Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
408 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • Restricted
  • 11. Sustainability
  • 12. Responsible consumption
  • ES
  • US
  • GB

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Salvador Baena-Morales; Alejandro Prieto-Ayuso; Gladys Merma-Molina; Sixto González-Víllora;

    The world, society and education are constantly evolving, and to respond to these changes, the main governmental institutions have been proposing different global strategies to focus efforts in the same direction. Currently, the United Nations and its 17 Sustainable Development Goals (SDG) have presented a series of indicators that could help to minimise the environmental, economic and social instability we are experiencing. In this sense, Education for Sustainable Development (ESD) has been described as a fundamental factor. Specifically, in previous work, we argued that physical education (PE) could be a good tool to contribute to SDGs. Based on this, no research analysing the voices of Physical Education Teachers (PET) on how this contribution could be made has been identified in previous literature. Therefore, the objectives of this research are: (1) to analyse the voices and opinions of active PETs in terms of the knowledge they have about Sustainable Development (SD); (2) to determine their opinions about the contribution that PE could make to SDGs; and finally, (3) to identify the challenges and limitations of pedagogical action of SD in PE. For this purpose, a qualitative analysis through a semi-structured interview with 41 active PETs was carried out. The main findings will be presented and discussed around four themes: (a) agreement on the concept of sustainability; (b) PE can contribute to the achievement of SDGs; (c) ambiguity in applying SDGs to PE lessons; and (d) teachers’ constraints on how to implement SDGs in PE. It seems to indicate that PETs do not have a multidimensional vision of sustainable development. While they recognise the potential of PE to contribute to SDGs through awareness raising and student learning, they point to its pedagogical and formative constraints as the main barriers to being able to contribute. They pointed to a lack of knowledge on how to do so, guidelines on how to integrate ESD, lack of involvement, shortage of time or resources in school physical education.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sport Education and Society
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sport Education and Society
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ottorino Veneri; Fortunato Migliardini; P. Corbo; Clemente Capasso;

    In this paper some preliminary experimental results on a Zebra battery based propulsion system for urban bus applications are presented. The tests were carried out using a laboratory 1:1 scale test bench, composed by a 65 kW electric drive, specifically designed for urban bus applications, supplied by two 20 kWh Zebra batteries connected in parallel. The electric power train was tested on a laboratory bench, connected through a fixed ratio gear box to a 100 kW regenerative electric brake provided with speed and torque controls, in order to evaluate the propulsion system performance in steady state operative conditions. The obtained preliminary experimental results were utilized to implement a Matlab-Simulink model of urban bus, which might be powered by the same electric propulsion system studied. Thanks to this model it was possible to evaluate the dynamic behavior of the urban bus, working on standard driving cycles, taking into account the resistant forces represented by proper vehicle/road/aerodynamic parameters. An evaluation of the expected real vehicle driving range was also estimated in different road conditions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2012
    Data sources: CNR ExploRA
    https://doi.org/10.1109/esars....
    Conference object . 2012 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2012
      Data sources: CNR ExploRA
      https://doi.org/10.1109/esars....
      Conference object . 2012 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Aliberti; Massimo;

    Intention of this work is to investigate the opportunity and feasibility of energy efficient networking in Home and Building automation protocols. Wired HBAS have traditionally devoted a relatively little attention to this point, especially if compared to wireless networks. This paper will try to address the issue by evaluating the introduction of power state switching in a real scenario and proposing the concept of functional and spatial adjacency among packets.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2011
    Data sources: CNR ExploRA
    https://doi.org/10.1109/icce.2...
    Conference object . 2011 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2011
      Data sources: CNR ExploRA
      https://doi.org/10.1109/icce.2...
      Conference object . 2011 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Roberto A. Varella; Gonçalo Duarte; Gonçalo Duarte; Marta V. Faria; +2 Authors

    Abstract This work assesses the impacts of aggressive driving behavior on pollutants emissions and energy consumption at a city level. Furthermore, it performs an economic analysis considering the potential avoided emissions and fuel savings and discusses potential policy measures to address this topic. The results showed that aggressive driving significantly impacts energy consumption and emissions, with energy consumption increasing by more than ∼200% and emissions by 330% for aggressive driving compared to non-aggressive driving (in MJ/km and in g/km, respectively). This increment was found to be even higher for diesel vehicles than for gasoline vehicles. On the contrary, gasoline vehicles showed higher percentages of increase for most emissions (CO, NOx and NO). Results also revealed that aggressive driving impacts are higher for local streets when examining the city level. Moreover, the economic analysis showed that significant cost reductions may be achieved by avoiding aggressive driving, reaching up to 52.5 k€ on a daily basis. In conclusion, this study is of particular relevance to policy makers and urban planners, enabling to obtain a comprehensive overview of the impacts of aggressive driving behaviors at a city level and providing new insights to perform further developments and to assess the feasibility of the implementation of policy measures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility88
    visibilityviews88
    downloaddownloads52
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Maletta, Emiliano; Martín Sastre, Carlos; Ciria Ciria, María Pilar; del Val Hurtado, María Aránzazu; +6 Authors

    The aim of this report is to demonstrate and evaluate the potential of tall wheatgrass (Elytrigia elongata) to avoid GHG emissions and obtain lower economic costs in marginal areas of Spain. Our research built scenarios based on experimental plots (2 and 3 years growth) in 3 locations of Spain with completely different climate conditions (provinces of Girona, Soria and Palencia). In our experiences, we achieved an adequate establishment and biomass production, and assumed a rank of biomass yields until the end of the life cycle that is usually accepted to be about 15 years in many other studies in United States, Argentina and Eastern Europe where tall wheatgrass is extensively cultivated in marginal areas for sheep livestock production. Using our experimental plots and statistical information for economic inputs costs, we built 5 different scenarios per region considering a large range of biomass yields of tall wheatgrass. The analysis included a comparison with annual grasses economic costs calculated for a wide range of biomass yields of a previous study. We estimated GHG emissions savings for tall wheatgrasses and used our previous study (which had GHG emissions savings as well). Savings were calculated replacing natural gas electricity with electricity from biomass combustion in real power plants in Spain. In a wide range of yields, the results suggest that marginal areas might present a better performance with tall wheatgrass compared to annual winter grasses (cereals whole plant cuttings), thus producing biomass yields with higher GHG savings and lower economic costs at the farm level. Proceedings of the 20th European Biomass Conference and Exhibition, 18-22 June 2012, Milan, Italy, pp. 217-229

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/20t...
    Conference object . 2012
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/20t...
      Conference object . 2012
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Noelia Domínguez-Morueco; Nuno Ratola; Jordi Sierra; Martí Nadal; +1 Authors

    In this study, air concentrations of BaP in two different seasons (winter 2015 and summer 2016) and BaP levels in ground vegetation from Tarragona County were used as control simulations performed with the WRF-CHIMERE air quality modelling system, in order to reproduce the incidence of that hazardous chemical in air and soils. The CTM was validated for the present climatology, showing a good ability to represent air and soil concentrations of BaP over the target domain (petrochemical, chemical, urban and background sites), particularly in the winter. Then, the variation of the BaP concentrations in air and soils were simulated for the time series 1996-2015 and for the climate change scenario RCP8.5 (2031-2050). While an increase is projected for the levels in air, particularly in chemical and remote sites where the variation can go up to 10%, in terms of soil deposition the findings are the opposite, with an evident decrease in soil BaP concentrations, particularly for background sites. Finally, a potential health effect of BaP for the local population (lung cancer) was assessed. Although according to the projections the EU threshold for BaP atmospheric incidence (1 ng m-3) will not be reached by 2050, there will be an increase in the life-time risk of lung cancer, particularly in the most populated areas within the simulation domain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luigi De Simio; Sabato Iannaccone;

    Alternative fuels and energy vectors are becoming increasingly important in terms of technical, geopolitical, economic, and environmental aspects. In particular, gaseous fuels and vectors, such as fossil or synthetic natural gas (NG) blended with hydrogen, commonly help provide optimal strategies to reduce global and toxic emissions of internal combustion engines, owing to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions, and costeffectiveness. However, diesel engines still represent the reference category among internal combustion engines in terms of maximum thermodynamic efficiency. The possibility offered by dual-fuel (DF) systems to combine the efficiency and performance of diesel engines with the environmental advantages of gaseous fuels has been the subject of extensive investigations. However, the simple replacement of diesel fuel with gaseous fuel does not allow for optimising the engine performance, owing to the high percentage of unburned gaseous fuel, which compromises the potential reduction of CO2; therefore, more complex combustion strategies should be realised. In this study, with the aim of improving the DF combustion process, an experimental investigation was performed to analyse low-temperature combustion (LTC), using NG and two enriched hydrogen-compressed NG blends as primary fuels. The LTC mode was activated by means of a very early advanced pilot injection and carried out in two close steps. The double pilot injection was used to control the energy release rate in the first combustion stage, thereby minimizing the increase of the rate of pressure and allowing the extension of the operation range under LTC. The experimental activity was also focused on analysing the particle emissions, as it is well known that these emissions, together with those of nitrogen oxide, constitute the main pollutants resulting from diesel fuel combustion. The results demonstrated the potential to reduce the unburned fuel, NOx, and particle emissions simultaneously, while maintaining equivalent CO2 emissions to a diesel-only engine. Both the timing and pressure of the pilot injection proved to be critical parameters for optimising the emissions and performance

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2019
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2019
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Camila Barreneche; Camila Barreneche; Luisa F. Cabeza; M. Elena Navarro; +2 Authors

    Abstract In recent years, the overall energy consumption is increasing significantly and the energy consumption in the building sector represents over 30% of the global ones in developed countries. Thermal energy storage (TES) using phase change materials (PCM), which are materials able to store high amounts of energy as latent heat, is suggested as a possible solution to decrease the energy consumption. The authors of this paper developed materials able to encapsulate/stabilize PCM in addition to isolate an industrial residue from the steel recycling process: electrical arc furnace dust (EAFD). This waste is a hazardous dust, and when it is combined with a polymeric matrix produce dense sheet materials suitable for multilayered constructive systems. In this paper the physical, mechanical, thermal and acoustical characterization of two new materials with EAFD and PCM in a polymeric matrix for constructive system is presented. The results are compared with those obtained for one commercial dense sheet material available in the market, Texsound commercialized by TEXSA (Spain). The new dense sheet materials developed in this paper have similar acoustic properties compared to the results obtained for the commercial material and are competitive with it, even better because the new material incorporates PCM which increases the thermal inertia of final constructive system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Issam Touhami; Hassane Moutahir; Dorsaf Assoul; Kaouther Bergaoui; +3 Authors

    Abstract The Mediterranean region is one of the most vulnerable regions to climate change. The majority of climate models forecast a rise in temperatures and less rainfall, which have been observed in recent decades. These changes will affect several vegetation properties, especially phenological dynamics and traits, by increasing drought intensity and recurrence. In this climate change context, the present study aims to assess the evolution of vegetation state and its relation with the climate dynamics in the Mediterranean forest region of northeast Tunisia using Land Surface Phenology (LSP) metrics and the vegetation index (NDVI) analysis from 2000 to 2017. To conduct this work, we used precipitation and temperature data from the two closest weather stations and 16-day NDVI composite images from the MODIS satellite source, with 250-m spatial resolution. Three phenological metrics— start of season (SOS), end of season (EOS), and length of season (LOS) — were obtained and compared for different vegetation types. The LSP variation in response to climatic metrics was also analyzed. The results showed that the LSP in our study area changed significantly during the 2000–2017 period, which includes an average 7.8 days delay in the SOS, an average advance in the EOS by 5 days, and LOS shortened by an average 12.8 days. Autumn (Pr_9) and spring (Pr_3 and P3_4) precipitations, as well as maximum temperature (Tx9+10), represent the best climate parameters to explain the changes in LSP. Both the NDVI and SPEI showed a significant high correlation (p

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Acta Oecologica
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Acta Oecologica
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wim Timmermans; J. Slijkhuis; F. van den Goorbergh; Elizelle Juaneé Cilliers; +1 Authors

    Stories play an exceptionally important role in how people assign value to a place. Taken together, all those stories essentially give a place an identity. The aim of placemaking is to ensure that the people using a place can appreciate that place. Placemaking approaches are focussed on strategic interventions in a place and aimed at changing the meaning and value of that place for local people, thus creating a qualitative place for enhanced storytelling. Using greenery is a common approach in place-making. Urban greenery has gone through a process of emancipation in the past 15 years. This emancipation has led to awareness that urban greenery is about more than just ecology and biodiversity, but also has social and economic consequences for a city’s fortunes. It is clear that green spaces do not stand alone: they are part of a complex urban system, and the use of green spaces in this complex system has immediate repercussions for how the city functions. With the changing role of green spaces within cities, the need to manage these spaces is emphasized. In this sense, the place-making approach, along with the storytelling approach could provide valuable insight on the planning and management of green spaces within the urban environment, with the aim to enhance quality of life by means of the social connection between people, the users of the space, and the qualitative place provided. This research illustrated that green space managers would need more social and organizational skills to manage modern urban green spaces in an attempt to create qualitative, usable spaces for citizens, spaces that are built upon stories and spaces that would further enable future stories of citizen life. The Story Behind the Place: Creating Urban Spaces That Enhance Quality of Life (PDF Download Available). Available from: https://www.researchgate.net/publication/271918395_The_Story_Behind_the_Place_Creating_Urban_Spaces_That_Enhance_Quality_of_Life [accessed Dec 21, 2015].

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Research in Quality of Life
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Research in Quality of Life
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Any field
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
408 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Salvador Baena-Morales; Alejandro Prieto-Ayuso; Gladys Merma-Molina; Sixto González-Víllora;

    The world, society and education are constantly evolving, and to respond to these changes, the main governmental institutions have been proposing different global strategies to focus efforts in the same direction. Currently, the United Nations and its 17 Sustainable Development Goals (SDG) have presented a series of indicators that could help to minimise the environmental, economic and social instability we are experiencing. In this sense, Education for Sustainable Development (ESD) has been described as a fundamental factor. Specifically, in previous work, we argued that physical education (PE) could be a good tool to contribute to SDGs. Based on this, no research analysing the voices of Physical Education Teachers (PET) on how this contribution could be made has been identified in previous literature. Therefore, the objectives of this research are: (1) to analyse the voices and opinions of active PETs in terms of the knowledge they have about Sustainable Development (SD); (2) to determine their opinions about the contribution that PE could make to SDGs; and finally, (3) to identify the challenges and limitations of pedagogical action of SD in PE. For this purpose, a qualitative analysis through a semi-structured interview with 41 active PETs was carried out. The main findings will be presented and discussed around four themes: (a) agreement on the concept of sustainability; (b) PE can contribute to the achievement of SDGs; (c) ambiguity in applying SDGs to PE lessons; and (d) teachers’ constraints on how to implement SDGs in PE. It seems to indicate that PETs do not have a multidimensional vision of sustainable development. While they recognise the potential of PE to contribute to SDGs through awareness raising and student learning, they point to its pedagogical and formative constraints as the main barriers to being able to contribute. They pointed to a lack of knowledge on how to do so, guidelines on how to integrate ESD, lack of involvement, shortage of time or resources in school physical education.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sport Education and Society
    Article . 2022 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    15
    citations15
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sport Education and Society
      Article . 2022 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ottorino Veneri; Fortunato Migliardini; P. Corbo; Clemente Capasso;

    In this paper some preliminary experimental results on a Zebra battery based propulsion system for urban bus applications are presented. The tests were carried out using a laboratory 1:1 scale test bench, composed by a 65 kW electric drive, specifically designed for urban bus applications, supplied by two 20 kWh Zebra batteries connected in parallel. The electric power train was tested on a laboratory bench, connected through a fixed ratio gear box to a 100 kW regenerative electric brake provided with speed and torque controls, in order to evaluate the propulsion system performance in steady state operative conditions. The obtained preliminary experimental results were utilized to implement a Matlab-Simulink model of urban bus, which might be powered by the same electric propulsion system studied. Thanks to this model it was possible to evaluate the dynamic behavior of the urban bus, working on standard driving cycles, taking into account the resistant forces represented by proper vehicle/road/aerodynamic parameters. An evaluation of the expected real vehicle driving range was also estimated in different road conditions.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2012
    Data sources: CNR ExploRA
    https://doi.org/10.1109/esars....
    Conference object . 2012 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    10
    citations10
    popularityAverage
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2012
      Data sources: CNR ExploRA
      https://doi.org/10.1109/esars....
      Conference object . 2012 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Aliberti; Massimo;

    Intention of this work is to investigate the opportunity and feasibility of energy efficient networking in Home and Building automation protocols. Wired HBAS have traditionally devoted a relatively little attention to this point, especially if compared to wireless networks. This paper will try to address the issue by evaluating the introduction of power state switching in a real scenario and proposing the concept of functional and spatial adjacency among packets.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Conference object . 2011
    Data sources: CNR ExploRA
    https://doi.org/10.1109/icce.2...
    Conference object . 2011 . Peer-reviewed
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    1
    citations1
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility1
    visibilityviews1
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Conference object . 2011
      Data sources: CNR ExploRA
      https://doi.org/10.1109/icce.2...
      Conference object . 2011 . Peer-reviewed
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Roberto A. Varella; Gonçalo Duarte; Gonçalo Duarte; Marta V. Faria; +2 Authors

    Abstract This work assesses the impacts of aggressive driving behavior on pollutants emissions and energy consumption at a city level. Furthermore, it performs an economic analysis considering the potential avoided emissions and fuel savings and discusses potential policy measures to address this topic. The results showed that aggressive driving significantly impacts energy consumption and emissions, with energy consumption increasing by more than ∼200% and emissions by 330% for aggressive driving compared to non-aggressive driving (in MJ/km and in g/km, respectively). This increment was found to be even higher for diesel vehicles than for gasoline vehicles. On the contrary, gasoline vehicles showed higher percentages of increase for most emissions (CO, NOx and NO). Results also revealed that aggressive driving impacts are higher for local streets when examining the city level. Moreover, the economic analysis showed that significant cost reductions may be achieved by avoiding aggressive driving, reaching up to 52.5 k€ on a daily basis. In conclusion, this study is of particular relevance to policy makers and urban planners, enabling to obtain a comprehensive overview of the impacts of aggressive driving behaviors at a city level and providing new insights to perform further developments and to assess the feasibility of the implementation of policy measures.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy Research & Social Science
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    25
    citations25
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    visibility88
    visibilityviews88
    downloaddownloads52
    Powered by Usage counts
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Científi...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy Research & Social Science
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Maletta, Emiliano; Martín Sastre, Carlos; Ciria Ciria, María Pilar; del Val Hurtado, María Aránzazu; +6 Authors

    The aim of this report is to demonstrate and evaluate the potential of tall wheatgrass (Elytrigia elongata) to avoid GHG emissions and obtain lower economic costs in marginal areas of Spain. Our research built scenarios based on experimental plots (2 and 3 years growth) in 3 locations of Spain with completely different climate conditions (provinces of Girona, Soria and Palencia). In our experiences, we achieved an adequate establishment and biomass production, and assumed a rank of biomass yields until the end of the life cycle that is usually accepted to be about 15 years in many other studies in United States, Argentina and Eastern Europe where tall wheatgrass is extensively cultivated in marginal areas for sheep livestock production. Using our experimental plots and statistical information for economic inputs costs, we built 5 different scenarios per region considering a large range of biomass yields of tall wheatgrass. The analysis included a comparison with annual grasses economic costs calculated for a wide range of biomass yields of a previous study. We estimated GHG emissions savings for tall wheatgrasses and used our previous study (which had GHG emissions savings as well). Savings were calculated replacing natural gas electricity with electricity from biomass combustion in real power plants in Spain. In a wide range of yields, the results suggest that marginal areas might present a better performance with tall wheatgrass compared to annual winter grasses (cereals whole plant cuttings), thus producing biomass yields with higher GHG savings and lower economic costs at the farm level. Proceedings of the 20th European Biomass Conference and Exhibition, 18-22 June 2012, Milan, Italy, pp. 217-229

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    https://dx.doi.org/10.5071/20t...
    Conference object . 2012
    Data sources: Datacite
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      https://dx.doi.org/10.5071/20t...
      Conference object . 2012
      Data sources: Datacite
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Noelia Domínguez-Morueco; Nuno Ratola; Jordi Sierra; Martí Nadal; +1 Authors

    In this study, air concentrations of BaP in two different seasons (winter 2015 and summer 2016) and BaP levels in ground vegetation from Tarragona County were used as control simulations performed with the WRF-CHIMERE air quality modelling system, in order to reproduce the incidence of that hazardous chemical in air and soils. The CTM was validated for the present climatology, showing a good ability to represent air and soil concentrations of BaP over the target domain (petrochemical, chemical, urban and background sites), particularly in the winter. Then, the variation of the BaP concentrations in air and soils were simulated for the time series 1996-2015 and for the climate change scenario RCP8.5 (2031-2050). While an increase is projected for the levels in air, particularly in chemical and remote sites where the variation can go up to 10%, in terms of soil deposition the findings are the opposite, with an evident decrease in soil BaP concentrations, particularly for background sites. Finally, a potential health effect of BaP for the local population (lung cancer) was assessed. Although according to the projections the EU threshold for BaP atmospheric incidence (1 ng m-3) will not be reached by 2050, there will be an increase in the life-time risk of lung cancer, particularly in the most populated areas within the simulation domain.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    The Science of The Total Environment
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    Access Routes
    Green
    bronze
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositório Aberto d...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      The Science of The Total Environment
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Luigi De Simio; Sabato Iannaccone;

    Alternative fuels and energy vectors are becoming increasingly important in terms of technical, geopolitical, economic, and environmental aspects. In particular, gaseous fuels and vectors, such as fossil or synthetic natural gas (NG) blended with hydrogen, commonly help provide optimal strategies to reduce global and toxic emissions of internal combustion engines, owing to their adaptability, anti-knock capacity, lower toxicity of pollutants, reduced CO2 emissions, and costeffectiveness. However, diesel engines still represent the reference category among internal combustion engines in terms of maximum thermodynamic efficiency. The possibility offered by dual-fuel (DF) systems to combine the efficiency and performance of diesel engines with the environmental advantages of gaseous fuels has been the subject of extensive investigations. However, the simple replacement of diesel fuel with gaseous fuel does not allow for optimising the engine performance, owing to the high percentage of unburned gaseous fuel, which compromises the potential reduction of CO2; therefore, more complex combustion strategies should be realised. In this study, with the aim of improving the DF combustion process, an experimental investigation was performed to analyse low-temperature combustion (LTC), using NG and two enriched hydrogen-compressed NG blends as primary fuels. The LTC mode was activated by means of a very early advanced pilot injection and carried out in two close steps. The double pilot injection was used to control the energy release rate in the first combustion stage, thereby minimizing the increase of the rate of pressure and allowing the extension of the operation range under LTC. The experimental activity was also focused on analysing the particle emissions, as it is well known that these emissions, together with those of nitrogen oxide, constitute the main pollutants resulting from diesel fuel combustion. The results demonstrated the potential to reduce the unburned fuel, NOx, and particle emissions simultaneously, while maintaining equivalent CO2 emissions to a diesel-only engine. Both the timing and pressure of the pilot injection proved to be critical parameters for optimising the emissions and performance

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    CNR ExploRA
    Article . 2019
    Data sources: CNR ExploRA
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Energy
    Article . 2019 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    19
    citations19
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao CNR ExploRAarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      CNR ExploRA
      Article . 2019
      Data sources: CNR ExploRA
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Energy
      Article . 2019 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Camila Barreneche; Camila Barreneche; Luisa F. Cabeza; M. Elena Navarro; +2 Authors

    Abstract In recent years, the overall energy consumption is increasing significantly and the energy consumption in the building sector represents over 30% of the global ones in developed countries. Thermal energy storage (TES) using phase change materials (PCM), which are materials able to store high amounts of energy as latent heat, is suggested as a possible solution to decrease the energy consumption. The authors of this paper developed materials able to encapsulate/stabilize PCM in addition to isolate an industrial residue from the steel recycling process: electrical arc furnace dust (EAFD). This waste is a hazardous dust, and when it is combined with a polymeric matrix produce dense sheet materials suitable for multilayered constructive systems. In this paper the physical, mechanical, thermal and acoustical characterization of two new materials with EAFD and PCM in a polymeric matrix for constructive system is presented. The results are compared with those obtained for one commercial dense sheet material available in the market, Texsound commercialized by TEXSA (Spain). The new dense sheet materials developed in this paper have similar acoustic properties compared to the results obtained for the commercial material and are competitive with it, even better because the new material incorporates PCM which increases the thermal inertia of final constructive system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy and Buildings
    Article . 2014 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    16
    citations16
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Recolector de Cienci...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy and Buildings
      Article . 2014 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Issam Touhami; Hassane Moutahir; Dorsaf Assoul; Kaouther Bergaoui; +3 Authors

    Abstract The Mediterranean region is one of the most vulnerable regions to climate change. The majority of climate models forecast a rise in temperatures and less rainfall, which have been observed in recent decades. These changes will affect several vegetation properties, especially phenological dynamics and traits, by increasing drought intensity and recurrence. In this climate change context, the present study aims to assess the evolution of vegetation state and its relation with the climate dynamics in the Mediterranean forest region of northeast Tunisia using Land Surface Phenology (LSP) metrics and the vegetation index (NDVI) analysis from 2000 to 2017. To conduct this work, we used precipitation and temperature data from the two closest weather stations and 16-day NDVI composite images from the MODIS satellite source, with 250-m spatial resolution. Three phenological metrics— start of season (SOS), end of season (EOS), and length of season (LOS) — were obtained and compared for different vegetation types. The LSP variation in response to climatic metrics was also analyzed. The results showed that the LSP in our study area changed significantly during the 2000–2017 period, which includes an average 7.8 days delay in the SOS, an average advance in the EOS by 5 days, and LOS shortened by an average 12.8 days. Autumn (Pr_9) and spring (Pr_3 and P3_4) precipitations, as well as maximum temperature (Tx9+10), represent the best climate parameters to explain the changes in LSP. Both the NDVI and SPEI showed a significant high correlation (p

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Acta Oecologica
    Article . 2022 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    23
    citations23
    popularityTop 10%
    influenceTop 10%
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Repositorio Instituc...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Acta Oecologica
      Article . 2022 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Wim Timmermans; J. Slijkhuis; F. van den Goorbergh; Elizelle Juaneé Cilliers; +1 Authors

    Stories play an exceptionally important role in how people assign value to a place. Taken together, all those stories essentially give a place an identity. The aim of placemaking is to ensure that the people using a place can appreciate that place. Placemaking approaches are focussed on strategic interventions in a place and aimed at changing the meaning and value of that place for local people, thus creating a qualitative place for enhanced storytelling. Using greenery is a common approach in place-making. Urban greenery has gone through a process of emancipation in the past 15 years. This emancipation has led to awareness that urban greenery is about more than just ecology and biodiversity, but also has social and economic consequences for a city’s fortunes. It is clear that green spaces do not stand alone: they are part of a complex urban system, and the use of green spaces in this complex system has immediate repercussions for how the city functions. With the changing role of green spaces within cities, the need to manage these spaces is emphasized. In this sense, the place-making approach, along with the storytelling approach could provide valuable insight on the planning and management of green spaces within the urban environment, with the aim to enhance quality of life by means of the social connection between people, the users of the space, and the qualitative place provided. This research illustrated that green space managers would need more social and organizational skills to manage modern urban green spaces in an attempt to create qualitative, usable spaces for citizens, spaces that are built upon stories and spaces that would further enable future stories of citizen life. The Story Behind the Place: Creating Urban Spaces That Enhance Quality of Life (PDF Download Available). Available from: https://www.researchgate.net/publication/271918395_The_Story_Behind_the_Place_Creating_Urban_Spaces_That_Enhance_Quality_of_Life [accessed Dec 21, 2015].

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Applied Research in Quality of Life
    Article . 2014 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    26
    citations26
    popularityTop 10%
    influenceTop 10%
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Applied Research in ...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Applied Research in Quality of Life
      Article . 2014 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.