- home
- Advanced Search
- Energy Research
- GB
- IT
- UA
- Applied Energy
- Energy Research
- GB
- IT
- UA
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Conference object 2017Publisher:Elsevier BV Funded by:UKRI | Pumped Thermal Electricit..., UKRI | DTA - Imperial College Lo...UKRI| Pumped Thermal Electricity Storage ,UKRI| DTA - Imperial College Londonhandle: 10044/1/31099
Abstract In this paper, we examine the electrical power-generation potential of a domestic-scale solar combined heating and power (S-CHP) system featuring an organic Rankine cycle (ORC) engine and a 15-m 2 non-concentrated solar-thermal collector array. The system is simulated with a range of organic working fluids and its performance is optimised for operation in the UK climate. The findings are applicable to similar geographical locations with significant cloud coverage, a low solar resource and limited installation areas. A key feature of the system’s design is the implementation of fixed fluid flow-rates during operation in order to avoid penalties in the performance of components suffered at part-load. Steady operation under varying solar irradiance conditions is provided by way of a working-fluid buffer vessel at the evaporator outlet, which is maintained at the evaporation temperature and pressure of the ORC. By incorporating a two-stage solar collector/evaporator configuration, a maximum net annual electrical work output of 1070 kW h yr −1 (continuous average power of 122 W) and a solar-to-electrical efficiency of 6.3% is reported with HFC-245ca as the working fluid at an optimal evaporation saturation temperature of 126 °C (corresponding to an evaporation pressure of 16.2 bar). This is equivalent to ∼32% of the electricity demand of a typical/average UK home, and represents an improvement of more than 50% over a recent effort by the same authors based on an earlier S-CHP system configuration and HFC-245fa as the working fluid [1] , thus highlighting the gains possible when using optimal system configurations and fluids and suggesting that significant further improvements may be possible. A performance and simple cost comparison with stand-alone, side-by-side PV and solar-thermal heating systems is presented.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/31099Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 166 citations 166 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2016License: CC BYFull-Text: http://hdl.handle.net/10044/1/31099Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2016Data sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2014Publisher:Elsevier BV Authors:
Sumit Roy; Sumit Roy
Sumit Roy in OpenAIRE
Rahul Banerjee; Probir Kumar Bose;Rahul Banerjee
Rahul Banerjee in OpenAIREThe present study explores the potential of artificial neural network to predict the performance and exhaust emissions of an existing single cylinder four-stroke CRDI engine under varying EGR strategies. Based on the experimental data an ANN model is developed to predict BSFC, BTE, CO2, NOx and PM with load, fuel injection pressure, EGR and fuel injected per cycle as input parameters for the network. The study was carried out with 70% of total experimental data selected for training the neural network, 15% for the network’s cross-validation and remaining 15% data has been used for testing the performance of the trained network. The developed ANN model was capable of predicting the performance and emissions of the experimental engine with excellent agreement as observed from correlation coefficients within the range of 0.987–0.999, mean absolute percentage error in the range of 1.1–4.57% with noticeably low root mean square errors. In addition to common correlation coefficients, the present study incorporated special statistical error and performance metrics such as mean square relative error, forecasting uncertainty Theil U2, Nash–Sutcliffe Coefficient of Efficiency and Kling–Gupta Efficiency. Low values of MSRE and Theil U2 combined with commendable indices of NSE and KGE proved beyond doubt the robustness and applicability of the model so developed. Furthermore, the developed ANN model was capable of mapping the PM–NOx–BSFC trade-off potential of the CRDI operation under EGR for all cases of actual observations with significant accuracy.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.201 citations 201 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Authors:
Maurizio Bevilacqua; Flavio Caresana;Maurizio Bevilacqua
Maurizio Bevilacqua in OpenAIRE
Gabriele Comodi; Claudia Paciarotti; +2 AuthorsGabriele Comodi
Gabriele Comodi in OpenAIRE
Maurizio Bevilacqua; Flavio Caresana;Maurizio Bevilacqua
Maurizio Bevilacqua in OpenAIRE
Gabriele Comodi; Claudia Paciarotti; Leonardo Pelagalli; Paola Venella;Gabriele Comodi
Gabriele Comodi in OpenAIREAbstract The paper presents a cradle-to-grave life cycle assessment for two domestic solar hot water systems. The first consists of polypropylene unglazed solar panels coupled with a 300-l storage tank; the second one consists of a traditional system with glazed solar panels coupled with a thermal storage of the same volume. Life cycle assessment was conducted according to the Eco-Indicator 99 methodology, Egalitarian Approach, yielding 49.7 and 18.3 eco-indicator points for the glazed and unglazed panels systems, respectively. In addition, for each domestic solar hot water system, the energy, CO 2 and economic payback times were calculated. In order to take into account the influence of local climate on the solar panels yield evaluate, the systems performance was simulated for three different locations: Rome, Madrid and Munich. The payback times were evaluated with respect to both natural gas and electrical boilers. The Energy Payback Time of the unglazed panel system ranges between 2 and 5 months, that of the glazed panel between 5 and 12 months. The CO 2 Payback Time of the unglazed panel system ranges between 1 and 2 months, that of the glazed panel between 12 and 30 months. The economic payback time, if compared with natural gas boiler, is in the range 9–11 years/8–13 years for the system with unglazed/glazed panels, respectively; if compared with the electrical boiler, it is in the range of 3–4 years for the system with unglazed panels and 4 years for that with glazed panels. The different national costs of natural gas and/or electricity play an important role in the economic payback times. Indeed, in Munich, the smaller energy savings achieved with the renewable systems are offset by the higher costs of these commodities.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.33 citations 33 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Authors: Chenglin Su; Lunbo Duan;
Felix Donat; Felix Donat
Felix Donat in OpenAIRE
Edward John Anthony; Edward John Anthony
Edward John Anthony in OpenAIREAbstract A novel calcium looping (CaL) process integrated with a spent bleaching clay (SBC) treatment is proposed whereby fuels and/or heat from regeneration of SBC provide extra energy for the calcination process, in addition, the regenerated SBC can be used to synthesize enhanced CaO-based sorbents. Different kinds of composite samples were prepared with the regenerated SBC and/or aluminate cement at various doping ratios via a pelletization process. All pellets were subjected to thermogravimetic analyzer tests employing severe reaction conditions to determine the optimal doping ratios and regeneration method for the SBC based sorbents. These results demonstrate that pellets containing combustible components showed higher CO2 uptakes, due to the improved pore structure, which was verified by N2 adsorption measurements. The as-prepared sorbent “L-10PC” (90 wt.% CaO/10 wt.% pyrolytic SBC) achieved a final CO2 uptake of 0.164 g(CO2) g(calcined sorbent)−1 after 20 cycles, which was 67.3% higher than that of natural limestone particle. A new larnite (Ca2SiO4) phase was detected by X-ray diffraction analysis, however the weak diffraction peak associated with it indicated a low content of larnite in the pellets, which produced a smaller effect on performance compared to cement. A synergistic effect was achieved for a sample designated as “L-5PC-10CA” (85 wt.% CaO/5 wt.% pyrolytic SBC /10 wt.% cement), which resulted in the highest final uptake of 0.208 g(CO2) g(calcined sorbent)−1 after 20 cycles. Considering the simplicity of pyrolysis regeneration process and the excellent capture capability of pellets doped by pyrolytic SBC, the proposed system integrating CaL with SBC pyrolysis treatment appears to offer particular promise for further development.
Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 70 citations 70 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Cranfield University... arrow_drop_down Cranfield University: Collection of E-Research - CERESArticle . 2017License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Funded by:EC | STAR-AGROENERGYEC| STAR-AGROENERGYAuthors: N. Antoniou; Florian Monlau;
Cecilia Sambusiti; Cecilia Sambusiti
Cecilia Sambusiti in OpenAIRE
Matteo Francavilla; +6 AuthorsMatteo Francavilla
Matteo Francavilla in OpenAIREN. Antoniou; Florian Monlau;
Cecilia Sambusiti; Cecilia Sambusiti
Cecilia Sambusiti in OpenAIRE
Matteo Francavilla; Anastasia Zabaniotou; Anastasia Zabaniotou; Abderrahim Solhy;Matteo Francavilla
Matteo Francavilla in OpenAIRE
Angela Libutti; Angela Libutti
Angela Libutti in OpenAIRE
Abdellatif Barakat; Massimo Monteleone;Abdellatif Barakat
Abdellatif Barakat in OpenAIREhandle: 11369/350746
Abstract The integration of different technologies acts as a leverage in boosting “circular economy” and improving resource use efficiency. In this respect, the coupling of anaerobic digestion with pyrolysis was the focus of this work. Solid-digestate obtained from anaerobic digestion was addressed to supply pyrolysis thus increasing the net energy gains and obtaining “biochar” (called “pyrochar” in our case) to be used as soil amendment alternatively to solid-digestate. The current interest on biochar is linked to its long-term soil carbon sequestration, thus contributing to global warming mitigation. A parallel detailed screening of the physical and chemical properties of both solid-digestate and pyrochar was performed, inferring their effects on soil quality. Results showed that while P and K are enriched in pyrochar, total N showed no significant differences. Heavy metals revealed higher concentrations in pyrochar, but always largely below the biochar quality thresholds. Pyrochar exhibited a higher surface area (49–88 m 2 g −1 ), a greater water holding capacity (352–366%), and a more recalcitrant carbon structure. Both solid-digestate and pyrochar showed good soil amendments properties but with complementary effects. Although starting from the same biomass, being the original feedstock processed differently, their ability to improve the physical and chemical soil properties has proved to be different. While several other soil improvers of organic origin can substitute digestate, the important role played by biochar appears not-replaceable considering its precious “carbon negative” action.
Applied Energy arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.163 citations 163 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Energy arrow_drop_down Institut National de la Recherche Agronomique: ProdINRAArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2011Publisher:Elsevier BV Authors: Hanan Taleb; Steve Sharples;This paper assesses the energy and water consumption practices of existing housing in Saudi Arabia, with the ultimate aim of establishing guidelines for delivering sustainable residential buildings in the near future. In order to achieve this aim the current status of a typical Saudi residence (i.e. an apartment complex) is investigated in terms of energy and water consumption using simulation software packages. The paper then examines the prospects for applying various measures to the typical Saudi residence to manage energy and water use more sustainably. This research identifies several design-related faults common to Saudi Arabian house design. These faults contribute to an inefficient use of energy and domestic water resources. Finally, the paper puts forward a set of recommendations and guidelines, design-related and otherwise, to enhance the sustainability of future Saudi residential buildings.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.180 citations 180 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Yang, Qiushuang;
Mašek, Ondřej; Zhao, Ling; Nan, Hongyan; +4 AuthorsMašek, Ondřej
Mašek, Ondřej in OpenAIREYang, Qiushuang;
Mašek, Ondřej; Zhao, Ling; Nan, Hongyan; Yu, Shitong; Yin, Jianxiang; Li, Zhaopeng; Cao, Xinde;Mašek, Ondřej
Mašek, Ondřej in OpenAIREAbstract Conversion of biomass into biofuel and biochar with a subsequent soil storage is assumed as a prospective strategy of reducing atmospheric CO2 concentrations. However, substantial uncertainties exist in this field regarding the country-level potential of biochar carbon sequestration, indirect effects of biochar implementation on overall environment, and dominating factors. This study conducted a life cycle assessment of country-wide incorporation of biochar in agriculture, and associated potential benefits. Results showed that over 920 kg CO2e (CO2-equivalent) could be sequestrated via converting 1 t of crop residues into biochar. As an example, based on crop residues availability statistics for China in 2014, the estimated annual carbon sequestration potential could be as high as 0.50 Pg CO2e (1 Pg = 1 × 109 t). The most significant potential for biochar carbon sequestration was identified in the central south, east and northeast of China, which contributed 65% of the national biochar carbon sequestration potential. The biochar system could also contribute to mitigation of the following environmental problems: marine aquatic biodiversity destruction, surface soil and water acidification, etc. Sensitivity analysis demonstrated that biochar yield, carbon content in biochar, electricity conversion efficiencies of bio-oil and pyrolysis gas were the critical parameters determining the biochar system’s overall carbon sequestration potential and environmental effects. This study provides guidance on evaluating biochar’s potential carbon sequestration capacity and comprehensive environmental impacts, as well as research and development needs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 129 citations 129 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Authors:
Vivek V. Ranade; Vivek V. Ranade
Vivek V. Ranade in OpenAIRE
David Buentello-Montoya; David Buentello-Montoya;David Buentello-Montoya
David Buentello-Montoya in OpenAIRE
Marco Geron; +4 AuthorsMarco Geron
Marco Geron in OpenAIRE
Vivek V. Ranade; Vivek V. Ranade
Vivek V. Ranade in OpenAIRE
David Buentello-Montoya; David Buentello-Montoya;David Buentello-Montoya
David Buentello-Montoya in OpenAIRE
Marco Geron; Marco Geron
Marco Geron in OpenAIRE
Xiaolei Zhang; Xiaolei Zhang;Xiaolei Zhang
Xiaolei Zhang in OpenAIRE
Li Jun; Li Jun
Li Jun in OpenAIRE
Simao Marques; Simao Marques
Simao Marques in OpenAIREThe application of gasification to thermally treat biomass as carbon neutral resources has been constrained by the technical challenges associated with tar formations, which cause operational problems in downstream equipment for syngas processing. Catalysts, such as transition metals, calcined rocks and char, can be used to catalyse tar reforming. Biochars, which are naturally produced during biomass gasification, are particularly attractive as an alternative catalyst due to their catalytic functions, low cost and long endurance. Despite these promising characteristics, adequate knowledge on the relationship between the porous structure of biochar and its deactivation by coking during the steam reforming of tars is not available. In this work, the influence of the porous structure of biochar on its performance across time for reforming tar was investigated in a fixed-bed reactor, over a temperature range from 650 to 850 °C. Regular biochar and physically activated biochar from the same precursor biomass were employed as bed material. The tar samples were the composed mixture of benzene, toluene and naphthalene. Both fresh and spent catalysts were analysed with Brunauer-Emmet-Teller, t-plot, Fourier Transform Infrared and Scanning Electron Microscopy/Energy Dispersive Spectroscopy. Results showed that, while at moderate temperatures of 650 and 750 °C, the activated biochar offered a higher tar conversion but more severe deactivation than that of the regular biochar. At the high temperature of 850 °C, the difference in the catalytic performance between the two chars was negligible, and over 90% of the initial tar species were removed throughout the 3-hour long experiments. At 850 °C, the coke deposited in the meso- and macro-pores of both chars was gasified, leading to a stable catalytic performance of both chars. The results indicated that meso- and macro-porous biochars are resilient and active enough to become a viable option for tar steam reforming.
CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Queen's University Research PortalArticle . 2020License: CC BY NC NDData sources: Queen's University Research PortalQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 118 citations 118 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert CORE (RIOXX-UK Aggre... arrow_drop_down CORE (RIOXX-UK Aggregator)Article . 2020License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)StrathprintsArticle . 2020License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Queen's University Research PortalArticle . 2020License: CC BY NC NDData sources: Queen's University Research PortalQueen's University Belfast Research PortalArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)University of Surrey Open Research repositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2016Publisher:Elsevier BV Funded by:EC | CO2PIPEHAZ, EC | CO2QUESTEC| CO2PIPEHAZ ,EC| CO2QUESTGuo, Xiaolu; Yan, Xingqing; Yu, Jianlang; Zhang, Yong Chun; Chen, Shaoyun; Mahgerefteh, Haroun;
Martynov, Sergey; Collard, Alexander;Martynov, Sergey
Martynov, Sergey in OpenAIRE
Proust, Christophe; Proust, Christophe
Proust, Christophe in OpenAIRELong-distance CO2 pipelines will be widely applied to transport captured CO2 from fossil fuel fired power plants for subsequent sequestration. In the event of pipeline failure a large mass of the inventory may be discharged within a short time, this represents a significant hazard if leaks continue undetected. An important result of the risk assessment for a CO2 pipeline is the safety distance. At present the lack of knowledge concerning near-field source terms and the far-field dispersion behavior of CO2 leaking from pipelines can make the calculation of safety distances imprecise. Study of near-field source terms and dispersion behavior is therefore necessary and of paramount importance for assessing safety distances and the impact of CO2 pipeline releases on the surrounding environment. In order to study CO2 pipeline leakage, a large-scale pipeline set-up with a total length of 258 m and an internal diameter of 233 mm was constructed to study the near-field characteristics and dispersion behavior of supercritical CO2 during sudden releases. The dynamic pressure near the orifice and CO2 concentrations and temperatures within the downstream dispersion region were measured together with the pressures inside the pipeline. The under-expanded jet flow structure and phase transitions in the near-field were studied for supercritical CO2 released though different orifice diameters (15 mm, 50 mm and Full Bore Rupture). The formation of the visible cloud, the distribution of cloud temperatures and CO2 concentrations in the far-field were analyzed using the measured data, photographs and video recordings. The safety distances along the horizontal direction for 5% CO2 concentration for each of the three orifice diameters were determined from the lower limit for adverse human effects.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 50 citations 50 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2019Publisher:Elsevier BV Authors:
Zhenyuan Yin; Zhenyuan Yin; George J. Moridis; George J. Moridis; +1 AuthorsZhenyuan Yin
Zhenyuan Yin in OpenAIRE
Zhenyuan Yin; Zhenyuan Yin; George J. Moridis; George J. Moridis;Zhenyuan Yin
Zhenyuan Yin in OpenAIRE
Praveen Linga; Praveen Linga
Praveen Linga in OpenAIREMethane hydrates (MHs) have been considered as the future source of energy because of its vast resource volume and high energy density. Energy recovery from MH-bearing sediments has attracted intensifying research activities. Fundamentally, heat transfer, fluid flow through porous media, and the kinetics of hydrate reaction are the three key processes controlling the behavior of MH dissociation and the associated fluid production. Earlier studies have suggested that heterogeneous spatial distribution of SH is inevitable in MH-bearing samples synthesized in laboratory. In this paper, we extend our study to analyze numerically the simulation results from the two realizations of the samples (homogeneous and heterogeneous) to identify differences in the fluid production and to determine if they are sufficiently different. Additionally, we conduct a sensitivity analysis and a statistical analysis on the key transport and kinetic rate parameters that could affect hydrate dissociation and fluid production in the context of a heterogeneous hydrate-bearing sample, in an effort to provide insights that could lead to improved designs for laboratory experiments and (possibly) field applications. Our results suggest that the approximation of an artificial hydrate-bearing core with heterogeneous phase saturations by an assumption of uniform phase saturation distributions results in practically similar fluid production profile except for the very early stage with maximum 20.0% deviation in the water production. From the sensitivity and statistical analysis, we determine that gas production depends strongly on the kinetic rate constant, Kd0 and the composite thermal conductivity of the hydrate-bearing sediments, λθ; while, water production is very sensitive to Kd0 and the absolute permeability of the sandy medium, k. Understanding the effect of phase heterogeneity and the relative importance of key parameters on the production behavior of hydrate-bearing sediments could provide basis for novel production technologies that lead to enhanced gas production and energy efficiency in the energy recovery process.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/6jt0z4nzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen bronze 55 citations 55 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2019Full-Text: https://escholarship.org/uc/item/6jt0z4nzData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2019Data sources: eScholarship - University of Californiaadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
