- home
- Advanced Search
- Energy Research
- GB
- SG
- Applied Energy
- Energy Research
- GB
- SG
- Applied Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SingaporePublisher:Elsevier BV Zhou, Dezhi; Yang, Wenming; Li, Jing; Tay, Kun Lin; Kraft, Markus;handle: 10356/136824
This study proposed a hybrid model consisting of a characteristic time combustion (CTC) model and a closed reactor model for the combustion modelling with detailed chemistry in RCCI engines. In the light of the basic idea of the CTC model of achieving chemical equilibrium in high temperature, this hybrid model uses the CTC model to solve the species conversion and heat release in the diffusion flame. Except for the diffusion flame, the auto-ignition in RCCI combustion is computed by a closed reactor model with the CHEMKIN library by assuming that the computational cells are closed reactors. The border of the transition between the CTC model and closed reactor model is determined by two criteria, a critical temperature and a critical Damkohler number. On the formulation of this hybrid model, emphasis is placed on coupling detailed chemistry into this hybrid model. A CEQ solver for species equilibrium calculations at certain temperature, pressure was embedded with CTC for detailed chemistry calculation. Then this combustion model was integrated with the CFD framework KIVA4 and the chemical library CHEMKIN-II and validated in a RCCI engine. The predicted in-cylinder pressure and heat release rate (HRR) show a good consistency with the data from the experiment and better accuracy than that computed from the sole closed reactor model. More importantly, it is observed that this model could save computational time compared with closed reactor model due to less stiff ordinary differential equations (ODEs) computation. A sensitivity analysis of the critical temperature and critical Damkohler number was conducted to demonstrate the effect of these two parameters in the current model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Biomethanisation of CO2 i...UKRI| Biomethanisation of CO2 in anaerobic digestion plantsBing Tao; Anna M. Alessi; Yue Zhang; James P.J. Chong; Sonia Heaven; Charles J. Banks;In-situ biomethanisation reduces the CO2 in biogas to CH4 via direct H2 injection into an anaerobic digester, but volumetric methane production (VMP) is limited by organic loading. Ex-situ biomethanisation, where gaseous substrates are fed to pure or mixed cultures of hydrogenotrophic methanogens, offers higher VMP but requires an additional reactor and supply of essential nutrients. This work combined the two approaches in a novel hybrid application achieving simultaneous in-situ and ex-situ biomethanisation within an organically-loaded anaerobic digester receiving supplementary biogas. Conventional stirred-tank digesters were first acclimated to H2 addition, increasing biogas methane content from 50% to 95% and VMP from 0.86 to 1.51 L L-1 day-1 at a moderate loading rate of 3 g organic chemical oxygen demand per L per day (g CODorg L-1 day-1). Externally-produced biogas was then added to demonstrate simultaneous biomethanisation of endogenous and imported CO2. This further increased VMP to 2.76 L L-1 day-1 without affecting organic substrate degradation. In-situ CO2 reduction can alter digester pH by reducing bicarbonate buffering: the combined process operated stably at around pH 8.0 with 3-5% CO2 in the headspace. Microbial community analysis indicated the process was mediated by bacterial syntrophic acetate oxidation and highly enriched hydrogenotrophic methanogenic archaea (up to 97% of the archaeal population). This approach presents the opportunity to retrofit a single digester for H2 injection to convert and upgrade biogas from several others, minimising capital and operating costs by utilising both existing infrastructure and waste-derived feedstock nutrients for simultaneous biogas upgrading and power-to-methane.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 103 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Catherine Mitchell; Ronan Bolton; Chiara Candelise; Jinyue Yan; Florian Kern; Richard Hoggett;This special edition to be published in Applied Energy brings together a range of papers that explore the complex, multi-dimensional and inter-related issues associated with the supply or value chains that make up energy systems and how a focus on them can bring new insights for energy security in a low carbon transition.\ud \ud Dealing with the trilemma of maintaining energy security, reducing greenhouse gas emissions and maintaining affordability for economies and end users are key issues for all countries, but there are synergies and trade-offs in simultaneously dealing with these different objectives. Currently, industrialised energy systems are dominated by supply chains based on fossil fuels and these, for the most part, have been effective in enabling energy security and affordability. However, they are increasingly struggling to do this, particularly in respect to efforts to tackle climate change, given that the energy sector is responsible for around two-thirds of the global greenhouse gas emissions [1]. A key challenge is therefore how to decarbonise energy systems, whilst also ensuring energy security and affordability. This special issue, through a focus on supply chains, particularly considers the interactions and relationships between energy security and decarbonisation.\ud \ud Energy security is a property of energy systems and their ability to withstand short-term shocks and longer-term stresses depends on other important system properties including resilience, robustness, flexibility and stability [2]. Energy systems are essentially a supply chain comprising of multiple and interrelated sub-chains based around different fuels, technologies, infrastructures, and actors, operating at different scales and locations – from extraction/imports and conversion through to end use [3]. These supply chains have become increasingly globalised and are influenced by the on-going shifts in global supply and demand. Thus the aim of this special issue is to explore and discuss how to enable the development of a secure and sustainable energy system through a better understanding of both existing and emerging low carbon energy supply chains as well as of new approaches to the design and management of energy systems. In part, because moving from a system dominated by fossil fuels to one based on low carbon creates a new set of risks and uncertainties for energy security as well as new opportunities.\ud \ud A large number of submissions from over 18 countries were received for this special edition and 16 papers were accepted after peer review. These address a variety of issues and we have chosen to discuss the findings under two key themes, although many of the papers cut across these: (1) Insights from, and for, supply chain analysis. (2) Insights for energy security and its management. We then provide in (3) a summary of insights and research gaps. Table 1 provides a snapshot of the areas covered by the papers showing: theme (s); empirical domains; and geographical coverage.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 490 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | United Kingdom Sustainabl..., UKRI | Hydrogen and Fuel Cell Su...UKRI| United Kingdom Sustainable Hydrogen Energy Consortium (UK-SHEC) CORE PROGRAMME ,UKRI| Hydrogen and Fuel Cell Supergen HubAuthors: Dodds, PE;AbstractThe UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL, identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model, which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent, which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios, so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat, disaggregation enables us to vary consumer behaviour and government policies on different house types, as well as highlighting different technology trends across the stock, in comparison with previous aggregated versions of the model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.06.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.06.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Raphael J. Heffron; Raphael J. Heffron; Darren McCauley;handle: 1893/18338
This paper describes the nexus of energy justice, supply and security. It advances the case that energy justice is the relatively new concept in this triangle of issues and an area requiring research. There are three central tenets of energy justice: distributional, procedural and recognition justice. Each of these tenets figures at certain stages in the energy supply chain and as a consequence there is an effect on energy supply. An example of the wind energy sector in Denmark is presented which demonstrates how the application and promotion of energy justice can enable the growth of an industry supply chain. This in turn contributes to increased energy security and national economic growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammet Deveci; Dragan Pamucar; Elif Oguz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Elsevier BV Authors: M.J. Shilston; Chun Wah Leung; S.D. Probert;Abstract An experimental investigation of the steady-state rates of heat transfer from an array of vertical rectangular fins of 3 mm thickness and 250 mm length, protruding 60 mm perpendicularly upwards from a 250 mm × 190 mm horizontal rectangular base, is reported. For constant (to ±0·1°C) base temperatures between 40°C and 80°C, in an ambient environment of 20±0·2°C, the optimal separation of the parallel fins, corresponding to the maximum rate of heat loss, is 10·5±1·0 mm. The effects of the extent of the fin protrusions on the thermal performances of such vertical fins, on the same base, which was arranged to be either vertical or horizontal , have been studied. The experiments were performed with three different fin protrusions, namely 32 mm, 60 mm and 90 mm, for a base temperature of 40°C above that of the ambient environment. The steady-state rate of heat dissipation from the fin array increased slightly less than linearly with the fin protrusion for both orientations, but the relationship became closer to linear as the fin spacing was increased. A comparison of the abilities to dissipate heat to the room air from the same geometrical configuration having a rectangular fin array but positioned with vertical fins on a vertical base, vertical fins protruding upwards from a horizontal base, or horizontal fins on a vertical base, has been made. The orientation with vertical fins protruding upwards from the horizontal base, is the preferred option because of the relatively high rates of heat transfer that can then be achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(85)90029-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(85)90029-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yongji Zhang; Minghui Lan; Yapu Zhao; Zhi Su; Yu Hao; Heran Du;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:UKRI | En-ComE: Energy Harvestin..., UKRI | SMARTER: Smart Multifunct...UKRI| En-ComE: Energy Harvesting Powered Wireless Monitoring Systems Based on Integrated Smart Composite Structures and Energy-Aware Architecture ,UKRI| SMARTER: Smart Multifunctional ARchitecture & Technology for Energy aware wireless sensoRsAuthors: Yang Kuang; Rosalie Hide; Meiling Zhu;Abstract Nonlinear systems may exhibit secondary resonances, which can provide an additional and thus broadened bandwidth for energy harvesting. However, the secondary resonances of nonlinear energy harvesters reported in the literature suffer from low-power output and limited bandwidth. This work proposes a novel magnetic rolling pendulum (MRP) with a large bandwidth and high power output in both primary and secondary resonances for energy harvesting. The MRP employs the rolling motion of a magnetically levitated permanent magnet with minimal mechanical damping. A prototype was fabricated and characterised. An analytical model combined with finite element analysis was developed and validated by experiment. Both experiment and simulation show that the MRP has a linear resonance frequency of 4.6 Hz and peak power of 3.7 mW. It exhibits strong nonlinear behaviours and broadband characteristics with excitation amplitude as low as 2 m/s2 in the primary resonance. As the excitation amplitude is larger than 5 m/s2, the secondary resonance (1/2 order subharmonics) is excited. The responses of the MRP at the subharmonic resonance take the same form as the primary resonance in terms of displacement and power outputs. This helps the subharmonic resonance to produce the same power level as the primary resonance but with a larger bandwidth. When excited at 14 m/s2, the MRP shows 1-mW-bandwidth of 9.7 Hz, 2/3 of which is attributed to the subharmonic resonance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Ben Phalan;The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 139 citations 139 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2018 SingaporePublisher:Elsevier BV Zhou, Dezhi; Yang, Wenming; Li, Jing; Tay, Kun Lin; Kraft, Markus;handle: 10356/136824
This study proposed a hybrid model consisting of a characteristic time combustion (CTC) model and a closed reactor model for the combustion modelling with detailed chemistry in RCCI engines. In the light of the basic idea of the CTC model of achieving chemical equilibrium in high temperature, this hybrid model uses the CTC model to solve the species conversion and heat release in the diffusion flame. Except for the diffusion flame, the auto-ignition in RCCI combustion is computed by a closed reactor model with the CHEMKIN library by assuming that the computational cells are closed reactors. The border of the transition between the CTC model and closed reactor model is determined by two criteria, a critical temperature and a critical Damkohler number. On the formulation of this hybrid model, emphasis is placed on coupling detailed chemistry into this hybrid model. A CEQ solver for species equilibrium calculations at certain temperature, pressure was embedded with CTC for detailed chemistry calculation. Then this combustion model was integrated with the CFD framework KIVA4 and the chemical library CHEMKIN-II and validated in a RCCI engine. The predicted in-cylinder pressure and heat release rate (HRR) show a good consistency with the data from the experiment and better accuracy than that computed from the sole closed reactor model. More importantly, it is observed that this model could save computational time compared with closed reactor model due to less stiff ordinary differential equations (ODEs) computation. A sensitivity analysis of the critical temperature and critical Damkohler number was conducted to demonstrate the effect of these two parameters in the current model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2017.08.137&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Elsevier BV Funded by:UKRI | Biomethanisation of CO2 i...UKRI| Biomethanisation of CO2 in anaerobic digestion plantsBing Tao; Anna M. Alessi; Yue Zhang; James P.J. Chong; Sonia Heaven; Charles J. Banks;In-situ biomethanisation reduces the CO2 in biogas to CH4 via direct H2 injection into an anaerobic digester, but volumetric methane production (VMP) is limited by organic loading. Ex-situ biomethanisation, where gaseous substrates are fed to pure or mixed cultures of hydrogenotrophic methanogens, offers higher VMP but requires an additional reactor and supply of essential nutrients. This work combined the two approaches in a novel hybrid application achieving simultaneous in-situ and ex-situ biomethanisation within an organically-loaded anaerobic digester receiving supplementary biogas. Conventional stirred-tank digesters were first acclimated to H2 addition, increasing biogas methane content from 50% to 95% and VMP from 0.86 to 1.51 L L-1 day-1 at a moderate loading rate of 3 g organic chemical oxygen demand per L per day (g CODorg L-1 day-1). Externally-produced biogas was then added to demonstrate simultaneous biomethanisation of endogenous and imported CO2. This further increased VMP to 2.76 L L-1 day-1 without affecting organic substrate degradation. In-situ CO2 reduction can alter digester pH by reducing bicarbonate buffering: the combined process operated stably at around pH 8.0 with 3-5% CO2 in the headspace. Microbial community analysis indicated the process was mediated by bacterial syntrophic acetate oxidation and highly enriched hydrogenotrophic methanogenic archaea (up to 97% of the archaeal population). This approach presents the opportunity to retrofit a single digester for H2 injection to convert and upgrade biogas from several others, minimising capital and operating costs by utilising both existing infrastructure and waste-derived feedstock nutrients for simultaneous biogas upgrading and power-to-methane.
e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 23 citations 23 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 103 Powered bymore_vert e-Prints Soton arrow_drop_down e-Prints SotonArticle . 2019License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)White Rose Research OnlineArticle . 2019License: CC BY NC NDData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.04.058&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Catherine Mitchell; Ronan Bolton; Chiara Candelise; Jinyue Yan; Florian Kern; Richard Hoggett;This special edition to be published in Applied Energy brings together a range of papers that explore the complex, multi-dimensional and inter-related issues associated with the supply or value chains that make up energy systems and how a focus on them can bring new insights for energy security in a low carbon transition.\ud \ud Dealing with the trilemma of maintaining energy security, reducing greenhouse gas emissions and maintaining affordability for economies and end users are key issues for all countries, but there are synergies and trade-offs in simultaneously dealing with these different objectives. Currently, industrialised energy systems are dominated by supply chains based on fossil fuels and these, for the most part, have been effective in enabling energy security and affordability. However, they are increasingly struggling to do this, particularly in respect to efforts to tackle climate change, given that the energy sector is responsible for around two-thirds of the global greenhouse gas emissions [1]. A key challenge is therefore how to decarbonise energy systems, whilst also ensuring energy security and affordability. This special issue, through a focus on supply chains, particularly considers the interactions and relationships between energy security and decarbonisation.\ud \ud Energy security is a property of energy systems and their ability to withstand short-term shocks and longer-term stresses depends on other important system properties including resilience, robustness, flexibility and stability [2]. Energy systems are essentially a supply chain comprising of multiple and interrelated sub-chains based around different fuels, technologies, infrastructures, and actors, operating at different scales and locations – from extraction/imports and conversion through to end use [3]. These supply chains have become increasingly globalised and are influenced by the on-going shifts in global supply and demand. Thus the aim of this special issue is to explore and discuss how to enable the development of a secure and sustainable energy system through a better understanding of both existing and emerging low carbon energy supply chains as well as of new approaches to the design and management of energy systems. In part, because moving from a system dominated by fossil fuels to one based on low carbon creates a new set of risks and uncertainties for energy security as well as new opportunities.\ud \ud A large number of submissions from over 18 countries were received for this special edition and 16 papers were accepted after peer review. These address a variety of issues and we have chosen to discuss the findings under two key themes, although many of the papers cut across these: (1) Insights from, and for, supply chain analysis. (2) Insights for energy security and its management. We then provide in (3) a summary of insights and research gaps. Table 1 provides a snapshot of the areas covered by the papers showing: theme (s); empirical domains; and geographical coverage.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 19 citations 19 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 490 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.02.008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2014 United KingdomPublisher:Elsevier BV Funded by:UKRI | United Kingdom Sustainabl..., UKRI | Hydrogen and Fuel Cell Su...UKRI| United Kingdom Sustainable Hydrogen Energy Consortium (UK-SHEC) CORE PROGRAMME ,UKRI| Hydrogen and Fuel Cell Supergen HubAuthors: Dodds, PE;AbstractThe UK government heat strategy is partially based on decarbonisation pathways from the UK MARKAL energy system model. We review how heat provision is represented in UK MARKAL, identifying a number of shortcomings and areas for improvement. We present a completely revised model with improved estimations of future heat demands and a consistent representation of all heat generation technologies. This model represents all heat delivery infrastructure for the first time and uses dynamic growth constraints to improve the modelling of transitions according to innovation theory. Our revised model incorporates a simplified housing stock model, which is used produce highly-refined decarbonisation pathways for residential heat provision. We compare this disaggregated model against an aggregated equivalent, which is similar to the existing approach in UK MARKAL. Disaggregating does not greatly change the total residential fuel consumption in two scenarios, so the benefits of disaggregation will likely be limited if the focus of a study is elsewhere. Yet for studies of residential heat, disaggregation enables us to vary consumer behaviour and government policies on different house types, as well as highlighting different technology trends across the stock, in comparison with previous aggregated versions of the model.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.06.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 39 citations 39 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2014.06.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Raphael J. Heffron; Raphael J. Heffron; Darren McCauley;handle: 1893/18338
This paper describes the nexus of energy justice, supply and security. It advances the case that energy justice is the relatively new concept in this triangle of issues and an area requiring research. There are three central tenets of energy justice: distributional, procedural and recognition justice. Each of these tenets figures at certain stages in the energy supply chain and as a consequence there is an effect on energy supply. An example of the wind energy sector in Denmark is presented which demonstrates how the application and promotion of energy justice can enable the growth of an industry supply chain. This in turn contributes to increased energy security and national economic growth.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 141 citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.034&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Muhammet Deveci; Dragan Pamucar; Elif Oguz;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2022.119597&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1985Publisher:Elsevier BV Authors: M.J. Shilston; Chun Wah Leung; S.D. Probert;Abstract An experimental investigation of the steady-state rates of heat transfer from an array of vertical rectangular fins of 3 mm thickness and 250 mm length, protruding 60 mm perpendicularly upwards from a 250 mm × 190 mm horizontal rectangular base, is reported. For constant (to ±0·1°C) base temperatures between 40°C and 80°C, in an ambient environment of 20±0·2°C, the optimal separation of the parallel fins, corresponding to the maximum rate of heat loss, is 10·5±1·0 mm. The effects of the extent of the fin protrusions on the thermal performances of such vertical fins, on the same base, which was arranged to be either vertical or horizontal , have been studied. The experiments were performed with three different fin protrusions, namely 32 mm, 60 mm and 90 mm, for a base temperature of 40°C above that of the ambient environment. The steady-state rate of heat dissipation from the fin array increased slightly less than linearly with the fin protrusion for both orientations, but the relationship became closer to linear as the fin spacing was increased. A comparison of the abilities to dissipate heat to the room air from the same geometrical configuration having a rectangular fin array but positioned with vertical fins on a vertical base, vertical fins protruding upwards from a horizontal base, or horizontal fins on a vertical base, has been made. The orientation with vertical fins protruding upwards from the horizontal base, is the preferred option because of the relatively high rates of heat transfer that can then be achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(85)90029-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 40 citations 40 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0306-2619(85)90029-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Elsevier BV Yongji Zhang; Minghui Lan; Yapu Zhao; Zhi Su; Yu Hao; Heran Du;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu20 citations 20 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2024.122625&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Funded by:UKRI | En-ComE: Energy Harvestin..., UKRI | SMARTER: Smart Multifunct...UKRI| En-ComE: Energy Harvesting Powered Wireless Monitoring Systems Based on Integrated Smart Composite Structures and Energy-Aware Architecture ,UKRI| SMARTER: Smart Multifunctional ARchitecture & Technology for Energy aware wireless sensoRsAuthors: Yang Kuang; Rosalie Hide; Meiling Zhu;Abstract Nonlinear systems may exhibit secondary resonances, which can provide an additional and thus broadened bandwidth for energy harvesting. However, the secondary resonances of nonlinear energy harvesters reported in the literature suffer from low-power output and limited bandwidth. This work proposes a novel magnetic rolling pendulum (MRP) with a large bandwidth and high power output in both primary and secondary resonances for energy harvesting. The MRP employs the rolling motion of a magnetically levitated permanent magnet with minimal mechanical damping. A prototype was fabricated and characterised. An analytical model combined with finite element analysis was developed and validated by experiment. Both experiment and simulation show that the MRP has a linear resonance frequency of 4.6 Hz and peak power of 3.7 mW. It exhibits strong nonlinear behaviours and broadband characteristics with excitation amplitude as low as 2 m/s2 in the primary resonance. As the excitation amplitude is larger than 5 m/s2, the secondary resonance (1/2 order subharmonics) is excited. The responses of the MRP at the subharmonic resonance take the same form as the primary resonance in terms of displacement and power outputs. This helps the subharmonic resonance to produce the same power level as the primary resonance but with a larger bandwidth. When excited at 14 m/s2, the MRP shows 1-mW-bandwidth of 9.7 Hz, 2/3 of which is attributed to the subharmonic resonance.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 31 citations 31 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2019.113822&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009Publisher:Elsevier BV Authors: Ben Phalan;The purpose of this paper is to provide a broad overview of the social and environmental costs and benefits of biofuels in Asia. The major factors that will determine the impacts of biofuels are: (1) their contribution to land-use change, (2) the feedstocks used, and (3) issues of technology and scale. Biofuels offer economic benefits, and in the right circumstances can reduce emissions and make a small contribution to energy security. Feedstocks that involve the conversion of agricultural land will affect food security and cause indirect land-use change, while those that replace forests, wetlands or natural grasslands will increase emissions and damage biodiversity. Biofuels from cellulose, algae or waste will avoid some of these problems, but come with their own set of uncertainties and risks. In order to ensure net societal benefits of biofuel production, governments, researchers, and companies will need to work together to carry out comprehensive assessments, map suitable and unsuitable areas, and define and apply standards relevant to the different circumstances of each country. The greatest benefits may come from feedstocks produced on a modest scale as co-products of smart technologies developed for phytoremediation, waste disposal and emissions reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 139 citations 139 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2009.04.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu