- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOSource
- Energy Research
- GB
- Energy Research
- GB
description Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United Kingdom, GermanyPublisher:Wiley Funded by:EC | LUC4CEC| LUC4CCarlo Lavalle; Shinichiro Fujimori; Robert Dunford; Tamás Krisztin; Atul K. Jain; Tom Powell; Andrzej Tabeau; Katherine Calvin; Mark Rounsevell; Ronald D. Sands; Paula A. Harrison; Sascha Holzhauer; Prasanth Meiyappan; Peter H. Verburg; Tomoko Hasegawa; Adam Butler; Timothy M. Lenton; Alexander Popp; Peter Alexander; Peter Alexander; Filipe Batista e Silva; Calum Brown; Florian Humpenöder; Jiayi Liu; Nicolas Dendoncker; Almut Arneth; Petr Havlik; Marshall Wise; David A. Eitelberg; Kerstin Engström; Jevgenijs Steinbuks; Reinhard Prestele; Page Kyle; Claudia Baranzelli; Rüdiger Schaldach; Elke Stehfest; Hans van Meijl; Chris Jacobs-Crisioni; Jonathan C. Doelman;AbstractUnderstanding uncertainties in land cover projections is critical to investigating land‐based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro‐economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 298 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, United Kingdom, BelgiumPublisher:Wiley Leon Marshall; Jacobus C. Biesmeijer; Pierre Rasmont; Nicolas J. Vereecken; Libor Dvorak; Una Fitzpatrick; Frédéric Francis; Johann Neumayer; Frode Ødegaard; Juho P. T. Paukkunen; Tadeusz Pawlikowski; Menno Reemer; Stuart P.M. Roberts; Jakub Straka; Sarah Vray; Nicolas Dendoncker;AbstractBumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate‐only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species‐specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 37 Powered bymore_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Authors: Floor Perdijk; Jacobus C. Biesmeijer; Jacobus C. Biesmeijer; Stuart P. M. Roberts; +4 AuthorsFloor Perdijk; Jacobus C. Biesmeijer; Jacobus C. Biesmeijer; Stuart P. M. Roberts; William E. Kunin; Nicolas Dendoncker; Leon Marshall; Leon Marshall;In a warming climate, species are expected to shift their geographical ranges to higher elevations and latitudes, and if interacting species shift at different rates, networks may be disrupted. To quantify the effects of ongoing climate change, repeating historical biodiversity surveys is necessary. In this study, we compare the distribution of a plant–pollinator community between two surveys 115 years apart (1889 and 2005–06), reporting distribution patterns and changes observed for bumblebee species and bumblebee-visited plants in the Gavarnie-Gèdre commune in the Pyrenees, located in southwest Europe at the French–Spanish border. The region has warmed significantly over this period, alongside shifts in agricultural land use and forest. The composition of the bumblebee community shows relative stability, but we observed clear shifts to higher elevations for bumblebees (averaging 129 m) and plants (229 m) and provide preliminary evidence that some bumblebee species shift with the plants they visit. We also observe that some species have been able to occupy the same climate range in both periods by shifting elevation range. The results suggest the need for long-term monitoring to determine the role and impact of the different drivers of global change, especially in montane habitats where the impacts of climate changes are anticipated to be more extreme.
CORE arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.2201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 1% influence Average impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.2201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Oct 2024 United Kingdom, United Kingdom, Denmark, Czech Republic, United Kingdom, United States, Czech Republic, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Authors: Unai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; +82 AuthorsUnai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; Michael Christie; David González-Jiménez; Adrián Martín; Christopher M. Raymond; Mette Termansen; Arild Vatn; Simone Athayde; Brigitte Baptiste; David N. Barton; Sander Jacobs; Eszter Kelemen; Ritesh Kumar; Elena Lazos; Tuyeni H. Mwampamba; Barbara Nakangu; Patrick H. O'Farrell; Suneetha M. Subramanian; Meine van Noordwijk; SoEun Ahn; Sacha Amaruzaman; Ariane Amin; Paola Arias-Arévalo; Gabriela Arroyo-Robles; Mariana Cantú-Fernández; Antonio Arjona Castro; Victoria Contreras; Alta De Vos; Nicolas Dendoncker; Stefanie Engel; Uta Eser; Daniel P. Faith; Anna Filyushkina; Houda Ghazi; Erik Gómez-Baggethun; Rachelle K. Gould; Louise Guibrunet; Haripriya Gundimeda; Thomas P. Hahn; Zuzana V. Harmáčková; Marcello Hernández‐Blanco; Andra Ioana Horcea-Milcu; Mariaelena Huambachano; Natalia Lutti Hummel Wicher; Cem İskender Aydın; Mine Işlar; Ann‐Kathrin Koessler; Jasper O. Kenter; Marina Kosmus; Heera Lee; Beria Leimona; Sharachchandra Lélé; Dominic Lenzi; Bosco Lliso; Lelani Mannetti; Juliana Merçon; Ana Sofía Monroy-Sais; Nibedita Mukherjee; Barbara Muraca; Roldán Muradian; Ranjini Murali; Sara Nelson; Gabriel R. Nemogá; Jonas Ngouhouo-Poufoun; Aidin Niamir; Emmanuel O. Nuesiri; Tobias Ochieng Nyumba; Begüm Özkaynak; Ignacio Palomo; Ram Pandit; Agnieszka Pawłowska-Mainville; Luciana Porter‐Bolland; Martin F. Quaas; Julian Rode; Ricardo Rozzi; Sonya Sachdeva; Aibek Samakov; Marije Schaafsma; Nadia Sitas; Paula Ungar; Evonne Yiu; Yuki Yoshida; Egleé L. Zent;AbstractTwenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 174 citations 174 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016 United States, United Kingdom, GermanyPublisher:Wiley Funded by:EC | LUC4CEC| LUC4CCarlo Lavalle; Shinichiro Fujimori; Robert Dunford; Tamás Krisztin; Atul K. Jain; Tom Powell; Andrzej Tabeau; Katherine Calvin; Mark Rounsevell; Ronald D. Sands; Paula A. Harrison; Sascha Holzhauer; Prasanth Meiyappan; Peter H. Verburg; Tomoko Hasegawa; Adam Butler; Timothy M. Lenton; Alexander Popp; Peter Alexander; Peter Alexander; Filipe Batista e Silva; Calum Brown; Florian Humpenöder; Jiayi Liu; Nicolas Dendoncker; Almut Arneth; Petr Havlik; Marshall Wise; David A. Eitelberg; Kerstin Engström; Jevgenijs Steinbuks; Reinhard Prestele; Page Kyle; Claudia Baranzelli; Rüdiger Schaldach; Elke Stehfest; Hans van Meijl; Chris Jacobs-Crisioni; Jonathan C. Doelman;AbstractUnderstanding uncertainties in land cover projections is critical to investigating land‐based climate mitigation policies, assessing the potential of climate adaptation strategies and quantifying the impacts of land cover change on the climate system. Here, we identify and quantify uncertainties in global and European land cover projections over a diverse range of model types and scenarios, extending the analysis beyond the agro‐economic models included in previous comparisons. The results from 75 simulations over 18 models are analysed and show a large range in land cover area projections, with the highest variability occurring in future cropland areas. We demonstrate systematic differences in land cover areas associated with the characteristics of the modelling approach, which is at least as great as the differences attributed to the scenario variations. The results lead us to conclude that a higher degree of uncertainty exists in land use projections than currently included in climate or earth system projections. To account for land use uncertainty, it is recommended to use a diverse set of models and approaches when assessing the potential impacts of land cover change on future climate. Additionally, further work is needed to better understand the assumptions driving land use model results and reveal the causes of uncertainty in more depth, to help reduce model uncertainty and improve the projections of land cover.
KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 114 citations 114 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 298 Powered bymore_vert KITopen (Karlsruhe I... arrow_drop_down KITopen (Karlsruhe Institute of Technologie)Article . 2016Data sources: Bielefeld Academic Search Engine (BASE)Global Change BiologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefNatural Environment Research Council: NERC Open Research ArchiveArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)Publication Database PIK (Potsdam Institute for Climate Impact Research)Article . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13447&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United Kingdom, United Kingdom, BelgiumPublisher:Wiley Leon Marshall; Jacobus C. Biesmeijer; Pierre Rasmont; Nicolas J. Vereecken; Libor Dvorak; Una Fitzpatrick; Frédéric Francis; Johann Neumayer; Frode Ødegaard; Juho P. T. Paukkunen; Tadeusz Pawlikowski; Menno Reemer; Stuart P.M. Roberts; Jakub Straka; Sarah Vray; Nicolas Dendoncker;AbstractBumblebees in Europe have been in steady decline since the 1900s. This decline is expected to continue with climate change as the main driver. However, at the local scale, land use and land cover (LULC) change strongly affects the occurrence of bumblebees. At present, LULC change is rarely included in models of future distributions of species. This study's objective is to compare the roles of dynamic LULC change and climate change on the projected distribution patterns of 48 European bumblebee species for three change scenarios until 2100 at the scales of Europe, and Belgium, Netherlands and Luxembourg (BENELUX). We compared three types of models: (1) only climate covariates, (2) climate and static LULC covariates and (3) climate and dynamic LULC covariates. The climate and LULC change scenarios used in the models include, extreme growth applied strategy (GRAS), business as might be usual and sustainable European development goals. We analysed model performance, range gain/loss and the shift in range limits for all bumblebees. Overall, model performance improved with the introduction of LULC covariates. Dynamic models projected less range loss and gain than climate‐only projections, and greater range loss and gain than static models. Overall, there is considerable variation in species responses and effects were most pronounced at the BENELUX scale. The majority of species were predicted to lose considerable range, particularly under the extreme growth scenario (GRAS; overall mean: 64% ± 34). Model simulations project a number of local extinctions and considerable range loss at the BENELUX scale (overall mean: 56% ± 39). Therefore, we recommend species‐specific modelling to understand how LULC and climate interact in future modelling. The efficacy of dynamic LULC change should improve with higher thematic and spatial resolution. Nevertheless, current broad scale representations of change in major land use classes impact modelled future distribution patterns.
CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 88 citations 88 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 1visibility views 1 download downloads 37 Powered bymore_vert CORE arrow_drop_down Central Archive at the University of ReadingArticle . 2018License: CC BYData sources: CORE (RIOXX-UK Aggregator)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.13867&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:The Royal Society Authors: Floor Perdijk; Jacobus C. Biesmeijer; Jacobus C. Biesmeijer; Stuart P. M. Roberts; +4 AuthorsFloor Perdijk; Jacobus C. Biesmeijer; Jacobus C. Biesmeijer; Stuart P. M. Roberts; William E. Kunin; Nicolas Dendoncker; Leon Marshall; Leon Marshall;In a warming climate, species are expected to shift their geographical ranges to higher elevations and latitudes, and if interacting species shift at different rates, networks may be disrupted. To quantify the effects of ongoing climate change, repeating historical biodiversity surveys is necessary. In this study, we compare the distribution of a plant–pollinator community between two surveys 115 years apart (1889 and 2005–06), reporting distribution patterns and changes observed for bumblebee species and bumblebee-visited plants in the Gavarnie-Gèdre commune in the Pyrenees, located in southwest Europe at the French–Spanish border. The region has warmed significantly over this period, alongside shifts in agricultural land use and forest. The composition of the bumblebee community shows relative stability, but we observed clear shifts to higher elevations for bumblebees (averaging 129 m) and plants (229 m) and provide preliminary evidence that some bumblebee species shift with the plants they visit. We also observe that some species have been able to occupy the same climate range in both periods by shifting elevation range. The results suggest the need for long-term monitoring to determine the role and impact of the different drivers of global change, especially in montane habitats where the impacts of climate changes are anticipated to be more extreme.
CORE arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.2201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 41 citations 41 popularity Top 1% influence Average impulse Top 1% Powered by BIP!
more_vert CORE arrow_drop_down Proceedings of the Royal Society B Biological SciencesArticle . 2020 . Peer-reviewedLicense: CC BYData sources: CrossrefProceedings of the Royal Society B Biological SciencesArticleLicense: CC BYData sources: UnpayWallProceedings of the Royal Society B Biological SciencesArticle . 2021Data sources: Europe PubMed CentralProceedings of the Royal Society B Biological SciencesJournalData sources: Microsoft Academic Graphadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1098/rspb.2020.2201&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2023Embargo end date: 04 Oct 2024 United Kingdom, United Kingdom, Denmark, Czech Republic, United Kingdom, United States, Czech Republic, Netherlands, GermanyPublisher:Springer Science and Business Media LLC Authors: Unai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; +82 AuthorsUnai Pascual; Patricia Balvanera; Christopher B. Anderson; Rebecca Chaplin‐Kramer; Michael Christie; David González-Jiménez; Adrián Martín; Christopher M. Raymond; Mette Termansen; Arild Vatn; Simone Athayde; Brigitte Baptiste; David N. Barton; Sander Jacobs; Eszter Kelemen; Ritesh Kumar; Elena Lazos; Tuyeni H. Mwampamba; Barbara Nakangu; Patrick H. O'Farrell; Suneetha M. Subramanian; Meine van Noordwijk; SoEun Ahn; Sacha Amaruzaman; Ariane Amin; Paola Arias-Arévalo; Gabriela Arroyo-Robles; Mariana Cantú-Fernández; Antonio Arjona Castro; Victoria Contreras; Alta De Vos; Nicolas Dendoncker; Stefanie Engel; Uta Eser; Daniel P. Faith; Anna Filyushkina; Houda Ghazi; Erik Gómez-Baggethun; Rachelle K. Gould; Louise Guibrunet; Haripriya Gundimeda; Thomas P. Hahn; Zuzana V. Harmáčková; Marcello Hernández‐Blanco; Andra Ioana Horcea-Milcu; Mariaelena Huambachano; Natalia Lutti Hummel Wicher; Cem İskender Aydın; Mine Işlar; Ann‐Kathrin Koessler; Jasper O. Kenter; Marina Kosmus; Heera Lee; Beria Leimona; Sharachchandra Lélé; Dominic Lenzi; Bosco Lliso; Lelani Mannetti; Juliana Merçon; Ana Sofía Monroy-Sais; Nibedita Mukherjee; Barbara Muraca; Roldán Muradian; Ranjini Murali; Sara Nelson; Gabriel R. Nemogá; Jonas Ngouhouo-Poufoun; Aidin Niamir; Emmanuel O. Nuesiri; Tobias Ochieng Nyumba; Begüm Özkaynak; Ignacio Palomo; Ram Pandit; Agnieszka Pawłowska-Mainville; Luciana Porter‐Bolland; Martin F. Quaas; Julian Rode; Ricardo Rozzi; Sonya Sachdeva; Aibek Samakov; Marije Schaafsma; Nadia Sitas; Paula Ungar; Evonne Yiu; Yuki Yoshida; Egleé L. Zent;AbstractTwenty-five years since foundational publications on valuing ecosystem services for human well-being1,2, addressing the global biodiversity crisis3 still implies confronting barriers to incorporating nature’s diverse values into decision-making. These barriers include powerful interests supported by current norms and legal rules such as property rights, which determine whose values and which values of nature are acted on. A better understanding of how and why nature is (under)valued is more urgent than ever4. Notwithstanding agreements to incorporate nature’s values into actions, including the Kunming-Montreal Global Biodiversity Framework (GBF)5 and the UN Sustainable Development Goals6, predominant environmental and development policies still prioritize a subset of values, particularly those linked to markets, and ignore other ways people relate to and benefit from nature7. Arguably, a ‘values crisis’ underpins the intertwined crises of biodiversity loss and climate change8, pandemic emergence9 and socio-environmental injustices10. On the basis of more than 50,000 scientific publications, policy documents and Indigenous and local knowledge sources, the Intergovernmental Platform on Biodiversity and Ecosystem Services (IPBES) assessed knowledge on nature’s diverse values and valuation methods to gain insights into their role in policymaking and fuller integration into decisions7,11. Applying this evidence, combinations of values-centred approaches are proposed to improve valuation and address barriers to uptake, ultimately leveraging transformative changes towards more just (that is, fair treatment of people and nature, including inter- and intragenerational equity) and sustainable futures.
Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 174 citations 174 popularity Top 1% influence Top 10% impulse Top 0.1% Powered by BIP!
visibility 2visibility views 2 download downloads 2 Powered bymore_vert Brunel University Lo... arrow_drop_down Brunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26941Data sources: Bielefeld Academic Search Engine (BASE)KITopen (Karlsruhe Institute of Technologie)Article . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Scholar Works @ Georgia State UniversityArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)University of East Anglia: UEA Digital RepositoryArticle . 2023License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Recolector de Ciencia Abierta, RECOLECTAArticle . 2023License: CC BY NC SAData sources: Recolector de Ciencia Abierta, RECOLECTARepository of the Czech Academy of SciencesArticle . 2023Data sources: Repository of the Czech Academy of SciencesWageningen Staff PublicationsArticle . 2023License: CC BYData sources: Wageningen Staff PublicationsUniversity of Copenhagen: ResearchArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)University of North Texas: UNT Digital LibraryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41586-023-06406-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu