- home
- Advanced Search
- Energy Research
- mechanical engineering
- 13. Climate action
- 12. Responsible consumption
- GB
- Energy Research
- mechanical engineering
- 13. Climate action
- 12. Responsible consumption
- GB
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Masilu Marupi; Munira Batool; Morteza Alizadeh; Noor Zanib;doi: 10.3390/en16020689
The global climate protection policy aimed at achieving a zero greenhouse gas emissions target has led to the fast incorporation of large-scale photovoltaics into the power network. The conventional AC grid was not modeled to be incorporated with large-scale non-synchronous inverter-based energy resources (IBR). Incorporating inertia-free IBR into the grid leads to technical issues such as the degradation of system strength and inertia, therefore affecting the safety and reliability of the electrical power system. This research introduced a new solution to incorporate a flywheel in the rotor of a synchronous machine to improve the dynamic inertia control during a system disruption and to maintain the constancy of the system. The objective of this work is to enhance large-scale photovoltaic systems in such a way that they can avoid failures during a fault. A model of transient constancy with two synchronous generators and a LSPV is established in PowerWorld modeling software. A line-to-ground and three-phase fault are simulated in a system with up to 50% IBR penetration. The outcomes showed that the power network was able to ride through faults (RTFs) and that the stability of frequency and voltage are enhanced because of a flywheel that improved grid inertia and strength.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Elsevier BV Publicly fundedFunded by:SFI | Marine Renewable Energy I...SFI| Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy ResearchAuthors: Ciaran R. Kennedy; Vesna Jaksic; Sean B. Leen; Conchúr M.Ó. Brádaigh;handle: 10379/15593
Tidal turbine blades are subject to harsh loading and environmental conditions, including large thrust and torsional loadings, relative to wind turbine blades, due to the high density of seawater, among other factors. The complex combination of these loadings, as well as water ingress and associated composite laminate saturation, have significant implications for blade design, affecting overall device design, stability, scalability, energy production and cost-effectiveness. This study investigates the effect of seawater ingress on composite material properties, and the associated design and life expectancy of tidal turbine blades in operating conditions. The fatigue properties of dry and water-saturated glass fibre reinforced laminates are experimentally evaluated and incorporated into tidal blade design. The fatigue lives of pitch- and stall-regulated tidal turbine blades are found to be altered by seawater immersion. Water saturation is shown to reduce blade life about 3 years for stall-regulated blades and by about 1-2 years for pitch-regulated blades. The effect of water ingress can be compensated by increased laminate thickness. The tidal turbine blade design methodology presented here can be used for evaluation of blade life expectancy and tidal device energy production. (C) 2018 Elsevier Ltd. All rights reserved.
National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Kochkin, B; Malkovsky, V; Yudintsev, S; Petrov, V; Ojovan, M;handle: 10044/1/91615
Abstract An overview is given of status of projects for the disposal of radioactive waste in very deep boreholes in crystalline rocks which demonstrates all main pros and cons of this technology. New opportunities offered by drilling long horizontal drillholes in ductile formations can provide the basis for projects that have the potential to overcome many of the disadvantages of deep boreholes. The concept of disposal in horizontal drillholes brings together the technologies of borehole and mined repositories using the advantages of both, and therefore deserves an expert discussion at international level.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 11 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Oliveira, Pablo Resende; Santos, Júlio Cesar dos; Filho, Sergio Luiz Moni Ribeiro; Ferreira, Bruna Torres; +2 AuthorsOliveira, Pablo Resende; Santos, Júlio Cesar dos; Filho, Sergio Luiz Moni Ribeiro; Ferreira, Bruna Torres; Panzera, Tulio Hallak; Scarpa, Fabrizio L;This is the first attempt to combine disposed bottle caps and natural fibres into sandwich panels. A full factorial design is performed to identify the effects of the skin type (aluminium or coir fibre reinforced laminates) and bottle cap core packing (cubic and orthotropic) on the mechanical properties of the proposed panels. The coir fibre composite skin provides maximum core shear strength, 29 % higher than the aluminium-based panels, in cubic packing, while the flexural modulus is reduced by 45 %. An interlocking effect between the skin and the core is evidenced when coir fibre composites are used. In addition, the cubic cell packing increases the specific mechanical properties, even though with a higher density. The results highlight a promising association of green components and plastic bottle caps for secondary structural applications.
Fibers and Polymers arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12221-020-9818-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fibers and Polymers arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12221-020-9818-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Donaldson, Ross Martin; Lord, Richard;The Government run UK Renewable Heat Incentive (RHI) scheme allows cash back payments to be made to producers of renewable heat. As a world first for renewable heat, it aims to tackle head on the issues surrounding emissions, energy use, and climate change targets. However, whilst the scheme goes a long way towards meeting these climate change targets, issues have been identified that may compromise its effectiveness. This paper aims to examine the progress of the RHI since its launch in November 2011, and avenues towards a more effective deployment
CORE arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 108 Powered bymore_vert CORE arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1982Publisher:Elsevier BV Authors: Alan T. Kenworthy;Abstract The relationship between fuel consumption in a multi-storey block of flats and climatic exposure is investigated. Fuel consumption anomalies between identical flats are attributed to vagaries in the airflow around the building and highlight the need for improved standards of thermal insulation and/or differential thermal insulation, dependent upon flat location. Climate and building design and the subject of building Climatology in architectural education are discussed briefly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0378-7788(82)90043-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0378-7788(82)90043-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1980Publisher:American Society of Civil Engineers (ASCE) Douglas L. Inman; James A. Zampol; Thomas E. White; Daniel M. Hanes; B. Walton Waldorf; Kim A. Kastens;doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
Mass transport phenomenon was first recognized by Stokes in 1847 using a Lagrangian description. Later, a basic theory for the mass transport in water waves in viscous fluid and of finite depth was derived by Longuet-Higgins in 1953. Theoretical solutions of mass transport in progressive waves of permanent type are subjected to the definitions of wave celerity in deriving the various finite amplitude wave theories. As it has been generally acknowledged that the Stokes wave theory can not yield a correct prediction of mass transport in the shallow depths, some new theories have been developed. Recently the authors(1974 § 1977) have derived a new finite amplitude wave theory in shallow water for quasi- Stokes and cnoidal waves by the so-called reductive perturbation method, in which the mass transport is formulated both in Lagrangian and Eulerian descriptions. On the experimental verification, Russell and 0sorio(1957) investigated and compared Longuet-Higgins' solution with experimental data of Lagrangian mass transport velocity obtained in a normal closed wave tank of finite length. Since then, many investigations, and nearly all of them, have employed the finite length of wave tank in carrying out their experiments. However, no experiment has yet been attempted at verifying the Stokes drift in progressive waves of permanent type in a wave tank of infinite length. It is not realistic nor economical in constructing such an infinitely long flume to investigate experimentally the mass transport velocity in progressive waves. Instead of using such an ideal wave tank, a new one incorporated with natural water re-circulation was equipped to carry out experiments by the authors(1978). It was confirmed from these experiments that mass transport in progressive waves of permanent type exists in the Same direction of wave propagation throughout the depth, and agrees with both the Stokes drift and the authors' new formulations, within the test range of experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu451 citations 451 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:UKRI | Automation harvesting of ...UKRI| Automation harvesting of whole-head iceberg lettuce.Authors: Vinicius Braga Ferreira da Costa; Gabriel Nasser Doyle de Doile; Gustavo Troiano; Bruno Henriques Dias; +3 AuthorsVinicius Braga Ferreira da Costa; Gabriel Nasser Doyle de Doile; Gustavo Troiano; Bruno Henriques Dias; Benedito Donizeti Bonatto; Tiago Soares; Walmir de Freitas Filho;doi: 10.3390/en15207784
Distributed energy resources have been increasingly integrated into electrical grids. Consequently, electricity markets are expected to undergo changes and become more complex. However, while there are many scientific publications on the topic, a broader discussion is still necessary. Therefore, a systematic literature review on electricity markets in the context of distributed energy resources integration was conducted in this paper to present in-depth discussions on the topic, along with shedding light on current perspectives, the most relevant sources, authors, papers, countries, metrics, and indexes. The software R and its open-source tool Bibliometrix were used to perform the systematic literature review based on the widely recognized databases Web of Science and Scopus, which led to a total of 1685 articles after removing duplicates. The results demonstrate that demand response, renewable energy, uncertainty, optimization, and smart grid are the most-used keywords. By assessing highly impactful articles on the theme, emphasis on energy storage systems becomes clear compared to distributed generation and electric vehicles. However, electric vehicles draw attention in terms of citations. Furthermore, multi-level stochastic programming is the most-applied methodology among highly impactful articles. Due to the relevance of the demand response keyword, this paper also conducts a specific review on the topic aligned with electricity markets and distributed energy resources (296 articles). The results demonstrate that virtually all high-impact publications on the topic address day-ahead or real-time pricing. Based on the literature found, this paper presents a discussion on the main challenges and future perspectives related to the field. The complexity of electrical power systems and electricity markets is increasing substantially according to what this study found. Distributed generation development is already advanced, while energy storage systems and electric vehicles are limited in many countries. Peer-to-peer electricity trading and virtual power plant are newer concepts that are currently incipient, and DR programs showcase an intermediate stage of evolution. A particular lack of research on social issues is verified, and also a lack of all-encompassing studies that address multiple interconnected topics, which should be better addressed in the future. The in-depth assessment carried out in this paper is expected to be of high value to researchers and policy-makers and facilitate future research on the topic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Audrius Bagdanavicius;doi: 10.3390/en15155528
Rising climate change issues are prompting engineers and scientists to focus more on improving renewable energy conversion systems [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Ruichen Wang; Paul Allen; Yang Song; Zhiwei Wang;doi: 10.3390/su14052542
Sustainable technologies in transport systems have attracted significant research efforts over the last two decades. One area of interest is self-powered devices, which reduce system integration complexity and cost with an undoubtedly great potential for improving adaptability and developing sustainability in railway transport systems. One potential solution is a regenerative suspension system, which enables the suspension movements and dissipated energy to be converted into useful electricity. This paper explores the application of hydraulic–electromagnetic regenerative dampers (HERDs) under realistic railway operating conditions for a high-speed train (HST). A vehicle-track-coupled dynamics model is employed to evaluate the regenerative power potential of an HST suspension over a range of operating conditions. The work considers typical route curvature and track irregularity of a high-speed line and speed profile. It was found that power could be regenerated at a level of up to 5–30 W and 5–45 W per generation unit when fitted to the primary and secondary dampers, respectively. Such power-regeneration levels were adequate to supply a variety of low-power-consumption onboard components such as warning lights and wireless sensors. Further analysis of the carbody loading level also was carried out. The analysis revealed that, in the case of a high-speed journey, poor track geometry, low curvature, and reduced carbody weight increased the quantity of regenerative energy harvested by the HERDs. It was concluded that a suitable HERD design could be achieved that could facilitate the development of a smart railway damper that includes both self-sensing and power-generation functions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Masilu Marupi; Munira Batool; Morteza Alizadeh; Noor Zanib;doi: 10.3390/en16020689
The global climate protection policy aimed at achieving a zero greenhouse gas emissions target has led to the fast incorporation of large-scale photovoltaics into the power network. The conventional AC grid was not modeled to be incorporated with large-scale non-synchronous inverter-based energy resources (IBR). Incorporating inertia-free IBR into the grid leads to technical issues such as the degradation of system strength and inertia, therefore affecting the safety and reliability of the electrical power system. This research introduced a new solution to incorporate a flywheel in the rotor of a synchronous machine to improve the dynamic inertia control during a system disruption and to maintain the constancy of the system. The objective of this work is to enhance large-scale photovoltaic systems in such a way that they can avoid failures during a fault. A model of transient constancy with two synchronous generators and a LSPV is established in PowerWorld modeling software. A line-to-ground and three-phase fault are simulated in a system with up to 50% IBR penetration. The outcomes showed that the power network was able to ride through faults (RTFs) and that the stability of frequency and voltage are enhanced because of a flywheel that improved grid inertia and strength.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 2 citations 2 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16020689&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 IrelandPublisher:Elsevier BV Publicly fundedFunded by:SFI | Marine Renewable Energy I...SFI| Marine Renewable Energy Ireland (MaREI) - The SFI Centre for Marine Renewable Energy ResearchAuthors: Ciaran R. Kennedy; Vesna Jaksic; Sean B. Leen; Conchúr M.Ó. Brádaigh;handle: 10379/15593
Tidal turbine blades are subject to harsh loading and environmental conditions, including large thrust and torsional loadings, relative to wind turbine blades, due to the high density of seawater, among other factors. The complex combination of these loadings, as well as water ingress and associated composite laminate saturation, have significant implications for blade design, affecting overall device design, stability, scalability, energy production and cost-effectiveness. This study investigates the effect of seawater ingress on composite material properties, and the associated design and life expectancy of tidal turbine blades in operating conditions. The fatigue properties of dry and water-saturated glass fibre reinforced laminates are experimentally evaluated and incorporated into tidal blade design. The fatigue lives of pitch- and stall-regulated tidal turbine blades are found to be altered by seawater immersion. Water saturation is shown to reduce blade life about 3 years for stall-regulated blades and by about 1-2 years for pitch-regulated blades. The effect of water ingress can be compensated by increased laminate thickness. The tidal turbine blade design methodology presented here can be used for evaluation of blade life expectancy and tidal device energy production. (C) 2018 Elsevier Ltd. All rights reserved.
National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert National University ... arrow_drop_down National University of Ireland (NUI), Galway: ARANArticle . 2019License: CC BY NC NDFull-Text: http://hdl.handle.net/10379/15593Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.renene.2018.01.085&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Elsevier BV Kochkin, B; Malkovsky, V; Yudintsev, S; Petrov, V; Ojovan, M;handle: 10044/1/91615
Abstract An overview is given of status of projects for the disposal of radioactive waste in very deep boreholes in crystalline rocks which demonstrates all main pros and cons of this technology. New opportunities offered by drilling long horizontal drillholes in ductile formations can provide the basis for projects that have the potential to overcome many of the disadvantages of deep boreholes. The concept of disposal in horizontal drillholes brings together the technologies of borehole and mined repositories using the advantages of both, and therefore deserves an expert discussion at international level.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 31visibility views 31 download downloads 11 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/91615Data sources: Bielefeld Academic Search Engine (BASE)Progress in Nuclear EnergyArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.pnucene.2021.103867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:Springer Science and Business Media LLC Authors: Oliveira, Pablo Resende; Santos, Júlio Cesar dos; Filho, Sergio Luiz Moni Ribeiro; Ferreira, Bruna Torres; +2 AuthorsOliveira, Pablo Resende; Santos, Júlio Cesar dos; Filho, Sergio Luiz Moni Ribeiro; Ferreira, Bruna Torres; Panzera, Tulio Hallak; Scarpa, Fabrizio L;This is the first attempt to combine disposed bottle caps and natural fibres into sandwich panels. A full factorial design is performed to identify the effects of the skin type (aluminium or coir fibre reinforced laminates) and bottle cap core packing (cubic and orthotropic) on the mechanical properties of the proposed panels. The coir fibre composite skin provides maximum core shear strength, 29 % higher than the aluminium-based panels, in cubic packing, while the flexural modulus is reduced by 45 %. An interlocking effect between the skin and the core is evidenced when coir fibre composites are used. In addition, the cubic cell packing increases the specific mechanical properties, even though with a higher density. The results highlight a promising association of green components and plastic bottle caps for secondary structural applications.
Fibers and Polymers arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12221-020-9818-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Fibers and Polymers arrow_drop_down University of Bristol: Bristol ResearchArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s12221-020-9818-7&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 United KingdomPublisher:Elsevier BV Authors: Donaldson, Ross Martin; Lord, Richard;The Government run UK Renewable Heat Incentive (RHI) scheme allows cash back payments to be made to producers of renewable heat. As a world first for renewable heat, it aims to tackle head on the issues surrounding emissions, energy use, and climate change targets. However, whilst the scheme goes a long way towards meeting these climate change targets, issues have been identified that may compromise its effectiveness. This paper aims to examine the progress of the RHI since its launch in November 2011, and avenues towards a more effective deployment
CORE arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Average influence Average impulse Average Powered by BIP!
visibility 5visibility views 5 download downloads 108 Powered bymore_vert CORE arrow_drop_down Sustainable Energy Technologies and AssessmentsArticle . 2014 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.seta.2014.03.001&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 1982Publisher:Elsevier BV Authors: Alan T. Kenworthy;Abstract The relationship between fuel consumption in a multi-storey block of flats and climatic exposure is investigated. Fuel consumption anomalies between identical flats are attributed to vagaries in the airflow around the building and highlight the need for improved standards of thermal insulation and/or differential thermal insulation, dependent upon flat location. Climate and building design and the subject of building Climatology in architectural education are discussed briefly.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0378-7788(82)90043-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/0378-7788(82)90043-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article 1980Publisher:American Society of Civil Engineers (ASCE) Douglas L. Inman; James A. Zampol; Thomas E. White; Daniel M. Hanes; B. Walton Waldorf; Kim A. Kastens;doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
doi: 10.1061/9780872622647.127 , 10.9753/icce.v17.3 , 10.1061/9780872622647.037 , 10.1061/9780872622647.001 , 10.1061/9780872622647.046 , 10.1061/9780872622647.186 , 10.1061/9780872622647.017 , 10.9753/icce.v17.43 , 10.9753/icce.v17.93 , 10.1061/9780872622647.144 , 10.9753/icce.v17.104 , 10.9753/icce.v17.72 , 10.1061/9780872622647.042 , 10.9753/icce.v17.183 , 10.1061/9780872622647.061 , 10.1061/9780872622647.063 , 10.9753/icce.v17.36 , 10.1061/9780872622647.084 , 10.9753/icce.v17.182 , 10.9753/icce.v17.116 , 10.1061/9780872622647.071 , 10.9753/icce.v17.11 , 10.1061/9780872622647.117 , 10.9753/icce.v17.162 , 10.1061/9780872622647.095 , 10.9753/icce.v17.49 , 10.9753/icce.v17.15 , 10.9753/icce.v17.81 , 10.9753/icce.v17.141 , 10.9753/icce.v17.89 , 10.9753/icce.v17.91 , 10.1061/9780872622647.052 , 10.1061/9780872622647.094 , 10.1061/9780872622647.173 , 10.9753/icce.v17.71 , 10.1061/9780872622647.067 , 10.9753/icce.v17.59 , 10.1061/9780872622647.177 , 10.9753/icce.v17.124 , 10.1061/9780872622647.087 , 10.1061/9780872622647.009 , 10.9753/icce.v17.109 , 10.9753/icce.v17.102 , 10.9753/icce.v17.151 , 10.1061/9780872622647.155 , 10.1061/9780872622647.016 , 10.1061/9780872622647.034 , 10.9753/icce.v17.90 , 10.9753/icce.v17.80 , 10.1061/9780872622647.030 , 10.1061/9780872622647.010 , 10.9753/icce.v17.142 , 10.9753/icce.v17.23 , 10.9753/icce.v17.30 , 10.1061/9780872622647.049 , 10.1061/9780872622647.014 , 10.9753/icce.v17.56 , 10.1061/9780872622647.064 , 10.1061/9780872622647.090 , 10.1061/9780872622647.099 , 10.9753/icce.v17.118 , 10.9753/icce.v17.77 , 10.9753/icce.v17.32 , 10.1061/9780872622647.053 , 10.1061/9780872622647.114 , 10.9753/icce.v17.28 , 10.9753/icce.v17.14 , 10.1061/9780872622647.122 , 10.9753/icce.v17.101 , 10.1061/9780872622647.169 , 10.1061/9780872622647.024 , 10.1061/9780872622647.110 , 10.9753/icce.v17.76 , 10.1061/9780872622647.097 , 10.9753/icce.v17.7 , 10.9753/icce.v17.114 , 10.9753/icce.v17.137 , 10.1061/9780872622647.101 , 10.1061/9780872622647.092 , 10.1061/9780872622647.107 , 10.1061/9780872622647.108 , 10.9753/icce.v17.136 , 10.1061/9780872622647.057 , 10.9753/icce.v17.13 , 10.1061/9780872622647.005 , 10.1061/9780872622647.105 , 10.1061/9780872622647.133 , 10.9753/icce.v17.133 , 10.1061/9780872622647.011 , 10.9753/icce.v17.149 , 10.9753/icce.v17.144 , 10.9753/icce.v17.70 , 10.9753/icce.v17.159 , 10.9753/icce.v17.29 , 10.9753/icce.v17.126 , 10.9753/icce.v17.19 , 10.1061/9780872622647.163 , 10.9753/icce.v17.10 , 10.9753/icce.v17.97 , 10.1061/9780872622647.172 , 10.1061/9780872622647.083 , 10.1061/9780872622647.115 , 10.1061/9780872622647.026 , 10.1061/9780872622647.074 , 10.9753/icce.v17.25 , 10.9753/icce.v17.86 , 10.9753/icce.v17.112 , 10.9753/icce.v17.180 , 10.9753/icce.v17.129 , 10.1061/9780872622647.096 , 10.9753/icce.v17.154 , 10.1061/9780872622647.156 , 10.1061/9780872622647.044 , 10.1061/9780872622647.066 , 10.9753/icce.v17.165 , 10.1061/9780872622647.154 , 10.1061/9780872622647.054 , 10.1061/9780872622647.069 , 10.9753/icce.v17.21 , 10.9753/icce.v17.41 , 10.9753/icce.v17.39 , 10.1061/9780872622647.138 , 10.1061/9780872622647.153 , 10.9753/icce.v17.65 , 10.9753/icce.v17.45 , 10.9753/icce.v17.179 , 10.9753/icce.v17.74 , 10.1017/s0022112081002449 , 10.9753/icce.v17.31 , 10.9753/icce.v17.105 , 10.9753/icce.v17.35 , 10.9753/icce.v17.42 , 10.9753/icce.v17.95 , 10.9753/icce.v17.69 , 10.9753/icce.v17.140 , 10.9753/icce.v17.132 , 10.9753/icce.v17.18 , 10.9753/icce.v17.63 , 10.9753/icce.v17.170 , 10.9753/icce.v17.66 , 10.9753/icce.v17.83 , 10.9753/icce.v17.1 , 10.9753/icce.v17.94 , 10.9753/icce.v17.5 , 10.9753/icce.v17.130 , 10.9753/icce.v17.131 , 10.9753/icce.v17.85 , 10.9753/icce.v17.127 , 10.9753/icce.v17.75 , 10.9753/icce.v17.33 , 10.9753/icce.v17.153 , 10.9753/icce.v17.110 , 10.9753/icce.v17.82 , 10.9753/icce.v17.152 , 10.9753/icce.v17.157 , 10.9753/icce.v17.113 , 10.9753/icce.v17.51 , 10.9753/icce.v17.121 , 10.9753/icce.v17.48 , 10.9753/icce.v17.128 , 10.9753/icce.v17.58 , 10.9753/icce.v17.99 , 10.9753/icce.v17.117 , 10.9753/icce.v17.22 , 10.9753/icce.v17.68 , 10.9753/icce.v17.52 , 10.9753/icce.v17.62 , 10.9753/icce.v17.60 , 10.9753/icce.v17.17 , 10.9753/icce.v17.139 , 10.9753/icce.v17.73 , 10.9753/icce.v17.34 , 10.9753/icce.v17.16 , 10.9753/icce.v17.84 , 10.9753/icce.v17.20 , 10.9753/icce.v17.108 , 10.9753/icce.v17.98 , 10.9753/icce.v17.164 , 10.9753/icce.v17.57 , 10.9753/icce.v17.67 , 10.9753/icce.v17.100 , 10.9753/icce.v17.9 , 10.9753/icce.v17.166 , 10.9753/icce.v17.53 , 10.9753/icce.v17.47 , 10.9753/icce.v17.150 , 10.1061/9780872622647.060 , 10.9753/icce.v17.107 , 10.9753/icce.v17.54 , 10.9753/icce.v17.106 , 10.1061/9780872622647.126 , 10.9753/icce.v17.50 , 10.9753/icce.v17.160 , 10.9753/icce.v17.96 , 10.9753/icce.v17.174 , 10.9753/icce.v17.169 , 10.9753/icce.v17.172 , 10.9753/icce.v17.125 , 10.9753/icce.v17.61 , 10.24355/dbbs.084-201310140946-0
Mass transport phenomenon was first recognized by Stokes in 1847 using a Lagrangian description. Later, a basic theory for the mass transport in water waves in viscous fluid and of finite depth was derived by Longuet-Higgins in 1953. Theoretical solutions of mass transport in progressive waves of permanent type are subjected to the definitions of wave celerity in deriving the various finite amplitude wave theories. As it has been generally acknowledged that the Stokes wave theory can not yield a correct prediction of mass transport in the shallow depths, some new theories have been developed. Recently the authors(1974 § 1977) have derived a new finite amplitude wave theory in shallow water for quasi- Stokes and cnoidal waves by the so-called reductive perturbation method, in which the mass transport is formulated both in Lagrangian and Eulerian descriptions. On the experimental verification, Russell and 0sorio(1957) investigated and compared Longuet-Higgins' solution with experimental data of Lagrangian mass transport velocity obtained in a normal closed wave tank of finite length. Since then, many investigations, and nearly all of them, have employed the finite length of wave tank in carrying out their experiments. However, no experiment has yet been attempted at verifying the Stokes drift in progressive waves of permanent type in a wave tank of infinite length. It is not realistic nor economical in constructing such an infinitely long flume to investigate experimentally the mass transport velocity in progressive waves. Instead of using such an ideal wave tank, a new one incorporated with natural water re-circulation was equipped to carry out experiments by the authors(1978). It was confirmed from these experiments that mass transport in progressive waves of permanent type exists in the Same direction of wave propagation throughout the depth, and agrees with both the Stokes drift and the authors' new formulations, within the test range of experiments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu451 citations 451 popularity Top 1% influence Top 0.1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1061/9780872622647.127&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Funded by:UKRI | Automation harvesting of ...UKRI| Automation harvesting of whole-head iceberg lettuce.Authors: Vinicius Braga Ferreira da Costa; Gabriel Nasser Doyle de Doile; Gustavo Troiano; Bruno Henriques Dias; +3 AuthorsVinicius Braga Ferreira da Costa; Gabriel Nasser Doyle de Doile; Gustavo Troiano; Bruno Henriques Dias; Benedito Donizeti Bonatto; Tiago Soares; Walmir de Freitas Filho;doi: 10.3390/en15207784
Distributed energy resources have been increasingly integrated into electrical grids. Consequently, electricity markets are expected to undergo changes and become more complex. However, while there are many scientific publications on the topic, a broader discussion is still necessary. Therefore, a systematic literature review on electricity markets in the context of distributed energy resources integration was conducted in this paper to present in-depth discussions on the topic, along with shedding light on current perspectives, the most relevant sources, authors, papers, countries, metrics, and indexes. The software R and its open-source tool Bibliometrix were used to perform the systematic literature review based on the widely recognized databases Web of Science and Scopus, which led to a total of 1685 articles after removing duplicates. The results demonstrate that demand response, renewable energy, uncertainty, optimization, and smart grid are the most-used keywords. By assessing highly impactful articles on the theme, emphasis on energy storage systems becomes clear compared to distributed generation and electric vehicles. However, electric vehicles draw attention in terms of citations. Furthermore, multi-level stochastic programming is the most-applied methodology among highly impactful articles. Due to the relevance of the demand response keyword, this paper also conducts a specific review on the topic aligned with electricity markets and distributed energy resources (296 articles). The results demonstrate that virtually all high-impact publications on the topic address day-ahead or real-time pricing. Based on the literature found, this paper presents a discussion on the main challenges and future perspectives related to the field. The complexity of electrical power systems and electricity markets is increasing substantially according to what this study found. Distributed generation development is already advanced, while energy storage systems and electric vehicles are limited in many countries. Peer-to-peer electricity trading and virtual power plant are newer concepts that are currently incipient, and DR programs showcase an intermediate stage of evolution. A particular lack of research on social issues is verified, and also a lack of all-encompassing studies that address multiple interconnected topics, which should be better addressed in the future. The in-depth assessment carried out in this paper is expected to be of high value to researchers and policy-makers and facilitate future research on the topic.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15207784&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Audrius Bagdanavicius;doi: 10.3390/en15155528
Rising climate change issues are prompting engineers and scientists to focus more on improving renewable energy conversion systems [...]
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15155528&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Ruichen Wang; Paul Allen; Yang Song; Zhiwei Wang;doi: 10.3390/su14052542
Sustainable technologies in transport systems have attracted significant research efforts over the last two decades. One area of interest is self-powered devices, which reduce system integration complexity and cost with an undoubtedly great potential for improving adaptability and developing sustainability in railway transport systems. One potential solution is a regenerative suspension system, which enables the suspension movements and dissipated energy to be converted into useful electricity. This paper explores the application of hydraulic–electromagnetic regenerative dampers (HERDs) under realistic railway operating conditions for a high-speed train (HST). A vehicle-track-coupled dynamics model is employed to evaluate the regenerative power potential of an HST suspension over a range of operating conditions. The work considers typical route curvature and track irregularity of a high-speed line and speed profile. It was found that power could be regenerated at a level of up to 5–30 W and 5–45 W per generation unit when fitted to the primary and secondary dampers, respectively. Such power-regeneration levels were adequate to supply a variety of low-power-consumption onboard components such as warning lights and wireless sensors. Further analysis of the carbody loading level also was carried out. The analysis revealed that, in the case of a high-speed journey, poor track geometry, low curvature, and reduced carbody weight increased the quantity of regenerative energy harvested by the HERDs. It was concluded that a suitable HERD design could be achieved that could facilitate the development of a smart railway damper that includes both self-sensing and power-generation functions.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14052542&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu