Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Subject
arrow_drop_down
includes
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1,407 Research products (1 rule applied)
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • GB

  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abad, Ferran; Grau, Marc; Pérez, Marcos; Wansdronk, Renee; +3 Authors

    Sensible Heat Storage is the most common method of thermal energy storage, particularly in the form of hot water tanks. Essentially, sensible heat storage systems work by charging them with heat from a higher temperature source to raise the temperature of the thermal store, and by extracting heat to discharge them. On a larger scale, these sensible heat stores should be designed to store heat long term over seasons, which allow the thermal storage systems to be charged using solar thermal systems to then supply heat over colder periods and can be applied in an array of buildings, including individual dwellings and larger buildings. These seasonal storage systems consist of: Tank Thermal Energy Storage (TTES), Pit Thermal Energy Storage (PTES), Borehole Thermal Energy Storage (BTES) and Aquifer Thermal Energy Storage (ATES). The aim of this report is to provide useful information about the different construction techniques for the mentioned systems in addition to FP7 Einstein Project, where a big information research has already been done, analysing the main characteristics that interfere in the various proceedings. In addition, a general study for the three different CHESS-SETUP pilots is done regarding the availability and constraints of every case to introduce the different technologies. Finally, in order to ensure the correct operation of the installations, some guidance of the different types of maintenance is done as well as maintenance plans for the different elements of the system.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2017
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2017
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2017
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2017
    License: CC BY
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility40
    visibilityviews40
    downloaddownloads120
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2017
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2017
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2017
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2017
      License: CC BY
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid bw McTigue, Joshua;
    McTigue, Joshua
    ORCID
    Derived by OpenAIRE algorithms or harvested from 3rd party repositories

    McTigue, Joshua in OpenAIRE

    The focus of this project is the storage of thermal energy in packed beds for bulk electricity storage applications. Packed beds are composed of pebbles through which a heat transfer fluid passes, and a thermodynamic model of the heat transfer processes within the store is described. The packed beds are investigated using second law analysis which reveals trade-offs between several heat transfer processes and the importance of various design parameters. Parametric studies of the reservoir behaviour informs the design process and leads to a set of design guidelines. Two innovative design features are proposed and investigated. These features are segmented packed beds and radial-flow packed beds respectively. Thermal reservoirs are an integral component in a storage system known as Pumped Thermal Energy Storage (PTES). To charge, PTES uses a heat pump to create a difference in internal energy between two thermal stores; one hot and one cold. The cycle reverses during discharge with PTES operating as a heat engine. The heat pumps/engines require compression and expansion devices, for which simple models are described and are integrated with the packed bed models. The PTES system behaviour is investigated with parametric studies, and alternative design configurations are explored. A multi-objective genetic algorithm is used to undertake thermo-economic optimisations of packed-bed thermal reservoirs and PTES systems. The algorithm generates a set of optimal designs that illustrate the trade-off between capital cost and round-trip efficiency. Segmentation is found to be particularly beneficial in cold stores, and can add up to 1% to the round-trip efficiency of a PTES system. On the basis of the assumptions made, PTES can achieve efficiencies and energy densities comparable with other bulk electricity storage systems. However, the round-trip efficiency is very sensitive to the efficiency of the compression–expansion system. For designs that utilised bespoke reciprocating compressors and expanders, PTES might be expected to achieve electricity-to-electricity efficiencies of 64%. However, using compression and expansion efficiencies typical of off-theshelf devices the round-trip efficiency is around 45%.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Apollo
    Doctoral thesis . 2016
    Data sources: Apollo
    addClaim
    10
    citations10
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Apolloarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Apollo
      Doctoral thesis . 2016
      Data sources: Apollo
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Hodgins, Neil;

    This thesis describes research into electrical power takeoff mechanisms for Oscillating Water Column (OWC) wave energy devices. The OWC application is studied and possible alternatives to the existing Induction Generator (IG) are identified. The Permanent Magnet Generator (PMG) is found to be the most promising. Results showed that the IG could almost match the output of the PMG if it could be operated significantly above its rated capacity. This improvement would require only limited changes to the overall OWC system. The ability to operate overloaded is determined by the losses and cooling of the IG. The losses in a suitable IG were measured in tests at Nottingham University. Steady state measurements were made of the cooling ability of the OWC airflow at the LIMPET wave power plant operated by Wavegen (the sponsor company) on Islay. Thermal modelling combining the loss and cooling measurements allowed the maximum capacity of the induction generator in an OWC to be found. A simplified model that accurately represents this system is proposed for use in system design and generator control.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh Research A...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh Research A...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Abad, Ferran; Lloveras, Francesc; Pérez, Marcos; Abadal, Jordi; +3 Authors

    Description of the different options and materials to store heat. The report will include practical data synthesized in tables about prices, thermal properties, environmental issues, etc. The report will be useful to determinate the most suitable option under different circumstances. The objective of this deliverable is to gather and summarize, for each technology, all the information about the technical properties, environmental impacts, prices, Life Cycle Costing (LCC), market level and other important parameters. The collected information is to be used in the decision of the more adapted technology for different possible thermal project requirements and locations.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2016
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2016
    License: CC BY
    Data sources: Datacite
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Other literature type . 2016
    License: CC BY
    Data sources: ZENODO
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    ZENODO
    Project deliverable . 2016
    License: CC BY
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    visibility35
    visibilityviews35
    downloaddownloads79
    Powered by Usage counts
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ ZENODOarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2016
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2016
      License: CC BY
      Data sources: Datacite
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Other literature type . 2016
      License: CC BY
      Data sources: ZENODO
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      ZENODO
      Project deliverable . 2016
      License: CC BY
      Data sources: Datacite
      addClaim
  • Authors: Renaldi, Renaldi;

    One of the main challenges in the implementation of renewable energy is the mismatch between supply and demand. Energy storage has been identified as one of the solutions to the mismatch problem. Among various storage technologies, thermal energy storage (TES) is foreseen to have a significant role to achieve a low carbon energy systems because of the large share of thermal energy demand and its relatively low cost. However, integrating TES into energy systems requires careful design and implementation since otherwise potential financial and environmental savings may not be achieved. Computational-based design tools are ubiquitous in the design process of modern energy systems and can be broadly categorised into two methodologies: optimisation and simulation. In both cases, designing an energy system with storage technology is significantly more complicated than those without, mainly due to the coupling of variables between time steps. This thesis is concerned with two facets of the application of TES in energy systems. First, the role of TES in improving the performance of renewable-based domestic heating systems. Second, the implementation of optimisation and simulation tools in the design of energy systems with integrated TES. They are addressed by examining two case studies that illustrate the spatial and temporal variance of energy systems: a single dwelling heat pump system with a hot water tank, and a solar district heating system with a borehole thermal energy storage. In the single dwelling case study, the technical and financial benefits of TES installation in a heat pump system are illustrated by the optimisation model. A simulation model which utilises the optimisation results is developed to assess the accuracy of the optimisation results and the potential interaction between the two methodologies. The solar district heating case study is utilised to highlight the potential of a time decomposition technique, the multiple time grids method, in reducing the computational time in the operational ...

    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Renaldi, Renaldi; Friedrich, Daniel;

    See "EGY_SupplementaryInformation_RRenaldi.pdf".

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh DataSharearrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Edinburgh DataShare
    Dataset . 2017
    License: CC BY
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Edinburgh DataShare
    Dataset . 2016
    License: CC BY
    Edinburgh DataShare
    Dataset . 2017
    Data sources: Datacite
    Edinburgh DataShare
    Dataset . 2016
    Data sources: Datacite
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Edinburgh DataSharearrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Edinburgh DataShare
      Dataset . 2017
      License: CC BY
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Edinburgh DataShare
      Dataset . 2016
      License: CC BY
      Edinburgh DataShare
      Dataset . 2017
      Data sources: Datacite
      Edinburgh DataShare
      Dataset . 2016
      Data sources: Datacite
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Sameh Alsaqoor;
    Sameh Alsaqoor
    ORCID
    Harvested from ORCID Public Data File

    Sameh Alsaqoor in OpenAIRE
    orcid Ahmad Alqatamin;
    Ahmad Alqatamin
    ORCID
    Harvested from ORCID Public Data File

    Ahmad Alqatamin in OpenAIRE
    orcid Ali Alahmer;
    Ali Alahmer
    ORCID
    Harvested from ORCID Public Data File

    Ali Alahmer in OpenAIRE
    Zhang Nan; +2 Authors

    This study examines the impact of incorporating phase change material (PCM) in photovoltaic thermal (PVT) systems on their electrical and thermal performance. Although PVT systems have shown effectiveness in converting solar energy into both electricity and heat, there is a necessity for studies to investigate how integrating PCMs can further enhance performance. The study also aims to explore the effect of solar irradiation and coolant mass flow rate on the electrical and thermal output of both PVT and PVT-PCM systems. A graphical user interface was developed within the MATLAB Simulink under the weather conditions of Amman, Jordan. The results show that the incorporation of PCM in PVT systems significantly reduces solar cell temperature and increases electrical efficiency. The highest electrical efficiency of a PVT system with PCM was found to be 14%, compared to 13.75% in a PVT system without PCM. Furthermore, the maximum achievable electrical power in a PVT system with PCM was 21 kW, while in the PVT system without PCM it was 18 kW. The study also found that increasing the coolant mass flow rate in a PVT system with PCM further reduced PV cell temperature and increased electrical efficiency, while the electrical efficiency of both the PVT and PVT-PCM systems decreases as solar incident radiation flux increases, resulting in a significant rise in cell temperature. At an increased solar radiation level from 500 W/m2 to 1000 W/m2, the electrical efficiency of the PVT configuration decreases from 13.75% to 11.1%, while the electrical efficiency of the PVT-PCM configuration falls from 14% to 12%. The findings of this study indicate that the use of PCM in PVT systems can lead to significant improvements in energy production and cooling processes. The results provide valuable information for designing and optimizing PVT-PCM systems.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brunel University Lo...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    International Journal of Thermofluids
    Article . 2023 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    Access Routes
    Green
    gold
    45
    citations45
    popularityTop 10%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Brunel University Lo...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      International Journal of Thermofluids
      Article . 2023 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Ochedi, E. T.; Taki, A. H.; Painter, B.;

    Energy consumption in buildings accounts for approximately 45% of the world’s total energy consumption, leading to a significant proportion of greenhouse gas emissions. This has led to an increasing effort towards reducing energy consumption. An example of such efforts is energy efficient buildings using passive design options. This paper assesses a low cost energy efficient strategy approach to achieving energy efficiency in buildings using passive design options in Nigeria. A critical review of various passive design options and their roles in reducing energy consumption in buildings will be conducted. This approach is necessary due to energy poverty, high energy cost, erratic power supply, over dependence on electrical generators for indoor thermal comfort and other factors. Research has shown that this method can reduce energy consumption in buildings by 40%-60% in comparison to conventional buildings. This paper shows that there is an urgent need for professionals in the building industry as well as other stakeholders to advocate passive design options in Nigeria as a viable step towards achieving high energy performance buildings. This paper concludes by emphasizing the need for Nigeria to start with a low cost energy approach to achieve energy efficient buildings in the short term while aiming for ultra-low energy buildings in the long term.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ De Montfort Universi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ De Montfort Universi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • Authors: Alzuwaid, Falah;

    This thesis was submitted for the award of Doctor of Philosophy and was awarded by Brunel University London ; Each day the world's attention increases on how to minimize the energy consumption in order to reduce energy cost and carbon emissions as well as conserve the energy resources we have. Open-type vertical refrigerated display cabinets take the largest refrigeration load in a supermarket refrigeration system. One technique that has been used to improve the efficiency of such refrigeration equipment is to employ thermal energy storage inside. This approach will lead to improve the overall efficiency and also reduce the required cooling of the equipment due to the reduction of food temperature variation. This research project details the effect of phase change materials (PCMs) integration on the thermal performance of an open type multi-deck display cabinet in terms of energy savings, food product temperature improvements, cabinet air temperature and comparisons with conventional units. This work is divided into two parts of experiment and theoretical analysis. The experimental part included a series of tests that were carried out to determine that effect of incorporation of PCM through two types of display cabinets depending on their availability with nearly same design. Two integration procedures of PCMHEs with different PCM types were employed for each cabinet depending on its design. The test results showed that the energy saving of the cabinets with PCM significantly improved at climate class 3. In terms of product and cabinet air temperatures, the results also showed considerable benefit from reducing the maximum value of air temperature. Moreover, the defrost period was found to be the most affected parameter for the Norpe cabinet with PCM. It was approximately 5 min longer than the basic cabinet, which represented 70% of the original defrost time resulting in energy savings. It is worth noting that savings are a function of the ambient temperature, relative humidity, operational settings of the ...

    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: Wright, A. J.; Pascarel, Elise;

    The development of renewable energy is essential, however many renewable resources are intermittent. Therefore, developing storage techniques has become a major issue of the energy field. In particular, thermal energy storage can help to manage resources, reducing energy consumption and improving passive buildings. Heavy masonry materials (brick, stone, concrete) have been used for many centuries, and use of phase change materials have been researched recently for this role. But water, which has one of the highest sensible heat capacities known and is free, appears so far to have been almost neglected. This paper presents an experimental laboratory study into the use of water as a sensible thermal storage medium, and a comparison with sand, which has similar properties to masonry. The thermal responses of ‘walls’ containing water or sand have been measured for various dynamic thermal inputs. The experiments were done with an insulated box of length 125 cm, width 60 cm and depth 60 cm, with separate insulated lid. Various ‘walls’ were installed, separating the box into two equal parts. For the first set of experiments, the dividing wall was a box made of 4mm acrylic sheet, internal width 40mm. For the second set of experiments, the wall was made of 6 stackable 5 litre plastic water containers. A heat mat was placed in one half of the box, connected to a DC power supply. Experiments were done with the box top entirely insulated, or with just the heated side insulated, the other side being open to the air, or with the heated side covered but not insulated. The response of the system to various step and cyclic heat inputs, corresponding to heat gains in a room, was investigated. Twelve thermocouples were fixed at different points in the rig, in order to measure the evolution of temperature over time. A heat flux sensor was used to measure heat flow across the wall surfaces. These data were collected with the software LabVIEW and analysed using a spreadsheet. Significant differences in thermal response were observed between water and sand. It was found that the water can store more heat than sand, taking longer to warm up and release heat. Due to convective processes, the heat also transferred more quickly into the water, and across the acrylic box when filled with water compared to sand. These results show that water acts as an effective sensible heat storage medium, and unlike phase change materials will operate across a wide temperature range. Water thermal storage could be applied in buildings, or temporary structures, to provide effective thermal mass at low cost to provide improved comfort and reduced energy consumption.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ De Montfort Universi...arrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    0
    citations0
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ De Montfort Universi...arrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim