- home
- Advanced Search
Filters
Clear All- Energy Research
- RU
- English
- E3S Web of Conferences
- Energy Research
- RU
- English
- E3S Web of Conferences
description Publicationkeyboard_double_arrow_right Article 2019Publisher:EDP Sciences Authors: Volgin George;One of the most important tasks of engineering hydraulics is to determine the energy loss during the motion of the fluid flow. The study of the question of whether the patterns of hydraulic resistances are similar in a calm and turbulent flow is relevant in the design of hydraulic structures. In most cases, a turbulent regime of fluid motion is observed in various applications, but to date, the theory of turbulence is not considered complete. When designing hydraulic structures, inaccuracies in the existing calculation methods can lead to a decrease in the efficiency and reliability of the entire spillway structure as a whole. The need for an integrated approach to the analysis of the impact on the hydraulic resistance of various factors is noted (degree of spread (Bh)$ \left( {{B \over h}} \right) $), the degree of turbulence (Re) and the degree of flow roughness (Fr)), which is not always provided by known dependencies and methods of calculation. On the basis of our own experimental data, a new formula for calculating the hydraulic resistance of turbulent flows in smooth channels was obtained. The functional dependence of the hydraulic resistance coefficient on the parameters (Bh)$ \left( {{B \over h}} \right) $, Re and Fr is obtained.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a636a34bfa8a58d491f1f5eb0f249089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a636a34bfa8a58d491f1f5eb0f249089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2019Publisher:EDP Sciences Authors: Volgin George;One of the most important tasks of engineering hydraulics is to determine the energy loss during the motion of the fluid flow. The study of the question of whether the patterns of hydraulic resistances are similar in a calm and turbulent flow is relevant in the design of hydraulic structures. In most cases, a turbulent regime of fluid motion is observed in various applications, but to date, the theory of turbulence is not considered complete. When designing hydraulic structures, inaccuracies in the existing calculation methods can lead to a decrease in the efficiency and reliability of the entire spillway structure as a whole. The need for an integrated approach to the analysis of the impact on the hydraulic resistance of various factors is noted (degree of spread (Bh)$ \left( {{B \over h}} \right) $), the degree of turbulence (Re) and the degree of flow roughness (Fr)), which is not always provided by known dependencies and methods of calculation. On the basis of our own experimental data, a new formula for calculating the hydraulic resistance of turbulent flows in smooth channels was obtained. The functional dependence of the hydraulic resistance coefficient on the parameters (Bh)$ \left( {{B \over h}} \right) $, Re and Fr is obtained.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a636a34bfa8a58d491f1f5eb0f249089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=doajarticles::a636a34bfa8a58d491f1f5eb0f249089&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu