- home
- Advanced Search
- Energy Research
- Restricted
- Open Source
- physical sciences
- NL
- GB
- Energy Research
- Restricted
- Open Source
- physical sciences
- NL
- GB
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, NetherlandsPublisher:Springer Science and Business Media LLC G. Sordo; T. Kuenzig; Achim Bittner; Ulrich Schmid; Michael Schneider; Michele Bonaldi; Enrico Serra; Enrico Serra; Jacopo Iannacci; Antonio Borrielli; Gabriele Schrag; Pasqualina M. Sarro; Gregory Pandraud;handle: 11582/314219
In this contribution, we discuss the implementation of a novel microelectromechanical-systems (MEMS)-based energy harvester (EH) concept within the technology platform available at the ISAS Institute (TU Vienna, Austria). The device, already presented by the authors, exploits the piezoelectric effect to convert environmental vibrations energy into electricity, and presents multiple resonant modes in the frequency range of interest (i.e. below 10 kHz). The experimental characterisation of a sputter deposited aluminium nitride piezoelectric thin-film layer is reported, leading to the extraction of material properties parameters. Such values are then incorporated in the finite element method model of the EH, implemented in Ansys Workbench (TM), in order to get reasonable estimates of the converted power levels achievable by the proposed device solution. Multiphysics simulations indicate that extracted power values in the range of several mu W can be addressed by the EH-MEMS concept when subjected to mechanical vibrations up to 10 kHz, operating in closed-loop conditions (i.e. piezoelectric generator connected to a 100 k Omega resistive load). This represents an encouraging result, opening up the floor to exploitations of the proposed EH-MEMS device in the field of wireless sensor networks and zero-power sensing nodes.
CNR ExploRA arrow_drop_down Fondazione Bruno Kessler: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00542-018-3923-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 21 Powered bymore_vert CNR ExploRA arrow_drop_down Fondazione Bruno Kessler: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00542-018-3923-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2016Publisher:IEEE Authors: Roland van Rijswijk; Robert van den Hoed; Albert Hankel; Eric Hoekstra;In this paper we present a methodology to measure the energy consumption of software. The methodology is based on detailed monitoring of power usage of hardware components. We explain our lab setup after which we apply the methodology to different pieces of DNS resolver software. Through this case study we demonstrate some of the uses of our methodology, as it can be used to determine which software performs the tasks at hand in the most energy efficient way, what the influence of software configuration can be, etcetera.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)http://www.scopus.com/inward/r...Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/melcon.2016.7495390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)http://www.scopus.com/inward/r...Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/melcon.2016.7495390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Royal Society of Chemistry (RSC) Authors: Rienk van Grondelle; Vladimir I. Novoderezhkin;We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic techniques makes possible a modelling of the excitation dynamics at a quantitative level. The modified Redfield theory allows a precise assignment of the energy transfer pathways together with a direct visualization of the whole excitation dynamics where various regimes from a coherent motion of delocalized exciton to a hopping of localized excitations are superimposed. In a single complex it is possible to observe the switching between these regimes driven by slow conformational motion (as we demonstrate for LH2). Excitation dynamics under quenched conditions in higher-plant complexes is discussed.
Physical Chemistry C... arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2006Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b514032c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 402 citations 402 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Physical Chemistry C... arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2006Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b514032c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Springer Science and Business Media LLC Funded by:UKRI | UK Silicon Photonics, UKRI | Lasing of Erbium in Cryst...UKRI| UK Silicon Photonics ,UKRI| Lasing of Erbium in Crystalline Silicon Photonic Nanostructures - LECSINAuthors: Francesco Priolo; Tom Gregorkiewicz; Matteo Galli; Thomas F. Krauss;Silicon has long been established as the material of choice for the microelectronics industry. This is not yet true in photonics, where the limited degrees of freedom in material design combined with the indirect bandgap are a major constraint. Recent developments, especially those enabled by nanoscale engineering of the electronic and photonic properties, are starting to change the picture, and some silicon nanostructures now approach or even exceed the performance of equivalent direct-bandgap materials. Focusing on two application areas, namely communications and photovoltaics, we review recent progress in silicon nanocrystals, nanowires and photonic crystals as key examples of functional nanostructures. We assess the state of the art in each field and highlight the challenges that need to be overcome to make silicon a truly high-performing photonic material.
CNR ExploRA arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nnano.2013.271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 814 citations 814 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nnano.2013.271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: MA Vesaghi; Kamal Asadi;We have applied Rosenbrock's optimization algorithm to obtain the optimized efficiency of a solar cell and its structural parameters. To obtain these parameters. we have developed a computer pro-ram for simultaneous optimization and simulation of the solar cell. We have used experimental data on the electrical and optical properties of a-Si(1-x)C(x) layers, put them into the written code and obtained the optimized parameters of this solar cell. The maximum efficiency is 6.32% which is close to one experimental result. (C) 2004 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Authors: Thomas L. C. Jansen; Stephan Knop; Peter Vöhringer; Jörg Lindner;doi: 10.1039/c0cp02143a
pmid: 21258706
Two-dimensional infrared spectroscopy was carried out on stereoselectively synthesized polyalcohols. Depending upon the stereochemical orientation of their hydroxyl groups, the polyols can either feature linear chains of hydrogen bonds that are stable for extended periods of time or they can display ultrafast dynamics of hydrogen-bond breakage and formation. In the former case, the OH-stretching vibrations and their transition dipoles are substantially coupled, hence prior to vibrational relaxation, the initial OH-stretching excitation is rapidly redistributed among the set of hydroxyl-groups constituting the hydrogen-bonded chain. This redistribution is responsible for an ultrafast loss of memory regarding the frequency of initial excitation and as a result, a pump-frequency independent vibrational lifetime is observed. In contrast, in the latter case, the coupling of the OH-groups and their transition dipoles is much weaker. Therefore, the OH-stretching excitation remains localized on the initially excited oscillator for the time scale of vibrational energy relaxation. As a result inhomogeneous relaxation dynamics with a pump-frequency-dependent lifetime are observed.
Physical Chemistry C... arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Physical Chemistry Chemical PhysicsArticle . 2011Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0cp02143a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Physical Chemistry C... arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Physical Chemistry Chemical PhysicsArticle . 2011Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0cp02143a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: R.G.M. van der Sman; M.B.J. Meinders;pmid: 24980050
In this paper we discuss and give an outlook on numerical models describing dispersions, stabilized by surfactants and colloidal particles. Examples of these dispersions are foams and emulsions. In particular, we focus on the potential of the diffuse interface models based on a free energy approach, which describe dispersions with the surface-active agent soluble in one of the bulk phases. The free energy approach renders thermodynamic consistent models with realistic sorption isotherms and adsorption kinetics. The free energy approach is attractive because of its ability to describe highly complex dispersions, such as emulsions stabilized by ionic surfactants, or surfactant mixtures and dispersions with surfactant micelles. We have classified existing numerical methods into classes, using either a Eulerian or a Lagrangian representation for fluid and for the surfactant/colloid. A Eulerian representation gives a more coarse-grained, mean field description of the surface-active agent, while a Lagrangian representation can deal with steric effects and larger complexity concerning geometry and (amphiphilic) wetting properties of colloids and surfactants. However, the similarity between the description of wetting properties of both Eulerian and Lagrangian models allows for the development of hybrid Eulerian/Lagrangian models having advantages of both representations.
Advances in Colloid ... arrow_drop_down Advances in Colloid and Interface ScienceArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Advances in Colloid and Interface ScienceArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cis.2014.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advances in Colloid ... arrow_drop_down Advances in Colloid and Interface ScienceArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Advances in Colloid and Interface ScienceArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cis.2014.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:American Chemical Society (ACS) Authors: Ivo H. M. van Stokkum; Mikas Vengris; Delmar S. Larsen; Emmanouil Papagiannakis; +2 AuthorsIvo H. M. van Stokkum; Mikas Vengris; Delmar S. Larsen; Emmanouil Papagiannakis; Richard J. Cogdell; Rienk van Grondelle;Dispersed transient absorption spectra collected at variable excitation intensities in combination with time-resolved signals were used to explore the underlying connectivity of the electronic excited-state manifold of the carotenoid rhodopin glucoside in the light-harvesting 2 complex isolated from Rhodopseudomonas acidophila. We find that the S state, which was recently identified as an excited state in carotenoids bound in bacterial light-harvesting complexes, exhibits a different response to the increase of excitation intensity than the S(1) state, which suggests that the models used so far to describe the excited states of carotenoids are incomplete. We propose two new models that can describe both the time-resolved and the intensity-dependent data; the first postulates that S(1) and S* are not populated in parallel after the decay of the initially excited S(2) state but instead result from the excitation of distinct ground-state subpopulations. The second model introduces a resonantly enhanced light-induced transition during excitation, which promotes population to higher-lying excited states that favors the formation of S* over S(1). Multiwavelength target analysis of the time-resolved and excitation-intensity dependence measurements were used to characterize the involved states and their responses. We show that both proposed models adequately fit the measured data, although it is not possible to determine which model is most apt. The physical origins and implications of both models are explored.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054633h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 93 citations 93 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054633h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:Wiley Authors: John W. Pickering; Marleen Keijzer; M. J. C. Van Gemert;pmid: 1753854
AbstractOptimal port wine stain treatment requires the selective absorption of light by the ectatic blood vessels. We investigated whether deeper blood vessels can be coagulated, without damaging other cutaneous structures, by varying the laser beam diameter. The penetration of the light was simulated with a random walk (Monte Carlo) program. Scattering of the light plays a major role: practically all light that is absorbed in a blood vessel in the dermis is scattered light. In the epidermis, where the distribution is more centered, a larger beam diameter does not increase the energy density as much as deeper within the dermis where the blood vessels lie and where the light is totally diffuse. Increasing the laser beam diameter from 200 μm to 1 mm or more, makes a typical blood vessel absorb 2.5 times more energy, while the energy absorbed by the epidermis remains the same. The larger the laser beam diameter the better the treatment.
Lasers in Surgery an... arrow_drop_down Lasers in Surgery and MedicineArticle . 1991Data sources: DANS (Data Archiving and Networked Services)Lasers in Surgery and MedicineArticle . 1991 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lsm.1900110616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Lasers in Surgery an... arrow_drop_down Lasers in Surgery and MedicineArticle . 1991Data sources: DANS (Data Archiving and Networked Services)Lasers in Surgery and MedicineArticle . 1991 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lsm.1900110616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981Publisher:Elsevier BV Authors: Marten Sikkens;Abstract A discussion of the restraints imposed by fundamental physical relations on the performance of spectrally selective solar energy materials is presented. It is shown, thatthree different classes of selective materials can be distinguished. The limitations to the performance of each of these “ideal” classes are indicated. Some examples of physical mechanisms leading to spectral selectivity are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0165-1633(81)90058-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0165-1633(81)90058-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 Italy, NetherlandsPublisher:Springer Science and Business Media LLC G. Sordo; T. Kuenzig; Achim Bittner; Ulrich Schmid; Michael Schneider; Michele Bonaldi; Enrico Serra; Enrico Serra; Jacopo Iannacci; Antonio Borrielli; Gabriele Schrag; Pasqualina M. Sarro; Gregory Pandraud;handle: 11582/314219
In this contribution, we discuss the implementation of a novel microelectromechanical-systems (MEMS)-based energy harvester (EH) concept within the technology platform available at the ISAS Institute (TU Vienna, Austria). The device, already presented by the authors, exploits the piezoelectric effect to convert environmental vibrations energy into electricity, and presents multiple resonant modes in the frequency range of interest (i.e. below 10 kHz). The experimental characterisation of a sputter deposited aluminium nitride piezoelectric thin-film layer is reported, leading to the extraction of material properties parameters. Such values are then incorporated in the finite element method model of the EH, implemented in Ansys Workbench (TM), in order to get reasonable estimates of the converted power levels achievable by the proposed device solution. Multiphysics simulations indicate that extracted power values in the range of several mu W can be addressed by the EH-MEMS concept when subjected to mechanical vibrations up to 10 kHz, operating in closed-loop conditions (i.e. piezoelectric generator connected to a 100 k Omega resistive load). This represents an encouraging result, opening up the floor to exploitations of the proposed EH-MEMS device in the field of wireless sensor networks and zero-power sensing nodes.
CNR ExploRA arrow_drop_down Fondazione Bruno Kessler: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00542-018-3923-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 5 citations 5 popularity Average influence Average impulse Average Powered by BIP!
visibility 2visibility views 2 download downloads 21 Powered bymore_vert CNR ExploRA arrow_drop_down Fondazione Bruno Kessler: CINECA IRISArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)Delft University of Technology: Institutional RepositoryArticle . 2018Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s00542-018-3923-1&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 2016Publisher:IEEE Authors: Roland van Rijswijk; Robert van den Hoed; Albert Hankel; Eric Hoekstra;In this paper we present a methodology to measure the energy consumption of software. The methodology is based on detailed monitoring of power usage of hardware components. We explain our lab setup after which we apply the methodology to different pieces of DNS resolver software. Through this case study we demonstrate some of the uses of our methodology, as it can be used to determine which software performs the tasks at hand in the most energy efficient way, what the influence of software configuration can be, etcetera.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)http://www.scopus.com/inward/r...Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/melcon.2016.7495390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)http://www.scopus.com/inward/r...Conference object . 2016Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/melcon.2016.7495390&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:Royal Society of Chemistry (RSC) Authors: Rienk van Grondelle; Vladimir I. Novoderezhkin;We overview experimental and theoretical studies of energy transfer in the photosynthetic light-harvesting complexes LH1, LH2, and LHCII performed during the past decade since the discovery of high-resolution structure of these complexes. Experimental findings obtained with various spectroscopic techniques makes possible a modelling of the excitation dynamics at a quantitative level. The modified Redfield theory allows a precise assignment of the energy transfer pathways together with a direct visualization of the whole excitation dynamics where various regimes from a coherent motion of delocalized exciton to a hopping of localized excitations are superimposed. In a single complex it is possible to observe the switching between these regimes driven by slow conformational motion (as we demonstrate for LH2). Excitation dynamics under quenched conditions in higher-plant complexes is discussed.
Physical Chemistry C... arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2006Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b514032c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 402 citations 402 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
more_vert Physical Chemistry C... arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2006Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/b514032c&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 ItalyPublisher:Springer Science and Business Media LLC Funded by:UKRI | UK Silicon Photonics, UKRI | Lasing of Erbium in Cryst...UKRI| UK Silicon Photonics ,UKRI| Lasing of Erbium in Crystalline Silicon Photonic Nanostructures - LECSINAuthors: Francesco Priolo; Tom Gregorkiewicz; Matteo Galli; Thomas F. Krauss;Silicon has long been established as the material of choice for the microelectronics industry. This is not yet true in photonics, where the limited degrees of freedom in material design combined with the indirect bandgap are a major constraint. Recent developments, especially those enabled by nanoscale engineering of the electronic and photonic properties, are starting to change the picture, and some silicon nanostructures now approach or even exceed the performance of equivalent direct-bandgap materials. Focusing on two application areas, namely communications and photovoltaics, we review recent progress in silicon nanocrystals, nanowires and photonic crystals as key examples of functional nanostructures. We assess the state of the art in each field and highlight the challenges that need to be overcome to make silicon a truly high-performing photonic material.
CNR ExploRA arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nnano.2013.271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 814 citations 814 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert CNR ExploRA arrow_drop_down IRIS UNIPV (Università degli studi di Pavia)Article . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/nnano.2013.271&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2005Publisher:Elsevier BV Authors: MA Vesaghi; Kamal Asadi;We have applied Rosenbrock's optimization algorithm to obtain the optimized efficiency of a solar cell and its structural parameters. To obtain these parameters. we have developed a computer pro-ram for simultaneous optimization and simulation of the solar cell. We have used experimental data on the electrical and optical properties of a-Si(1-x)C(x) layers, put them into the written code and obtained the optimized parameters of this solar cell. The maximum efficiency is 6.32% which is close to one experimental result. (C) 2004 Elsevier B.V. All rights reserved.
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2005Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2005 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2004.05.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2011Publisher:Royal Society of Chemistry (RSC) Authors: Thomas L. C. Jansen; Stephan Knop; Peter Vöhringer; Jörg Lindner;doi: 10.1039/c0cp02143a
pmid: 21258706
Two-dimensional infrared spectroscopy was carried out on stereoselectively synthesized polyalcohols. Depending upon the stereochemical orientation of their hydroxyl groups, the polyols can either feature linear chains of hydrogen bonds that are stable for extended periods of time or they can display ultrafast dynamics of hydrogen-bond breakage and formation. In the former case, the OH-stretching vibrations and their transition dipoles are substantially coupled, hence prior to vibrational relaxation, the initial OH-stretching excitation is rapidly redistributed among the set of hydroxyl-groups constituting the hydrogen-bonded chain. This redistribution is responsible for an ultrafast loss of memory regarding the frequency of initial excitation and as a result, a pump-frequency independent vibrational lifetime is observed. In contrast, in the latter case, the coupling of the OH-groups and their transition dipoles is much weaker. Therefore, the OH-stretching excitation remains localized on the initially excited oscillator for the time scale of vibrational energy relaxation. As a result inhomogeneous relaxation dynamics with a pump-frequency-dependent lifetime are observed.
Physical Chemistry C... arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Physical Chemistry Chemical PhysicsArticle . 2011Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0cp02143a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 53 citations 53 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Physical Chemistry C... arrow_drop_down Physical Chemistry Chemical PhysicsArticle . 2011Data sources: DANS (Data Archiving and Networked Services)Physical Chemistry Chemical PhysicsArticle . 2011Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/c0cp02143a&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Authors: R.G.M. van der Sman; M.B.J. Meinders;pmid: 24980050
In this paper we discuss and give an outlook on numerical models describing dispersions, stabilized by surfactants and colloidal particles. Examples of these dispersions are foams and emulsions. In particular, we focus on the potential of the diffuse interface models based on a free energy approach, which describe dispersions with the surface-active agent soluble in one of the bulk phases. The free energy approach renders thermodynamic consistent models with realistic sorption isotherms and adsorption kinetics. The free energy approach is attractive because of its ability to describe highly complex dispersions, such as emulsions stabilized by ionic surfactants, or surfactant mixtures and dispersions with surfactant micelles. We have classified existing numerical methods into classes, using either a Eulerian or a Lagrangian representation for fluid and for the surfactant/colloid. A Eulerian representation gives a more coarse-grained, mean field description of the surface-active agent, while a Lagrangian representation can deal with steric effects and larger complexity concerning geometry and (amphiphilic) wetting properties of colloids and surfactants. However, the similarity between the description of wetting properties of both Eulerian and Lagrangian models allows for the development of hybrid Eulerian/Lagrangian models having advantages of both representations.
Advances in Colloid ... arrow_drop_down Advances in Colloid and Interface ScienceArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Advances in Colloid and Interface ScienceArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cis.2014.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Advances in Colloid ... arrow_drop_down Advances in Colloid and Interface ScienceArticle . 2014Data sources: DANS (Data Archiving and Networked Services)Advances in Colloid and Interface ScienceArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.cis.2014.06.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2006Publisher:American Chemical Society (ACS) Authors: Ivo H. M. van Stokkum; Mikas Vengris; Delmar S. Larsen; Emmanouil Papagiannakis; +2 AuthorsIvo H. M. van Stokkum; Mikas Vengris; Delmar S. Larsen; Emmanouil Papagiannakis; Richard J. Cogdell; Rienk van Grondelle;Dispersed transient absorption spectra collected at variable excitation intensities in combination with time-resolved signals were used to explore the underlying connectivity of the electronic excited-state manifold of the carotenoid rhodopin glucoside in the light-harvesting 2 complex isolated from Rhodopseudomonas acidophila. We find that the S state, which was recently identified as an excited state in carotenoids bound in bacterial light-harvesting complexes, exhibits a different response to the increase of excitation intensity than the S(1) state, which suggests that the models used so far to describe the excited states of carotenoids are incomplete. We propose two new models that can describe both the time-resolved and the intensity-dependent data; the first postulates that S(1) and S* are not populated in parallel after the decay of the initially excited S(2) state but instead result from the excitation of distinct ground-state subpopulations. The second model introduces a resonantly enhanced light-induced transition during excitation, which promotes population to higher-lying excited states that favors the formation of S* over S(1). Multiwavelength target analysis of the time-resolved and excitation-intensity dependence measurements were used to characterize the involved states and their responses. We show that both proposed models adequately fit the measured data, although it is not possible to determine which model is most apt. The physical origins and implications of both models are explored.
The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054633h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 93 citations 93 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert The Journal of Physi... arrow_drop_down The Journal of Physical Chemistry BArticle . 2006Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/jp054633h&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1991Publisher:Wiley Authors: John W. Pickering; Marleen Keijzer; M. J. C. Van Gemert;pmid: 1753854
AbstractOptimal port wine stain treatment requires the selective absorption of light by the ectatic blood vessels. We investigated whether deeper blood vessels can be coagulated, without damaging other cutaneous structures, by varying the laser beam diameter. The penetration of the light was simulated with a random walk (Monte Carlo) program. Scattering of the light plays a major role: practically all light that is absorbed in a blood vessel in the dermis is scattered light. In the epidermis, where the distribution is more centered, a larger beam diameter does not increase the energy density as much as deeper within the dermis where the blood vessels lie and where the light is totally diffuse. Increasing the laser beam diameter from 200 μm to 1 mm or more, makes a typical blood vessel absorb 2.5 times more energy, while the energy absorbed by the epidermis remains the same. The larger the laser beam diameter the better the treatment.
Lasers in Surgery an... arrow_drop_down Lasers in Surgery and MedicineArticle . 1991Data sources: DANS (Data Archiving and Networked Services)Lasers in Surgery and MedicineArticle . 1991 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lsm.1900110616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 70 citations 70 popularity Top 10% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Lasers in Surgery an... arrow_drop_down Lasers in Surgery and MedicineArticle . 1991Data sources: DANS (Data Archiving and Networked Services)Lasers in Surgery and MedicineArticle . 1991 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/lsm.1900110616&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1981Publisher:Elsevier BV Authors: Marten Sikkens;Abstract A discussion of the restraints imposed by fundamental physical relations on the performance of spectrally selective solar energy materials is presented. It is shown, thatthree different classes of selective materials can be distinguished. The limitations to the performance of each of these “ideal” classes are indicated. Some examples of physical mechanisms leading to spectral selectivity are discussed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0165-1633(81)90058-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 19 citations 19 popularity Average influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0165-1633(81)90058-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu