- home
- Advanced Search
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- NL
- GB
- Delft University of Technology
- Energy Research
- 7. Clean energy
- 12. Responsible consumption
- NL
- GB
- Delft University of Technology
description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2007Publisher:American Institute of Aeronautics and Astronautics (AIAA) Authors: Sijmen Zandstra; Ronald Slingerland;doi: 10.2514/6.2007-7848
[Abstract] In this paper the performance of the gas turbine engines of a commercial passenger aircraft is evaluated for both bleed air off-take and electric power off-take. As these types of engine power off-takes are not directly comparable, an exergy analysis is used to establish the most efficient type of off-take. From this analysis appears that it is indeed more efficient to bleed air from the engine instead of generating the equivalent amount of exergy in terms of electric power. However, when also taking into account the performance of the largest pneumatic power consumer, the Environmental Control System (ECS) it appears that about 2% thrust specific fuel consumption can be saved, by using a MoreElectric ECS instead of a conventional bleed air powered ECS.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2007-7848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2007-7848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2020 NetherlandsPublisher:Delft University of Technology Authors: Çelik, M. (author);Steel is an indispensable material for the sustainable maintenance and progress of modern civilization. Its versatility in terms of mechanical and thermal characteristics, corrosion resistance, raw material availability, energy consumption and recyclability provides a clear advantage in a fast-changing technological landscape. In order to adapt to the changing needs, steel production methods have been evolving and improving over time. One such improvement opportunity in terms of energy efficient production is the ”heat pipe assisted annealing” concept. The cold rolling of steel is a process where the steel strip is cold-worked by means of rolls to achieve thickness reduction and better uniformity. This results in the strain hardening of steel. To reduce the hardness of steel and to render it more workable, it is thermally treated by heating it to a target soaking temperature and then cooling it down. This process is called annealing and it is an energy intensive process. Conventionally, heating is achieved with natural gas fired furnaces, whereas cooling is done using convective gas cooling. With this setting, the thermal energy extracted from the steel strip during the cooling stage is not used in any way. Moreover, none of the energy that is introduced during the heating stage is retained in the final product.An alternative technology for the annealing of steel was developed at Tata Steel IJmuiden R&D with the objective of recovering and using some of the heat removed during the cooling stage and thus, achieving more energy efficient annealing. With this technology called heat pipe assisted annealing, the cooling strip is thermally linked to the heating strip with multiple rotating heat pipes. In this way, each heat pipe transfers a certain amount of heat from the cooling strip to the heating strip. Only final heating and cooling of the steel strip is carried out in a conventional way. This concept is applicable to relatively low temperature (sub-critical) annealing where the cooling rate is not crucial. Therefore, packaging steel is a good candidate for the application of this technology.A rotating heat pipe is a highly efficient heat transfer device which is a wickless hollow cylindrical vessel rotating around its symmetric axis and containing a fixed amount of working fluid. The working fluid acts as a thermal energy carrier, transporting heat from one end of the heat pipe to the other. This basically occurs in four steps: (i) heat added to the evaporator part of the heat pipe causes the evaporation of the liquid, (ii) vapor travels to the condenser end of the heat pipe due to pressure difference, (iii) vapor condenses in the condenser section where heat is removed from the heat pipe, (iv) liquid returns to the evaporator with the help of the static pressure head and the centrifugal force induced by rotation. The heat pipe assisted annealing concept has been patented and subsequently further studied by Tata Steel Europe R&D. A water-filled rotating heat pipe test rig integrated with steel strips provided the bulk of the prior work. This test rig served as the proof-of-principle installation and it showed that heat can be transported from a hot strip to a cold one with a rotating heat pipe. In this context, several gaps have been identified to further acquire the knowledge on the system components, the concept performance and feasibility.This thesis focuses on four main aspects of the fundamentals and the feasibility of the heat pipe assisted annealing concept: (i) contact heat transfer between the steel strip and the rotating heat pipe, (ii) computationally efficient modelling of the interior dynamics of a rotating heat pipe, (iii) applicable working fluids for the high temperature range, (iv) behavior of the heat pipe assisted annealing system as a whole. These aspects are studied through a thermal engineering perspective. The heat pipe assisted annealing concept relies on the effective transfer of heat from the strip to the rotating heat pipe and vice versa. Therefore, it is important to understand the underlying physics governing this heat transfer and to be able to predict the heat transfer rate for possible configurations. In this context, in Chapter 2 of this thesis, the contact heat transfer between a steel strip and a rotating heat pipe is investigated both experimentally and numerically. The numerical model is based on first principles. It finds the thickness and the pressure of the gas layer between the strip and the heat pipe and subsequently considers different heat transfer mechanisms. The experimental work was carried out on the proof of- principle test rig. The model is validated with the experimental results. The contact heat transfer coefficient in the uniform region varied between 4,000 to 20,000 W/(m2.K). It showed an increase in the contact heat transfer with decreasing strip velocity and increasing radial stress. For the considered cases, conduction through the gas layer was the dominant heat transfer mechanism. Additionally, a simplified expression has been developed for the calculation of contact heat transfer through multiple regression analysis. The modelling of a rotating heat pipe is a crucial step for the detailed study of the heat pipe assisted annealing technology. Although modelling of rotating heat pipes has been the subject of many studies in the literature, these models are not computationally efficient enough to allow for the simultaneous modelling of multiple heat pipes linked to each other with strips. On this ground, in Chapter 3, a novel computationally efficient engineering model describing the transient behavior of the heat pipe is developed. In this model, the liquid and the vapor cells are allowed to change size radially in order to allow for the tracking of the liquid / vapor interface without the need for fine meshing or re-meshing. The model is also adapted to capillary-driven heat pipes. The model is validated with experimental and numerical studies from the literature. The deviation is computed to be around 2% with the numerical and analytical studies and around 6% with the experimental study.The heat pipe assisted annealing concept requires the operation of heat pipes within a temperature range of 25 °C to 700 °C. In order to operate within this range, different working fluids need to be used for different temperature ranges due to constraints of vapor pressure, life time, performance and safety. These working fluids are studied in Chapter 4. First, a selection of the working fluids is made based on a literature review. This selection yielded water, Dowtherm A, phenanthrene and cesium. Then, a life time test has been carried out with thermosyphons to test the stability of phenanthrene. At the end of a 3 months long test at 460 °C, thermal decomposition of phenanthrene was observed. However, these tests should be repeated with better initial vacuum and at multiple temperatures. Finally, Dowtherm A has been used in a rotating heat pipe setup to test its applicability and performance. It has been shown that Dowtherm A is suitable to be used in a rotating heat pipe at the designated temperature range in terms of performance, provided that annular flow is avoided. With the knowledge gathered from the previous chapters of this thesis, a model of the heat pipe assisted annealing line has been developed in Chapter 5. The aim of this model is to quantify the energy efficiency advantage brought by the concept for different number of heat pipes and to understand the behavior of the system as a whole. The simulations were run for a fixed plant layout with varying number of heat pipes and an average wrap angle of 104°. The energy recoveries for the simulations run for a strip of 0.25 mm and a line speed of 6.133 m/s were 76.5%, 73.4%, 69.4% and 63.9% for a total number of 90, 75, 60 and 45 heat pipes, respectively. From the simulation results it follows that cesium heat pipes are more efficient than organic heat pipes. Finally, the simulation results showed that the thermal cycle requirements can be satisfied with this new technology. Large Scale Energy Storage
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Doctoral thesis . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryDoctoral thesis . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4233/uuid:1e0e9c0b-06f0-4b11-ab5f-40fcfcacbea4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 11 Powered bymore_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Doctoral thesis . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryDoctoral thesis . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4233/uuid:1e0e9c0b-06f0-4b11-ab5f-40fcfcacbea4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NetherlandsPublisher:Elsevier BV Funded by:EC | HIFLEXEC| HIFLEXKroon, J.M.; Veenstra, S.C.; Andriessen, R.; Galagan, Y.; Blom, P.; Coenen, E.W.C.; Gorter, H.; Sabik, S.; Barink, M.;-
Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 118 citations 118 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2013 NetherlandsPublisher:Delft University of Technology Authors: Liu, M. (author);Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical energy of a fuel to electricity. Therefore, biomass-powered SOFCs could be highly efficient. Typically, in addition to carbon dioxide and water vapor, the major components of syngas produced from biomass gasification include hydrogen, carbon monoxide and methane which are potential fuels for SOFCs, which make integration possible between SOFCs and biomass gasifiers. However, the syngas is also comprised of trace species such as tars, H2S, HCl, and alkali compounds, among others, which could be detrimental to SOFCs if they are contained within the feeding syngas stream. Therefore, the syngas must be pretreated in order to reduce these trace species to a level that SOFCs are able to tolerate. With various gas treatments, the overall system performance would fluctuate, and therefore, the influence of the gas treatment methods on the system performance must be understood. The most prominent among the trace species is tar. The effect of tars on the performance of SOFCs has yet to be studied, however, it is known that, even though tar can possibly poison the fuel cell through carbon deposition, it may also become a fuel for SOFCs. Furthermore, SOFC systems are currently designed in general for employing natural gas. Due to the fact that SOFC systems are very sensitive to the fuel types, it is necessary to completely understand the system response when switching from natural gas to biosyngas to enable a better controllability for future experiments. The research scope of this thesis is limited to the aforementioned issues. The objective of this thesis is to provide a fundamental study to ensure a safe and efficient system integration. The study is limited to an existing downdraft fixed-bed gasifier and a 5 kWe SOFC CHP system due to these two units entering the commercial market. The approach utilized, however, could be further adopted for the large scale power plants based on biomass gasifiers and SOFCs. The research begins with the evaluation of technologies involved biomass-powered SOFCs in chapter 2. Technologies regarding biomass gasification, gas cleanup and fuel cells are discussed based on literature surveys. The review begins by briefly summarizing conventional gasifiers including fixed-bed and fluidized bed gasifiers, which are implented for biomass gasification. Following that, details are indicated for SOFC performance affected by the trace species such as particulates, H2S and available cleaning technologies. The combination of biomass gasifiers with fuel cells including proton exchange membrane fuel cells (PEMFC), molten carbonate fuel cells (MCFC), and SOFCs is then reviewed with an emphasis on the development of SOFC technology and the study of integration between biomass gaisifers and SOFCs. Chapter 3 presents a thermodynamic study of the influence of cleaning technology on the energetic and exergetic performance of the integrated gasifier–SOFC system with distinctive system configurations. Two gas cleaning systems, specifically, a combined high and low temperature gas cleaning system and a high temperature gas cleaning system are considered to connect the gasifier with the SOFC system. The influence of the steam addition for the suppression of carbon deposition and various heat sources for steam generation on the system performance is evaluated. The performance of the SOFC system operating with natural gas and biosyngas is also compared. The installed SOFC system, particularly the embedded pre-reformer and anode off-gas recirculation was initially designed for natural gas. This design is desirable as it effectively uses the steam in the anode off-gas and the heat generated in the stack. As SOFC performance is very sensitive to gas composition and operating conditions, both of which are affected by the anode recirculation, an evaluation of the recirculation behavior on safety issues regarding carbon deposition and nickel oxidation and system performance are presented in chapter 4. An important finding is that, by not implementing the recirculation, the biosyngas-fueled SOFC system effectuates a much higher net electrical efficiency, less initial investment and simpler system configuration in comparison to that when recirculation is implemented. Tolerance of SOFCs to the trace species from biomass gasification is not yet fully understood. The influence of biomass gasification tars on SOFC performance and mitigation of carbon deposition are experimentally evaluated in chapter 5&6. Well-controlled operational conditions assist in the suppression of carbon deposition. Chapter 5 presents the influence of operating conditions including steam levels, current density and time on stream on the performance of SOFCs with Ni–YSZ anodes fueled by tar-containing biosyngas at 800 °C. Changes in impedance spectra and polarization curves of SOFCs following tar exposure were analyzed to assess the cell performance. The biosyngas composition and the tar concentration employed in these measurements were identical to those measured from the commercial air-blown biomass gasifier that is to be connected to the studied SOFC system. Operating this type of SOFC with the tar concentrations could result in severe damage to the cell due to carbon formation on the anodes. Scanning Electron Microscopy (SEM) indicated carbon deposition which affected the performance of the SOFC, as is exhibited by the impedance spectra and anode polarization curves of the cells after exposure to tars. However, the risk of carbon deposition could be alleviated by increasing steam levels and current loads. Chapter 6 presents a similar study of the effects of tar on SOFC performance, but possesses a focus on Ni–GDC anodes and various operating temperatures levels (700, 800 and 900 °C) under both dry and wet conditions. Polarization behavior, electrochemical impedance spectroscopy, and cell voltage degradation were analyzed to evaluate the cell performance. It is most likely that the cells with Ni–GDC anodes did not suffer from carbon deposition under the wet conditions studied. Dry tar-containing syngas for SOFCs is unlikely to cause carbon formation under a mild current load; however, it may induce carbon formation at open circuit. The effect of carbon dioxide that is capable of suppressing carbon deposition was experimentally investigated, and an enhanced performance was observed under the conditions studied. Under carbon risk-free operating conditions, the cell voltage increases when raising the feeding tar concentration, indicating that tar performs as fuel for SOFCs. Numerical simulation is an efficient tool for the evaluation of SOFCs’ response when switching fuels. Chapter 7 presents such a numerical study with the focus on the evaluation of kinetic models for methane steam reforming for SOFCs operation with multiple fuels. Three frequently employed kinetic models were selected in order to examine their impacts on the performance of a tubular SOFC. The resulting thermo-electrochemical behaviors derived from these models were compared. It was discovered that all three kinetic models are reasonably accurate in terms of the polarization behavior, but they significantly affected the local thermo-electrochemical performance. A more rapid kinetic model was adopted based on the evaluation of these three kinetic models in order to evaluate the performance of the tubular SOFC in terms of local electrochemical performance, anode oxygen partial pressure and overall SOFC performance when performing with multiple fuels. Chapter 8 draws the conclusions regarding the work presented in this dissertation, and recommendations are suggested for future research activities.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Doctoral thesis . 2013Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4233/uuid:ed6f1b38-e29e-4e84-b536-12a096e587fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 20visibility views 20 download downloads 12 Powered bymore_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Doctoral thesis . 2013Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4233/uuid:ed6f1b38-e29e-4e84-b536-12a096e587fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Sánchez Diéguez Manuel; Taminau Floris; West Kira; Sijm Jos; Faaij André;Owing to the complexity of the sector, industrial activities are often represented with limited technological resolution in integrated energy system models. In this study, we enriched the technological description of industrial activities in the integrated energy system analysis optimisation (IESA-Opt) model, a peer-reviewed energy system optimisation model that can simultaneously provide optimal capacity planning for the hourly operation of all integrated sectors. We used this enriched model to analyse the industrial decarbonisation of the Netherlands for four key activities: high-value chemicals, hydrocarbons, ammonia, and steel production. The analyses performed comprised 1) exploring optimality in a reference scenario; 2) exploring the feasibility and implications of four extreme industrial cases with different technological archetypes, namely a bio-based industry, a hydrogen-based industry, a fully electrified industry, and retrofitting of current assets into carbon capture utilisation and storage; and 3) performing sensitivity analyses on key topics such as imported biomass, hydrogen, and natural gas prices, carbon storage potentials, technological learning, and the demand for olefins. The results of this study show that it is feasible for the energy system to have a fully bio-based, hydrogen-based, fully electrified, and retrofitted industry to achieve full decarbonisation while allowing for an optimal technological mix to yield at least a 10% cheaper transition. We also show that owing to the high predominance of the fuel component in the levelled cost of industrial products, substantial reductions in overnight investment costs of green technologies have a limited effect on their adoption. Finally, we reveal that based on the current (2022) energy prices, the energy transition is cost-effective, and fossil fuels can be fully displaced from industry and the national mix by 2050.
Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2022License: CC BYData sources: University of Groningen Research PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2022.100105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2022License: CC BYData sources: University of Groningen Research PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2022.100105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2010 NetherlandsPublisher:American Institute of Aeronautics and Astronautics (AIAA) Authors: Veldhuis, L.L.M.; Van der Steen, M.;doi: 10.2514/6.2010-4684
Comparative wind tunnel experiments were performed on passive flow separation control on a at plate model equipped with a flap. The purpose of these tests was to investigate the flow control capabilities of off-surface mounted elements. A comparison was made of delta-shaped vortex generators of 1 to 1/3 boundary layer height and cylinders close to the wall. Surface pressure as well as PIV measurements were performed to investigate the influence of the layout of the VGs as well as the diameter of the cylinder and the position of the elements. The results showed that the off-surface devices performed better than the on-surface VGs for the fully separated case, and were equally good in improving the state of boundary layer that is on the verge of separation. It was also found that the off-surface devices could be positioned over a wider range with respect to the separation point. The experiments furthermore indicated that for the optimum cylinder configuration the vortex shedding frequency was consistent with the frequencies found in literature on periodic flow excitation.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2010Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2010-4684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 12 Powered bymore_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2010Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2010-4684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1989 NetherlandsPublisher:Elsevier BV Authors: Machielsen, C.H.M. (author); Kerschbaumer, H.G. (author);Abstract Over a period of more than 10 years, fundamental research on frost formation and defrosting behaviour of lamel type air coolers has been pursued at the Delft University of Technology. Many experiments have been performed to support the Dutch Standard for testing air coolers, NEN 1876. This standard gives an objective description of the performance of air coolers under frosting conditions. For the system designer it is very important to judge the average cooling performance and coefficient of performance during the total cycle, consisting of cooling period and defrosting period. For this purpose two dimensionless numbers were derived, which also make it possible to determine, by using computer models, the optimum cooling period before defrosting starts. Finally the use of the developed theories for cost optimization of refrigerating plants and the latest experiences with the Dutch Standard for air coolers, NEN 1876, are discussed.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 1989Data sources: DANS (Data Archiving and Networked Services)International Journal of RefrigerationArticle . 1989 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0140-7007(89)90095-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 36 Powered bymore_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 1989Data sources: DANS (Data Archiving and Networked Services)International Journal of RefrigerationArticle . 1989 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0140-7007(89)90095-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Funded by:EC | TRUST-PVEC| TRUST-PVAuthors: Vogt, M.R. (author); Ruiz Tobon, C.M. (author); Alcañiz Moya, A. (author); Procel Moya, P.A. (author); +10 AuthorsVogt, M.R. (author); Ruiz Tobon, C.M. (author); Alcañiz Moya, A. (author); Procel Moya, P.A. (author); Blom, Y. (author); Nour El Din, A. (author); Stark, T. (author); Wang, Z. (author); Goma, E. Garcia (author); Etxebarria, J. G. (author); Ziar, H. (author); Zeman, M. (author); Santbergen, R. (author); Isabella, O. (author);We introduce a novel simulation tool capable of calculating the energy yield of a PV system based on its fundamental material properties and using self-consistent models. Thus, our simulation model can operate without measurements of a PV device. It combines wave and ray optics and a dedicated semiconductor simulation to model the optoelectronic PV device properties resulting in the IV-curve. The system surroundings are described via spectrally resolved ray tracing resulting in a cell resolved irradiance distribution, and via the fluid dynamics-based thermal model, in the individual cell temperatures. A lumped-element model is used to calculate the IV-curves of each solar cell for every hour of the year. These are combined factoring in the interconnection to obtain the PV module IV-curves, which connect to the inverter for calculating the AC energy yield. In our case study, we compare two types of 2 terminal perovskite/silicon tandem modules with STC PV module efficiencies of 27.7% and 28.6% with a reference c-Si module with STC PV module efficiency of 20.9%. In four different climates, we show that tandem PV modules operate at 1–1.9 °C lower yearly irradiance weighted average temperatures compared to c-Si. We find that the effect of current mismatch is significantly overestimated in pure optical studies, as they do not account for fill factor gains. The specific yields in kWh/kWp of the tandem PV systems are between −2.7% and +0.4% compared to the reference c-Si system in all four simulated climates. Thus, we find that the lab performance of the simulated tandem PV system translates from the laboratory to outdoors comparable to c-Si systems. Photovoltaic Materials and Devices Electrical Sustainable Energy Energie and Industrie
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Article . 2022 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.111944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 25visibility views 25 download downloads 11 Powered bymore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Article . 2022 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.111944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, NetherlandsPublisher:Elsevier BV Hoekstra N.; Pellegrini M.; Bloemendal M.; Spaak G.; Andreu Gallego A.; Rodriguez Comins J.; Grotenhuis T.; Picone S.; Murrell A. J.; Steeman H. J.; Verrone A.; Doornenbal P.; Christophersen M.; Bennedsen L.; Henssen M.; Moinier S.; Saccani C.;Heating and cooling using aquifer thermal energy storage (ATES) has hardly been applied outside the Netherlands, even though it could make a valuable contribution to the energy transition. The Climate-KIC project "Europe-wide Use of Energy from aquifers" - E-USE(aq) - aimed to pave the way for Europe-wide application of ATES, through the realization and monitoring of six ATES pilot plants across five different EU countries. In a preceding paper, based on preliminary results of E-USE(aq), conclusions were already drawn, demonstrating how the barriers for this form of shallow geothermal energy can be overcome, and sometimes even leveraged as opportunities. Based on final pilot project results, key economic and environmental outcomes are now presented. This paper starts with the analysis of specific technological barriers: unfamiliarity with the subsurface, presumed limited compatibility with existing energy provision systems (especially district heating), energy imbalances and groundwater contamination. The paper then shows how these barriers have been tackled, using improved site investigation and monitoring technologies to map heterogeneous subsoils. In this way ATES can cost-efficiently be included in smart grids and combined with other sources of renewable (especially solar) energy, while at the same time achieving groundwater remediation. A comparative assessment of economic and environmental impacts of the pilots is included, to demonstrate the sustainability of ATES system with different renewables and renewable-based technologies. The paper concludes with an assessment of the market application potential of ATES, including in areas with water scarcity, and a review of climate beneficial impact.
Archivio istituziona... arrow_drop_down The Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.136142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 39 Powered bymore_vert Archivio istituziona... arrow_drop_down The Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.136142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Conference object , Other literature type 2007Publisher:American Institute of Aeronautics and Astronautics (AIAA) Authors: Sijmen Zandstra; Ronald Slingerland;doi: 10.2514/6.2007-7848
[Abstract] In this paper the performance of the gas turbine engines of a commercial passenger aircraft is evaluated for both bleed air off-take and electric power off-take. As these types of engine power off-takes are not directly comparable, an exergy analysis is used to establish the most efficient type of off-take. From this analysis appears that it is indeed more efficient to bleed air from the engine instead of generating the equivalent amount of exergy in terms of electric power. However, when also taking into account the performance of the largest pneumatic power consumer, the Environmental Control System (ECS) it appears that about 2% thrust specific fuel consumption can be saved, by using a MoreElectric ECS instead of a conventional bleed air powered ECS.
All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2007-7848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu21 citations 21 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2007-7848&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2020 NetherlandsPublisher:Delft University of Technology Authors: Çelik, M. (author);Steel is an indispensable material for the sustainable maintenance and progress of modern civilization. Its versatility in terms of mechanical and thermal characteristics, corrosion resistance, raw material availability, energy consumption and recyclability provides a clear advantage in a fast-changing technological landscape. In order to adapt to the changing needs, steel production methods have been evolving and improving over time. One such improvement opportunity in terms of energy efficient production is the ”heat pipe assisted annealing” concept. The cold rolling of steel is a process where the steel strip is cold-worked by means of rolls to achieve thickness reduction and better uniformity. This results in the strain hardening of steel. To reduce the hardness of steel and to render it more workable, it is thermally treated by heating it to a target soaking temperature and then cooling it down. This process is called annealing and it is an energy intensive process. Conventionally, heating is achieved with natural gas fired furnaces, whereas cooling is done using convective gas cooling. With this setting, the thermal energy extracted from the steel strip during the cooling stage is not used in any way. Moreover, none of the energy that is introduced during the heating stage is retained in the final product.An alternative technology for the annealing of steel was developed at Tata Steel IJmuiden R&D with the objective of recovering and using some of the heat removed during the cooling stage and thus, achieving more energy efficient annealing. With this technology called heat pipe assisted annealing, the cooling strip is thermally linked to the heating strip with multiple rotating heat pipes. In this way, each heat pipe transfers a certain amount of heat from the cooling strip to the heating strip. Only final heating and cooling of the steel strip is carried out in a conventional way. This concept is applicable to relatively low temperature (sub-critical) annealing where the cooling rate is not crucial. Therefore, packaging steel is a good candidate for the application of this technology.A rotating heat pipe is a highly efficient heat transfer device which is a wickless hollow cylindrical vessel rotating around its symmetric axis and containing a fixed amount of working fluid. The working fluid acts as a thermal energy carrier, transporting heat from one end of the heat pipe to the other. This basically occurs in four steps: (i) heat added to the evaporator part of the heat pipe causes the evaporation of the liquid, (ii) vapor travels to the condenser end of the heat pipe due to pressure difference, (iii) vapor condenses in the condenser section where heat is removed from the heat pipe, (iv) liquid returns to the evaporator with the help of the static pressure head and the centrifugal force induced by rotation. The heat pipe assisted annealing concept has been patented and subsequently further studied by Tata Steel Europe R&D. A water-filled rotating heat pipe test rig integrated with steel strips provided the bulk of the prior work. This test rig served as the proof-of-principle installation and it showed that heat can be transported from a hot strip to a cold one with a rotating heat pipe. In this context, several gaps have been identified to further acquire the knowledge on the system components, the concept performance and feasibility.This thesis focuses on four main aspects of the fundamentals and the feasibility of the heat pipe assisted annealing concept: (i) contact heat transfer between the steel strip and the rotating heat pipe, (ii) computationally efficient modelling of the interior dynamics of a rotating heat pipe, (iii) applicable working fluids for the high temperature range, (iv) behavior of the heat pipe assisted annealing system as a whole. These aspects are studied through a thermal engineering perspective. The heat pipe assisted annealing concept relies on the effective transfer of heat from the strip to the rotating heat pipe and vice versa. Therefore, it is important to understand the underlying physics governing this heat transfer and to be able to predict the heat transfer rate for possible configurations. In this context, in Chapter 2 of this thesis, the contact heat transfer between a steel strip and a rotating heat pipe is investigated both experimentally and numerically. The numerical model is based on first principles. It finds the thickness and the pressure of the gas layer between the strip and the heat pipe and subsequently considers different heat transfer mechanisms. The experimental work was carried out on the proof of- principle test rig. The model is validated with the experimental results. The contact heat transfer coefficient in the uniform region varied between 4,000 to 20,000 W/(m2.K). It showed an increase in the contact heat transfer with decreasing strip velocity and increasing radial stress. For the considered cases, conduction through the gas layer was the dominant heat transfer mechanism. Additionally, a simplified expression has been developed for the calculation of contact heat transfer through multiple regression analysis. The modelling of a rotating heat pipe is a crucial step for the detailed study of the heat pipe assisted annealing technology. Although modelling of rotating heat pipes has been the subject of many studies in the literature, these models are not computationally efficient enough to allow for the simultaneous modelling of multiple heat pipes linked to each other with strips. On this ground, in Chapter 3, a novel computationally efficient engineering model describing the transient behavior of the heat pipe is developed. In this model, the liquid and the vapor cells are allowed to change size radially in order to allow for the tracking of the liquid / vapor interface without the need for fine meshing or re-meshing. The model is also adapted to capillary-driven heat pipes. The model is validated with experimental and numerical studies from the literature. The deviation is computed to be around 2% with the numerical and analytical studies and around 6% with the experimental study.The heat pipe assisted annealing concept requires the operation of heat pipes within a temperature range of 25 °C to 700 °C. In order to operate within this range, different working fluids need to be used for different temperature ranges due to constraints of vapor pressure, life time, performance and safety. These working fluids are studied in Chapter 4. First, a selection of the working fluids is made based on a literature review. This selection yielded water, Dowtherm A, phenanthrene and cesium. Then, a life time test has been carried out with thermosyphons to test the stability of phenanthrene. At the end of a 3 months long test at 460 °C, thermal decomposition of phenanthrene was observed. However, these tests should be repeated with better initial vacuum and at multiple temperatures. Finally, Dowtherm A has been used in a rotating heat pipe setup to test its applicability and performance. It has been shown that Dowtherm A is suitable to be used in a rotating heat pipe at the designated temperature range in terms of performance, provided that annular flow is avoided. With the knowledge gathered from the previous chapters of this thesis, a model of the heat pipe assisted annealing line has been developed in Chapter 5. The aim of this model is to quantify the energy efficiency advantage brought by the concept for different number of heat pipes and to understand the behavior of the system as a whole. The simulations were run for a fixed plant layout with varying number of heat pipes and an average wrap angle of 104°. The energy recoveries for the simulations run for a strip of 0.25 mm and a line speed of 6.133 m/s were 76.5%, 73.4%, 69.4% and 63.9% for a total number of 90, 75, 60 and 45 heat pipes, respectively. From the simulation results it follows that cesium heat pipes are more efficient than organic heat pipes. Finally, the simulation results showed that the thermal cycle requirements can be satisfied with this new technology. Large Scale Energy Storage
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Doctoral thesis . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryDoctoral thesis . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4233/uuid:1e0e9c0b-06f0-4b11-ab5f-40fcfcacbea4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 27visibility views 27 download downloads 11 Powered bymore_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Doctoral thesis . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryDoctoral thesis . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4233/uuid:1e0e9c0b-06f0-4b11-ab5f-40fcfcacbea4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 NetherlandsPublisher:Elsevier BV Funded by:EC | HIFLEXEC| HIFLEXKroon, J.M.; Veenstra, S.C.; Andriessen, R.; Galagan, Y.; Blom, P.; Coenen, E.W.C.; Gorter, H.; Sabik, S.; Barink, M.;-
Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 118 citations 118 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Solar Energy Materia... arrow_drop_down DANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)Solar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefDANS (Data Archiving and Networked Services)Article . 2012Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.04.039&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type 2013 NetherlandsPublisher:Delft University of Technology Authors: Liu, M. (author);Biomass is a sustainable energy source which, through thermo-chemical processes of biomass gasification, is able to be converted from a solid biomass fuel into a gas mixture, known as syngas or biosyngas. A solid oxide fuel cell (SOFC) is a power generation device that directly converts the chemical energy of a fuel to electricity. Therefore, biomass-powered SOFCs could be highly efficient. Typically, in addition to carbon dioxide and water vapor, the major components of syngas produced from biomass gasification include hydrogen, carbon monoxide and methane which are potential fuels for SOFCs, which make integration possible between SOFCs and biomass gasifiers. However, the syngas is also comprised of trace species such as tars, H2S, HCl, and alkali compounds, among others, which could be detrimental to SOFCs if they are contained within the feeding syngas stream. Therefore, the syngas must be pretreated in order to reduce these trace species to a level that SOFCs are able to tolerate. With various gas treatments, the overall system performance would fluctuate, and therefore, the influence of the gas treatment methods on the system performance must be understood. The most prominent among the trace species is tar. The effect of tars on the performance of SOFCs has yet to be studied, however, it is known that, even though tar can possibly poison the fuel cell through carbon deposition, it may also become a fuel for SOFCs. Furthermore, SOFC systems are currently designed in general for employing natural gas. Due to the fact that SOFC systems are very sensitive to the fuel types, it is necessary to completely understand the system response when switching from natural gas to biosyngas to enable a better controllability for future experiments. The research scope of this thesis is limited to the aforementioned issues. The objective of this thesis is to provide a fundamental study to ensure a safe and efficient system integration. The study is limited to an existing downdraft fixed-bed gasifier and a 5 kWe SOFC CHP system due to these two units entering the commercial market. The approach utilized, however, could be further adopted for the large scale power plants based on biomass gasifiers and SOFCs. The research begins with the evaluation of technologies involved biomass-powered SOFCs in chapter 2. Technologies regarding biomass gasification, gas cleanup and fuel cells are discussed based on literature surveys. The review begins by briefly summarizing conventional gasifiers including fixed-bed and fluidized bed gasifiers, which are implented for biomass gasification. Following that, details are indicated for SOFC performance affected by the trace species such as particulates, H2S and available cleaning technologies. The combination of biomass gasifiers with fuel cells including proton exchange membrane fuel cells (PEMFC), molten carbonate fuel cells (MCFC), and SOFCs is then reviewed with an emphasis on the development of SOFC technology and the study of integration between biomass gaisifers and SOFCs. Chapter 3 presents a thermodynamic study of the influence of cleaning technology on the energetic and exergetic performance of the integrated gasifier–SOFC system with distinctive system configurations. Two gas cleaning systems, specifically, a combined high and low temperature gas cleaning system and a high temperature gas cleaning system are considered to connect the gasifier with the SOFC system. The influence of the steam addition for the suppression of carbon deposition and various heat sources for steam generation on the system performance is evaluated. The performance of the SOFC system operating with natural gas and biosyngas is also compared. The installed SOFC system, particularly the embedded pre-reformer and anode off-gas recirculation was initially designed for natural gas. This design is desirable as it effectively uses the steam in the anode off-gas and the heat generated in the stack. As SOFC performance is very sensitive to gas composition and operating conditions, both of which are affected by the anode recirculation, an evaluation of the recirculation behavior on safety issues regarding carbon deposition and nickel oxidation and system performance are presented in chapter 4. An important finding is that, by not implementing the recirculation, the biosyngas-fueled SOFC system effectuates a much higher net electrical efficiency, less initial investment and simpler system configuration in comparison to that when recirculation is implemented. Tolerance of SOFCs to the trace species from biomass gasification is not yet fully understood. The influence of biomass gasification tars on SOFC performance and mitigation of carbon deposition are experimentally evaluated in chapter 5&6. Well-controlled operational conditions assist in the suppression of carbon deposition. Chapter 5 presents the influence of operating conditions including steam levels, current density and time on stream on the performance of SOFCs with Ni–YSZ anodes fueled by tar-containing biosyngas at 800 °C. Changes in impedance spectra and polarization curves of SOFCs following tar exposure were analyzed to assess the cell performance. The biosyngas composition and the tar concentration employed in these measurements were identical to those measured from the commercial air-blown biomass gasifier that is to be connected to the studied SOFC system. Operating this type of SOFC with the tar concentrations could result in severe damage to the cell due to carbon formation on the anodes. Scanning Electron Microscopy (SEM) indicated carbon deposition which affected the performance of the SOFC, as is exhibited by the impedance spectra and anode polarization curves of the cells after exposure to tars. However, the risk of carbon deposition could be alleviated by increasing steam levels and current loads. Chapter 6 presents a similar study of the effects of tar on SOFC performance, but possesses a focus on Ni–GDC anodes and various operating temperatures levels (700, 800 and 900 °C) under both dry and wet conditions. Polarization behavior, electrochemical impedance spectroscopy, and cell voltage degradation were analyzed to evaluate the cell performance. It is most likely that the cells with Ni–GDC anodes did not suffer from carbon deposition under the wet conditions studied. Dry tar-containing syngas for SOFCs is unlikely to cause carbon formation under a mild current load; however, it may induce carbon formation at open circuit. The effect of carbon dioxide that is capable of suppressing carbon deposition was experimentally investigated, and an enhanced performance was observed under the conditions studied. Under carbon risk-free operating conditions, the cell voltage increases when raising the feeding tar concentration, indicating that tar performs as fuel for SOFCs. Numerical simulation is an efficient tool for the evaluation of SOFCs’ response when switching fuels. Chapter 7 presents such a numerical study with the focus on the evaluation of kinetic models for methane steam reforming for SOFCs operation with multiple fuels. Three frequently employed kinetic models were selected in order to examine their impacts on the performance of a tubular SOFC. The resulting thermo-electrochemical behaviors derived from these models were compared. It was discovered that all three kinetic models are reasonably accurate in terms of the polarization behavior, but they significantly affected the local thermo-electrochemical performance. A more rapid kinetic model was adopted based on the evaluation of these three kinetic models in order to evaluate the performance of the tubular SOFC in terms of local electrochemical performance, anode oxygen partial pressure and overall SOFC performance when performing with multiple fuels. Chapter 8 draws the conclusions regarding the work presented in this dissertation, and recommendations are suggested for future research activities.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Doctoral thesis . 2013Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4233/uuid:ed6f1b38-e29e-4e84-b536-12a096e587fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
visibility 20visibility views 20 download downloads 12 Powered bymore_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Doctoral thesis . 2013Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4233/uuid:ed6f1b38-e29e-4e84-b536-12a096e587fc&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Sánchez Diéguez Manuel; Taminau Floris; West Kira; Sijm Jos; Faaij André;Owing to the complexity of the sector, industrial activities are often represented with limited technological resolution in integrated energy system models. In this study, we enriched the technological description of industrial activities in the integrated energy system analysis optimisation (IESA-Opt) model, a peer-reviewed energy system optimisation model that can simultaneously provide optimal capacity planning for the hourly operation of all integrated sectors. We used this enriched model to analyse the industrial decarbonisation of the Netherlands for four key activities: high-value chemicals, hydrocarbons, ammonia, and steel production. The analyses performed comprised 1) exploring optimality in a reference scenario; 2) exploring the feasibility and implications of four extreme industrial cases with different technological archetypes, namely a bio-based industry, a hydrogen-based industry, a fully electrified industry, and retrofitting of current assets into carbon capture utilisation and storage; and 3) performing sensitivity analyses on key topics such as imported biomass, hydrogen, and natural gas prices, carbon storage potentials, technological learning, and the demand for olefins. The results of this study show that it is feasible for the energy system to have a fully bio-based, hydrogen-based, fully electrified, and retrofitted industry to achieve full decarbonisation while allowing for an optimal technological mix to yield at least a 10% cheaper transition. We also show that owing to the high predominance of the fuel component in the levelled cost of industrial products, substantial reductions in overnight investment costs of green technologies have a limited effect on their adoption. Finally, we reveal that based on the current (2022) energy prices, the energy transition is cost-effective, and fossil fuels can be fully displaced from industry and the national mix by 2050.
Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2022License: CC BYData sources: University of Groningen Research PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2022.100105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Advances in Applied ... arrow_drop_down Advances in Applied EnergyArticle . 2022License: CC BYData sources: University of Groningen Research PortalAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.adapen.2022.100105&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 Germany, Norway, Netherlands, Germany, United Kingdom, Netherlands, Germany, AustriaPublisher:Wiley Funded by:EC | DESIREEC| DESIREStadler, K; Wood, R.; Bulavskaya, T.; Sodersten, C.J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernandez, J.; Kuenen, J.; Bruckner, M.; Giljum, S.; Lutter, S.; Merciai, S.; Schmidt, J.H.; Theurl, M.C.; Plutzar, C.; Kastner, T.; Eisenmenger, N.; Erb, K; H.,; Koning, de, A.; Tukker, A.;doi: 10.1111/jiec.12715
handle: 1887/67827 , 1887/59451 , 11250/2578406
SummaryEnvironmentally extended multiregional input‐output (EE MRIO) tables have emerged as a key framework to provide a comprehensive description of the global economy and analyze its effects on the environment. Of the available EE MRIO databases, EXIOBASE stands out as a database compatible with the System of Environmental‐Economic Accounting (SEEA) with a high sectorial detail matched with multiple social and environmental satellite accounts. In this paper, we present the latest developments realized with EXIOBASE 3—a time series of EE MRIO tables ranging from 1995 to 2011 for 44 countries (28 EU member plus 16 major economies) and five rest of the world regions. EXIOBASE 3 builds upon the previous versions of EXIOBASE by using rectangular supply‐use tables (SUTs) in a 163 industry by 200 products classification as the main building blocks. In order to capture structural changes, economic developments, as reported by national statistical agencies, were imposed on the available, disaggregated SUTs from EXIOBASE 2. These initial estimates were further refined by incorporating detailed data on energy, agricultural production, resource extraction, and bilateral trade. EXIOBASE 3 inherits the high level of environmental stressor detail from its precursor, with further improvement in the level of detail for resource extraction. To account for the expansion of the European Union (EU), EXIOBASE 3 was developed with the full EU28 country set (including the new member state Croatia). EXIOBASE 3 provides a unique tool for analyzing the dynamics of environmental pressures of economic activities over time.
Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 658 citations 658 popularity Top 0.1% influence Top 1% impulse Top 0.1% Powered by BIP!
more_vert Norwegian Open Resea... arrow_drop_down Norwegian Open Research ArchivesArticle . 2018Full-Text: https://doi.org/10.1111/jiec.12715Data sources: Norwegian Open Research ArchivesePubWU Institutional RepositoryArticle . 2018 . Peer-reviewedData sources: ePubWU Institutional RepositoryDANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)DANS (Data Archiving and Networked Services)Article . 2018Data sources: DANS (Data Archiving and Networked Services)Fachrepositorium LebenswissenschaftenArticle . 2018License: CC BYData sources: Fachrepositorium LebenswissenschaftenLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryLeiden University Scholarly Publications RepositoryArticle . 2018Data sources: Leiden University Scholarly Publications RepositoryAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/jiec.12715&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Other literature type 2010 NetherlandsPublisher:American Institute of Aeronautics and Astronautics (AIAA) Authors: Veldhuis, L.L.M.; Van der Steen, M.;doi: 10.2514/6.2010-4684
Comparative wind tunnel experiments were performed on passive flow separation control on a at plate model equipped with a flap. The purpose of these tests was to investigate the flow control capabilities of off-surface mounted elements. A comparison was made of delta-shaped vortex generators of 1 to 1/3 boundary layer height and cylinders close to the wall. Surface pressure as well as PIV measurements were performed to investigate the influence of the layout of the VGs as well as the diameter of the cylinder and the position of the elements. The results showed that the off-surface devices performed better than the on-surface VGs for the fully separated case, and were equally good in improving the state of boundary layer that is on the verge of separation. It was also found that the off-surface devices could be positioned over a wider range with respect to the separation point. The experiments furthermore indicated that for the optimum cylinder configuration the vortex shedding frequency was consistent with the frequencies found in literature on periodic flow excitation.
DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2010Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2010-4684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu13 citations 13 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 8visibility views 8 download downloads 12 Powered bymore_vert DANS (Data Archiving... arrow_drop_down DANS (Data Archiving and Networked Services)Conference object . 2010Data sources: DANS (Data Archiving and Networked Services)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2514/6.2010-4684&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1989 NetherlandsPublisher:Elsevier BV Authors: Machielsen, C.H.M. (author); Kerschbaumer, H.G. (author);Abstract Over a period of more than 10 years, fundamental research on frost formation and defrosting behaviour of lamel type air coolers has been pursued at the Delft University of Technology. Many experiments have been performed to support the Dutch Standard for testing air coolers, NEN 1876. This standard gives an objective description of the performance of air coolers under frosting conditions. For the system designer it is very important to judge the average cooling performance and coefficient of performance during the total cycle, consisting of cooling period and defrosting period. For this purpose two dimensionless numbers were derived, which also make it possible to determine, by using computer models, the optimum cooling period before defrosting starts. Finally the use of the developed theories for cost optimization of refrigerating plants and the latest experiences with the Dutch Standard for air coolers, NEN 1876, are discussed.
International Journa... arrow_drop_down International Journal of RefrigerationArticle . 1989Data sources: DANS (Data Archiving and Networked Services)International Journal of RefrigerationArticle . 1989 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0140-7007(89)90095-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 24 citations 24 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
visibility 11visibility views 11 download downloads 36 Powered bymore_vert International Journa... arrow_drop_down International Journal of RefrigerationArticle . 1989Data sources: DANS (Data Archiving and Networked Services)International Journal of RefrigerationArticle . 1989 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefAll Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0140-7007(89)90095-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Elsevier BV Funded by:EC | TRUST-PVEC| TRUST-PVAuthors: Vogt, M.R. (author); Ruiz Tobon, C.M. (author); Alcañiz Moya, A. (author); Procel Moya, P.A. (author); +10 AuthorsVogt, M.R. (author); Ruiz Tobon, C.M. (author); Alcañiz Moya, A. (author); Procel Moya, P.A. (author); Blom, Y. (author); Nour El Din, A. (author); Stark, T. (author); Wang, Z. (author); Goma, E. Garcia (author); Etxebarria, J. G. (author); Ziar, H. (author); Zeman, M. (author); Santbergen, R. (author); Isabella, O. (author);We introduce a novel simulation tool capable of calculating the energy yield of a PV system based on its fundamental material properties and using self-consistent models. Thus, our simulation model can operate without measurements of a PV device. It combines wave and ray optics and a dedicated semiconductor simulation to model the optoelectronic PV device properties resulting in the IV-curve. The system surroundings are described via spectrally resolved ray tracing resulting in a cell resolved irradiance distribution, and via the fluid dynamics-based thermal model, in the individual cell temperatures. A lumped-element model is used to calculate the IV-curves of each solar cell for every hour of the year. These are combined factoring in the interconnection to obtain the PV module IV-curves, which connect to the inverter for calculating the AC energy yield. In our case study, we compare two types of 2 terminal perovskite/silicon tandem modules with STC PV module efficiencies of 27.7% and 28.6% with a reference c-Si module with STC PV module efficiency of 20.9%. In four different climates, we show that tandem PV modules operate at 1–1.9 °C lower yearly irradiance weighted average temperatures compared to c-Si. We find that the effect of current mismatch is significantly overestimated in pure optical studies, as they do not account for fill factor gains. The specific yields in kWh/kWp of the tandem PV systems are between −2.7% and +0.4% compared to the reference c-Si system in all four simulated climates. Thus, we find that the lab performance of the simulated tandem PV system translates from the laboratory to outdoors comparable to c-Si systems. Photovoltaic Materials and Devices Electrical Sustainable Energy Energie and Industrie
Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Article . 2022 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.111944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 25visibility views 25 download downloads 11 Powered bymore_vert Solar Energy Materia... arrow_drop_down Solar Energy Materials and Solar CellsArticle . 2022 . Peer-reviewedLicense: CC BYData sources: Crossrefhttp://dx.doi.org/10.1016/j.so...Article . 2022 . Peer-reviewedData sources: European Union Open Data PortalDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2022.111944&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Italy, NetherlandsPublisher:Elsevier BV Hoekstra N.; Pellegrini M.; Bloemendal M.; Spaak G.; Andreu Gallego A.; Rodriguez Comins J.; Grotenhuis T.; Picone S.; Murrell A. J.; Steeman H. J.; Verrone A.; Doornenbal P.; Christophersen M.; Bennedsen L.; Henssen M.; Moinier S.; Saccani C.;Heating and cooling using aquifer thermal energy storage (ATES) has hardly been applied outside the Netherlands, even though it could make a valuable contribution to the energy transition. The Climate-KIC project "Europe-wide Use of Energy from aquifers" - E-USE(aq) - aimed to pave the way for Europe-wide application of ATES, through the realization and monitoring of six ATES pilot plants across five different EU countries. In a preceding paper, based on preliminary results of E-USE(aq), conclusions were already drawn, demonstrating how the barriers for this form of shallow geothermal energy can be overcome, and sometimes even leveraged as opportunities. Based on final pilot project results, key economic and environmental outcomes are now presented. This paper starts with the analysis of specific technological barriers: unfamiliarity with the subsurface, presumed limited compatibility with existing energy provision systems (especially district heating), energy imbalances and groundwater contamination. The paper then shows how these barriers have been tackled, using improved site investigation and monitoring technologies to map heterogeneous subsoils. In this way ATES can cost-efficiently be included in smart grids and combined with other sources of renewable (especially solar) energy, while at the same time achieving groundwater remediation. A comparative assessment of economic and environmental impacts of the pilots is included, to demonstrate the sustainability of ATES system with different renewables and renewable-based technologies. The paper concludes with an assessment of the market application potential of ATES, including in areas with water scarcity, and a review of climate beneficial impact.
Archivio istituziona... arrow_drop_down The Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.136142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 15visibility views 15 download downloads 39 Powered bymore_vert Archivio istituziona... arrow_drop_down The Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)The Science of The Total EnvironmentArticle . 2020 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe Science of The Total EnvironmentArticle . 2020Data sources: DANS (Data Archiving and Networked Services)Delft University of Technology: Institutional RepositoryArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2019.136142&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu