BV Toor, Saqib; Reddy, H.; Deng, S.; Hoffmann, Jessica; Spangsmark, D.; Madsen, L. B.; Holm-Nielsen, Jens Bo; Rosendahl, Lasse;pmid: 23376205
Six hydrothermal liquefaction experiments on Nannochloropsis salina and Spirulina platensis at subcritical and supercritical water conditions (220–375 °C, 20–255 bar) were carried out to explore the feasibility of extracting lipids from wet algae, preserving nutrients in lipid-extracted algae solid residue, and recycling process water for algae cultivation. GC–MS, elemental analyzer, FT-IR, calorimeter and nutrient analysis were used to analyze bio-crude, lipid-extracted algae and water samples produced in the hydrothermal liquefaction process. The highest bio-crude yield of 46% was obtained on N. salina at 350 °C and 175 bar. For S. platensis algae sample, the optimal hydrothermal liquefaction condition appears to be at 310 °C and 115 bar, while the optimal condition for N. salina is at 350 °C and 175 bar. Preliminary data also indicate that a lipid-extracted algae solid residue sample obtained in the hydrothermal liquefaction process contains a high level of proteins.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.12.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 206 citations 206 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.biortech.2012.12.144&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 DenmarkPublisher:Elsevier BV Publicly fundedAsam, Zaki-ul-Zaman; Poulsen, Tjalfe; Nizami, Abdul-Sattar; Rafique, Rashad; Kiely, Ger; Murphy, Jerry D.;Abstract Biogas production is one of the number of tools that may be used to alleviate the problems of global warming, energy security and waste management. Biogas plants can be difficult to sustain from a financial perspective. The facilities must be financially optimized through use of substrates with high biogas potential, low water content and low retention requirement. This research carried out in laboratory scale batch digesters assessed the biogas potential of energy crops (maize and grass silage) and solid manure fractions from manure separation units. The ultimate methane productivity in terms of volatile solids (VS) was determined as 330, 161, 230, 236, 361 L/kg VS from raw pig slurry, filter pressed manure fiber (FPMF), chemically precipitated manure fiber (CPMF), maize silage and grass silage respectively. Methane productivity based on mass (L/kg substrate) was significantly higher in FPMF (55 L/kg substrate), maize silage (68 L/kg substrate) and grass silage (45–124 L/kg substrate (depending on dry solids of feedstock)) as in comparison to raw pig slurry (10 L/kg substrate). The use of these materials as co-substrates with raw pig slurry will increase significantly the biomethane yield per unit feedstock in the biogas plant.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2010.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 154 citations 154 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2010.12.036&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2008 DenmarkPublisher:Springer Science and Business Media LLC Authors: Eriksen, Niels T.;pmid: 18478186
This review outlines the current status and recent developments in the technology of microalgal culturing in enclosed photobioreactors. Light distribution and mixing are the primary variables that affect productivities of photoautotrophic cultures and have strong impacts on photobioreactor designs. Process monitoring and control, physiological engineering, and heterotrophic microalgae are additional aspects of microalgal culturing, which have gained considerable attention in recent years.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10529-008-9740-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 256 citations 256 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10529-008-9740-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011 DenmarkPublisher:SAGE Publications Authors: Johnson, Bjørn; Poulsen, Tjalfe; Hansen, Jens Aage; Lehmann, Martin;pmid: 21890877
There is a strong connection between economic growth and development of cities. Economic growth tends to stimulate city growth, and city economies have often shaped innovative environments that in turn support economic growth. Simultaneously, social and environmental problems related to city growth can be serious threats to the realization of the socio-economic contributions that cities can make. However, as a result of considerable diversity of competences combined with interactive learning and innovation, cities may also solve these problems. The ‘urban order’ may form a platform for innovative problem solving and potential spill-over effects, which may stimulate further economic growth and development. This paper discusses how waste problems of cities can be transformed to become part of new, more sustainable solutions. Two cases are explored: Aalborg in Denmark and Malmö in Sweden. It is shown that the cities have the potential to significantly contribute to a more sustainable development through increased material recycling and energy recovery. Waste prevention may increase this potential. For example, instead of constituting 3% of the total greenhouse gas emission problem, it seems possible for modern European cities to contribute to greenhouse gas emission reduction by 15% through up to date technology and integrated waste management systems for material and energy recovery. Going from being part of the problem to providing solutions; however, is not an easy endeavour. It requires political will and leadership, supportive regulatory frameworks, realistic timetables/roadmaps, and a diverse set of stakeholders that can provide the right creative and innovative mix to make it possible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x11417488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 9 citations 9 popularity Average influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1177/0734242x11417488&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1999 DenmarkPublisher:Wiley Bocking, S. P.; Wiebe, Marilyn; Robson, G. D.; Hansen, Klaus; Christiansen, L. H.; Trinci, A. P. J.;Highly branched mutants of two strains of Aspergillus oryzae (IFO4177, which produces alpha-amylase, and a transformant of IFO4177 [AMG#13], which produces heterologous glucoamylase in addition to alpha-amylase) were generated by UV or nitrous acid mutagenesis. Four mutants of the parental strain (IFO4177), which were 10 to 50% more branched than the parental strain, were studied in stirred batch culture and no differences were observed in either the amount or the rate of enzyme production. Five mutants of the transformed parental strain (AMG#13), which were 20 to 58% more branched than the parental strain, were studied in either batch, fed-batch or continuous culture. In batch culture, three of the mutants produced more glucoamylase than the transformed parental strain, although only two mutants produced more glucoamylase and alpha-amylase combined. No increase in enzyme production was observed in either chemostat or fed-batch culture. Cultures of highly branched mutants were less viscous than those of the parental and transformed parental strains. A linear relationship was found between the degree of branching (measured as hyphal growth unit length) and culture viscosity (measured as the torque exerted on the rheometer impeller) for these strains. DOT-controlled fed-batch cultures (in which the medium feed rate was determined by the DOT) were thus inoculated with either the transformed parent or highly branched mutants of the transformed parent to determine whether the reduced viscosity would improve aeration and give higher enzyme yields. The average rate of medium addition was higher for the two highly branched mutants (ca. 8.3 g medium h(-1)) than for the parental strain (5.7 g medium h(-1)). Specific enzyme production in the DOT controlled fed-batch cultures was similar for all three strains (approx. 0.24 g alpha-amylase and glucoamylase [g of biomass](-1)), but one of the highly branched mutants made more total enzyme (24.3 +/- 0.2 g alpha-amylase and glucoamylase) than the parental strain (21.7 +/- 0.4 g alpha-amylase and glucoamylase).
VBN arrow_drop_down Biotechnology and BioengineeringArticle . 1999 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/(sici)1097-0290(19991220)65:6<638::aid-bit4>3.0.co;2-k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 61 citations 61 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down Biotechnology and BioengineeringArticle . 1999 . Peer-reviewedLicense: Wiley TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/(sici)1097-0290(19991220)65:6<638::aid-bit4>3.0.co;2-k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu