- home
- Advanced Search
Filters
Clear AllYear range
-chevron_right GOSource
Organization
- Energy Research
- GB
- Energy Research
- GB
description Publicationkeyboard_double_arrow_right Article , Journal 2022 United KingdomPublisher:Elsevier BV Authors: Fikile R. Brushett; Nigel P. Brandon; Antoni Forner-Cuenca; Antoni Forner-Cuenca; +8 AuthorsFikile R. Brushett; Nigel P. Brandon; Antoni Forner-Cuenca; Antoni Forner-Cuenca; Charles E. Wood; Samuel J. Cooper; Andrea Gayon-Lombardo; Anthony Kucernak; Katharine V. Greco; Kevin M. Tenny; Benedict A. Simon; Catalina A. Pino-Muñoz;handle: 10044/1/92905
Abstract Reducing the cost of redox flow batteries (RFBs) is critical to achieving broad commercial deployment of large-scale energy storage systems. This can be addressed in a variety of ways, such as reducing component costs or improving electrode design. The aim of this work is to better understand the relationship between electrode microstructure and performance. Four different commercially available carbon electrodes were examined – two cloths and two papers (from AvCarb® and Freudenberg Performance Materials) – and a comprehensive study of the different pore-scale and mass-transport processes is presented to elucidate their effect on the overall cell performance. Electrochemical measurements were carried out in a non-aqueous organic flow-through RFB with these different electrodes, using two supporting solvents (propylene carbonate and acetonitrile) and at a variety of flow rates. Electrode samples were scanned using X-ray computed tomography, and a customised segmentation technique was employed to extract several microstructural parameters. A pore network model was used to calculate the pressure drops and permeabilities, which were found to be within 1.26 × 10−11 and 1.65 × 10−11 m2 for the papers and between 8.61 × 10−11 and 10.6 × 10−11 m2 for the cloths. A one-dimensional model was developed and fit to polarisation measurements to obtain mass-transfer coefficients, k m , which were found to be between 1.01 × 10−6 and 5.97 × 10−4 m s−1 with a subsequent discussion on Reynolds and Sherwood number correlations. This work suggests that, for these fibrous materials, permeability correlates best with electrochemical cell performance. Consequently, the carbon cloths with the highest permeability and highest mass-transfer coefficients, displayed better performances.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/92905Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 3 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/92905Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:American Chemical Society (ACS) Funded by:SNSF | Development of advanced p...SNSF| Development of advanced porous electrodes for non-aqueous redox flow batteriesAuthors: Charles Tai-Chieh Wan; Diego López Barreiro; Antoni Forner-Cuenca; Jack-William Barotta; +9 AuthorsCharles Tai-Chieh Wan; Diego López Barreiro; Antoni Forner-Cuenca; Jack-William Barotta; Morgan J. Hawker; Gang Han; Hyun-Chae Loh; Admir Masic; David L. Kaplan; Yet-Ming Chiang; Fikile R. Brushett; Francisco J. Martin-Martinez; Markus J. Buehler;Increasing redox reaction rates on carbon electrodes is an important step to reducing the cost of all-vanadium redox flow batteries (VRFBs). Biomass-derived activated carbons (ACs) hold promise as they may obviate the need for post-synthetic modifications common to conventional materials. While initial efforts have shown that these materials can enhance VRFB performance, the wide selection of potentially-inexpensive feedstocks and synthesis routes lead to a collection of electrocatalytic materials with disparate physical, chemical, and electrochemical properties, challenging the development of generalizable design principles. Here, we employ a hydrothermal processing (HTP) technique to produce elementally-diverse ACs, varying biomass feedstock composition and HTP temperature. Specifically, we study ACs derived from chitin which contain nitrogen and oxygen functionalities, and ACs derived from pine wood which contain oxygen functionalities. Using Vulcan XC72 as a comparator, we apply spectroscopic, electrochemical and computational techniques, finding electrochemically accessible surface area, rather than heteroatom composition, to be the more representative performance indicator. Evaluation of the best-performing AC in a VRFB reveals ~100 mW cm-2 improvement in peak power density when deposited into felt electrodes. The feedstock-processing-property relationships studied in this work represent a systematic approach to advancing biomass-based functional materials for use in energy applications.
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Sustainable Chemistry & EngineeringArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c02427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Sustainable Chemistry & EngineeringArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c02427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:The Electrochemical Society Benedict A. Simon; Andrea Gayon Lombardo; Catalina Pino; Charles E. Wood; Kevin M. Tenny; Katharine Greco; Samuel J. Cooper; Antoni Forner-Cuenca; Fikile R. Brushett; Anthony R. J. Kucernak; Nigel P Brandon;Understanding the interplay between electrode microstructure and cell performance of electrochemical devices is important both for modelling and experimental design. Redox Flow Batteries (RFBs) are an electrochemical energy storage technology with potential for grid-scale energy storage applications, although costs need to be further reduced to be competitive. One pathway to lowering the costs involves increasing the power density of each cell, such that fewer cells are required. This can be achieved in a variety of ways, including by improving the design of the electrode microstructures. The aim of this work is to better understand the relationship between electrode microstructure and RFB performance and, ultimately, to make inferences about electrode utility. The performances of a variety of commercially available carbon electrodes are examined via a series of commonly used microstructural and electrochemical analyses (Figure a-c). [1] We present a comprehensive study of pore-scale mass-transport processes occurring in each of the electrodes and rationalize their effect on the overall cell performance. A matrix of electrochemical tests were carried out in a flow-through RFB cell using incremental flow rates (Figure b-c) and two non-aqueous TEMPO electrolytes with distinct viscosity and diffusivity properties. Scanning electron microscopy (SEM) was used to image the electrodes and large 3 mm samples of each were scanned using X-ray computed tomography (Figure a). A customized segmentation technique was subsequently developed that resamples the image data to ensure the fiber dimensions agree with SEM images, improving the validity of the various extracted metrics. From these images, calculations and electrochemical tests, several microstructural parameters were extracted and a pore network model was used to calculate the permeabilities of the electrodes. A 1D model was developed across half the symmetric membrane electrode assembly and, using the parameters extracted from XCT, fit to galvanostatic polarization measurements to obtain the mass transfer coefficients at each unique operating condition – these were found to be in the range of and m s-1. Transport processes and distributions through the cell are analysed and correlations between dimensionless Reynolds and Sherwood numbers are subsequently discussed, as demonstrated in previous work. [2, 3] Given a ‘good performance’ is associated with a system being able to reach a high current with a low overpotential, the following findings were made. Firstly, while volume-specific surface area, porosity and tortuosity are useful descriptors for evaluating porous media, they are not good indicators of performance in these systems. Instead the permeability and, by extension, the ease with which convective transport can occur is found to be directly correlated with performance in this system. It is asserted that systems using solvents with higher viscosity have a reduced performance due, in part, due to regions in the electrode being starved of new electrolyte. Consistently, across all electrodes and in each electrolyte a better performance is observed when a higher flow rate is used. This effect is, in part, attributed to the reduction in size of the boundary layer at the electrode surface. Finally, in agreement with previous works, [1, 4] the carbon cloths tested in this work are shown to have higher mass-transfer coefficients and permeabilities than the carbon papers and we conclude that the best performing electrode is the thicker carbon cloth, which has the lowest resistance to convective flow, highest permeability, and highest mass-transfer coefficients in both solvents. [1]: A. Forner-Cuenca, E. E. Penn, A. M. Oliveira and F. R. Brushett, Exploring the Role of Electrode Microstructure on the Performance of Non-Aqueous Redox Flow Batteries. J. Electrochem. Soc., 166, 2230-2241 (2019). [2]: Y. A. Gandomi, D. S. Aaron, T. A. Zawodzinski and M. M. Mench, In Situ Potential Distribution Measurement and Validated Model for All-Vanadium Redox Flow Battery. J. Electrochem. Soc., 163, A5188-A5201 (2016). [3]: K. M. Tenny, A. Forner-Cuenca, Y.-M. Chiang and F. R. Brushett, Comparing Physical and Electrochemical Properties of Different Weave Patterns for Carbon Cloth Electrodes in Redox Flow Batteries. J. Electrochem. En. Conv. Stor., 17, 041108 (2020). [4]: M. A. Sadeghi, M. Aganou, M. D. R. Kok, M. Aghighi, G. Merle, J. Barralet and J. Gostick, Exploring the Impact of Electrode Microstructure on Redox Flow Battery Performance Using a Multiphysics Pore Network Model. J. Electrochem. Soc., 166, A2121-A2130 (2019). Figure 1
ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2020-02603032mtgabs&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2020-02603032mtgabs&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, United StatesPublisher:Royal Society of Chemistry (RSC) Funded by:NSERC, UKRI | Zinc-Nickel Redox Flow Ba..., UKRI | Lower Cost and Longer Lif... +1 projectsNSERC ,UKRI| Zinc-Nickel Redox Flow Battery for Energy Storage ,UKRI| Lower Cost and Longer Life Flow Batteries for Grid Scale Energy Storage ,UKRI| ISCF Wave 1: 3D electrodes from 2D materialsAuthors: Barun Kumar Chakrabarti; Evangelos Kalamaras; Abhishek Kumar Singh; Antonio Bertei; +11 AuthorsBarun Kumar Chakrabarti; Evangelos Kalamaras; Abhishek Kumar Singh; Antonio Bertei; J. Rubio-Garcia; Vladimir Yufit; Kevin M. Tenny; Billy Wu; Farid Tariq; Yashar S. Hajimolana; Nigel P. Brandon; Chee Tong John Low; Edward P. L. Roberts; Yet-Ming Chiang; Fikile R. Brushett;doi: 10.1039/d0se00667j
handle: 10044/1/82365 , 1721.1/133430
A review of micro to macro-scale activities, challenges and perspectives for redox flow battery modelling is presented.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/82365Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se00667j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 56 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/82365Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se00667j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United States, United KingdomPublisher:Elsevier BV Duo Zhang; Antoni Forner-Cuenca; Oluwadamilola O. Taiwo; Vladimir Yufit; Fikile R. Brushett; Nigel P. Brandon; Sai Gu; Qiong Cai;handle: 1721.1/136559
The porous structure of the electrodes in redox flow batteries (RFBs) plays a critical role in their performance. We develop a framework for understanding the coupled transport and reaction processes in electrodes by combining lattice Boltzmann modelling (LBM) with experimental measurement of electrochemical performance and X-ray computed tomography (CT). 3D pore-scale LBM simulations of a non-aqueous RFB are conducted on the detailed 3D microstructure of three different electrodes (Freudenberg paper, SGL paper and carbon cloth) obtained using X-ray CT. The flow of electrolyte and species within the porous structure as well as electrochemical reactions at the interface between the carbon fibers of the electrode and the liquid electrolyte are solved by a lattice Boltzmann approach. The simulated electrochemical performances are compared against the experimental measurements with excellent agreement, indicating the validity of the LBM simulations for predicting the RFB performance. Electrodes featuring one single dominant peak (i.e., Freudenberg paper and carbon cloth) show better electrochemical performance than the electrode with multiple dominant peaks over a wide pore size distribution (i.e., SGL paper), whilst the presence of a small fraction of large pores is beneficial for pressure drop. This framework is useful to design electrodes with optimal microstructures for RFB applications.
University of Surrey... arrow_drop_down University of Surrey, Guildford: Surrey Scholarship Online.Article . 2020License: CC BYFull-Text: http://epubs.surrey.ac.uk/853190/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.227249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Surrey... arrow_drop_down University of Surrey, Guildford: Surrey Scholarship Online.Article . 2020License: CC BYFull-Text: http://epubs.surrey.ac.uk/853190/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.227249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2022 United KingdomPublisher:Elsevier BV Authors: Fikile R. Brushett; Nigel P. Brandon; Antoni Forner-Cuenca; Antoni Forner-Cuenca; +8 AuthorsFikile R. Brushett; Nigel P. Brandon; Antoni Forner-Cuenca; Antoni Forner-Cuenca; Charles E. Wood; Samuel J. Cooper; Andrea Gayon-Lombardo; Anthony Kucernak; Katharine V. Greco; Kevin M. Tenny; Benedict A. Simon; Catalina A. Pino-Muñoz;handle: 10044/1/92905
Abstract Reducing the cost of redox flow batteries (RFBs) is critical to achieving broad commercial deployment of large-scale energy storage systems. This can be addressed in a variety of ways, such as reducing component costs or improving electrode design. The aim of this work is to better understand the relationship between electrode microstructure and performance. Four different commercially available carbon electrodes were examined – two cloths and two papers (from AvCarb® and Freudenberg Performance Materials) – and a comprehensive study of the different pore-scale and mass-transport processes is presented to elucidate their effect on the overall cell performance. Electrochemical measurements were carried out in a non-aqueous organic flow-through RFB with these different electrodes, using two supporting solvents (propylene carbonate and acetonitrile) and at a variety of flow rates. Electrode samples were scanned using X-ray computed tomography, and a customised segmentation technique was employed to extract several microstructural parameters. A pore network model was used to calculate the pressure drops and permeabilities, which were found to be within 1.26 × 10−11 and 1.65 × 10−11 m2 for the papers and between 8.61 × 10−11 and 10.6 × 10−11 m2 for the cloths. A one-dimensional model was developed and fit to polarisation measurements to obtain mass-transfer coefficients, k m , which were found to be between 1.01 × 10−6 and 5.97 × 10−4 m s−1 with a subsequent discussion on Reynolds and Sherwood number correlations. This work suggests that, for these fibrous materials, permeability correlates best with electrochemical cell performance. Consequently, the carbon cloths with the highest permeability and highest mass-transfer coefficients, displayed better performances.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/92905Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 26visibility views 26 download downloads 3 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BY NC NDFull-Text: http://hdl.handle.net/10044/1/92905Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2021.117678&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:American Chemical Society (ACS) Funded by:SNSF | Development of advanced p...SNSF| Development of advanced porous electrodes for non-aqueous redox flow batteriesAuthors: Charles Tai-Chieh Wan; Diego López Barreiro; Antoni Forner-Cuenca; Jack-William Barotta; +9 AuthorsCharles Tai-Chieh Wan; Diego López Barreiro; Antoni Forner-Cuenca; Jack-William Barotta; Morgan J. Hawker; Gang Han; Hyun-Chae Loh; Admir Masic; David L. Kaplan; Yet-Ming Chiang; Fikile R. Brushett; Francisco J. Martin-Martinez; Markus J. Buehler;Increasing redox reaction rates on carbon electrodes is an important step to reducing the cost of all-vanadium redox flow batteries (VRFBs). Biomass-derived activated carbons (ACs) hold promise as they may obviate the need for post-synthetic modifications common to conventional materials. While initial efforts have shown that these materials can enhance VRFB performance, the wide selection of potentially-inexpensive feedstocks and synthesis routes lead to a collection of electrocatalytic materials with disparate physical, chemical, and electrochemical properties, challenging the development of generalizable design principles. Here, we employ a hydrothermal processing (HTP) technique to produce elementally-diverse ACs, varying biomass feedstock composition and HTP temperature. Specifically, we study ACs derived from chitin which contain nitrogen and oxygen functionalities, and ACs derived from pine wood which contain oxygen functionalities. Using Vulcan XC72 as a comparator, we apply spectroscopic, electrochemical and computational techniques, finding electrochemically accessible surface area, rather than heteroatom composition, to be the more representative performance indicator. Evaluation of the best-performing AC in a VRFB reveals ~100 mW cm-2 improvement in peak power density when deposited into felt electrodes. The feedstock-processing-property relationships studied in this work represent a systematic approach to advancing biomass-based functional materials for use in energy applications.
ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Sustainable Chemistry & EngineeringArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c02427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 38 citations 38 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert ACS Sustainable Chem... arrow_drop_down ACS Sustainable Chemistry & EngineeringArticle . 2020 . Peer-reviewedLicense: STM Policy #29Data sources: CrossrefACS Sustainable Chemistry & EngineeringArticle . 2020Data sources: DANS (Data Archiving and Networked Services)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1021/acssuschemeng.0c02427&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:The Electrochemical Society Benedict A. Simon; Andrea Gayon Lombardo; Catalina Pino; Charles E. Wood; Kevin M. Tenny; Katharine Greco; Samuel J. Cooper; Antoni Forner-Cuenca; Fikile R. Brushett; Anthony R. J. Kucernak; Nigel P Brandon;Understanding the interplay between electrode microstructure and cell performance of electrochemical devices is important both for modelling and experimental design. Redox Flow Batteries (RFBs) are an electrochemical energy storage technology with potential for grid-scale energy storage applications, although costs need to be further reduced to be competitive. One pathway to lowering the costs involves increasing the power density of each cell, such that fewer cells are required. This can be achieved in a variety of ways, including by improving the design of the electrode microstructures. The aim of this work is to better understand the relationship between electrode microstructure and RFB performance and, ultimately, to make inferences about electrode utility. The performances of a variety of commercially available carbon electrodes are examined via a series of commonly used microstructural and electrochemical analyses (Figure a-c). [1] We present a comprehensive study of pore-scale mass-transport processes occurring in each of the electrodes and rationalize their effect on the overall cell performance. A matrix of electrochemical tests were carried out in a flow-through RFB cell using incremental flow rates (Figure b-c) and two non-aqueous TEMPO electrolytes with distinct viscosity and diffusivity properties. Scanning electron microscopy (SEM) was used to image the electrodes and large 3 mm samples of each were scanned using X-ray computed tomography (Figure a). A customized segmentation technique was subsequently developed that resamples the image data to ensure the fiber dimensions agree with SEM images, improving the validity of the various extracted metrics. From these images, calculations and electrochemical tests, several microstructural parameters were extracted and a pore network model was used to calculate the permeabilities of the electrodes. A 1D model was developed across half the symmetric membrane electrode assembly and, using the parameters extracted from XCT, fit to galvanostatic polarization measurements to obtain the mass transfer coefficients at each unique operating condition – these were found to be in the range of and m s-1. Transport processes and distributions through the cell are analysed and correlations between dimensionless Reynolds and Sherwood numbers are subsequently discussed, as demonstrated in previous work. [2, 3] Given a ‘good performance’ is associated with a system being able to reach a high current with a low overpotential, the following findings were made. Firstly, while volume-specific surface area, porosity and tortuosity are useful descriptors for evaluating porous media, they are not good indicators of performance in these systems. Instead the permeability and, by extension, the ease with which convective transport can occur is found to be directly correlated with performance in this system. It is asserted that systems using solvents with higher viscosity have a reduced performance due, in part, due to regions in the electrode being starved of new electrolyte. Consistently, across all electrodes and in each electrolyte a better performance is observed when a higher flow rate is used. This effect is, in part, attributed to the reduction in size of the boundary layer at the electrode surface. Finally, in agreement with previous works, [1, 4] the carbon cloths tested in this work are shown to have higher mass-transfer coefficients and permeabilities than the carbon papers and we conclude that the best performing electrode is the thicker carbon cloth, which has the lowest resistance to convective flow, highest permeability, and highest mass-transfer coefficients in both solvents. [1]: A. Forner-Cuenca, E. E. Penn, A. M. Oliveira and F. R. Brushett, Exploring the Role of Electrode Microstructure on the Performance of Non-Aqueous Redox Flow Batteries. J. Electrochem. Soc., 166, 2230-2241 (2019). [2]: Y. A. Gandomi, D. S. Aaron, T. A. Zawodzinski and M. M. Mench, In Situ Potential Distribution Measurement and Validated Model for All-Vanadium Redox Flow Battery. J. Electrochem. Soc., 163, A5188-A5201 (2016). [3]: K. M. Tenny, A. Forner-Cuenca, Y.-M. Chiang and F. R. Brushett, Comparing Physical and Electrochemical Properties of Different Weave Patterns for Carbon Cloth Electrodes in Redox Flow Batteries. J. Electrochem. En. Conv. Stor., 17, 041108 (2020). [4]: M. A. Sadeghi, M. Aganou, M. D. R. Kok, M. Aghighi, G. Merle, J. Barralet and J. Gostick, Exploring the Impact of Electrode Microstructure on Redox Flow Battery Performance Using a Multiphysics Pore Network Model. J. Electrochem. Soc., 166, A2121-A2130 (2019). Figure 1
ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2020-02603032mtgabs&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert ECS Meeting Abstract... arrow_drop_down ECS Meeting AbstractsArticle . 2020 . Peer-reviewedLicense: IOP Copyright PoliciesData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1149/ma2020-02603032mtgabs&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United Kingdom, United StatesPublisher:Royal Society of Chemistry (RSC) Funded by:NSERC, UKRI | Zinc-Nickel Redox Flow Ba..., UKRI | Lower Cost and Longer Lif... +1 projectsNSERC ,UKRI| Zinc-Nickel Redox Flow Battery for Energy Storage ,UKRI| Lower Cost and Longer Life Flow Batteries for Grid Scale Energy Storage ,UKRI| ISCF Wave 1: 3D electrodes from 2D materialsAuthors: Barun Kumar Chakrabarti; Evangelos Kalamaras; Abhishek Kumar Singh; Antonio Bertei; +11 AuthorsBarun Kumar Chakrabarti; Evangelos Kalamaras; Abhishek Kumar Singh; Antonio Bertei; J. Rubio-Garcia; Vladimir Yufit; Kevin M. Tenny; Billy Wu; Farid Tariq; Yashar S. Hajimolana; Nigel P. Brandon; Chee Tong John Low; Edward P. L. Roberts; Yet-Ming Chiang; Fikile R. Brushett;doi: 10.1039/d0se00667j
handle: 10044/1/82365 , 1721.1/133430
A review of micro to macro-scale activities, challenges and perspectives for redox flow battery modelling is presented.
CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/82365Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se00667j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 56 Powered bymore_vert CORE arrow_drop_down Imperial College London: SpiralArticle . 2020License: CC BYFull-Text: http://hdl.handle.net/10044/1/82365Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1039/d0se00667j&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United States, United KingdomPublisher:Elsevier BV Duo Zhang; Antoni Forner-Cuenca; Oluwadamilola O. Taiwo; Vladimir Yufit; Fikile R. Brushett; Nigel P. Brandon; Sai Gu; Qiong Cai;handle: 1721.1/136559
The porous structure of the electrodes in redox flow batteries (RFBs) plays a critical role in their performance. We develop a framework for understanding the coupled transport and reaction processes in electrodes by combining lattice Boltzmann modelling (LBM) with experimental measurement of electrochemical performance and X-ray computed tomography (CT). 3D pore-scale LBM simulations of a non-aqueous RFB are conducted on the detailed 3D microstructure of three different electrodes (Freudenberg paper, SGL paper and carbon cloth) obtained using X-ray CT. The flow of electrolyte and species within the porous structure as well as electrochemical reactions at the interface between the carbon fibers of the electrode and the liquid electrolyte are solved by a lattice Boltzmann approach. The simulated electrochemical performances are compared against the experimental measurements with excellent agreement, indicating the validity of the LBM simulations for predicting the RFB performance. Electrodes featuring one single dominant peak (i.e., Freudenberg paper and carbon cloth) show better electrochemical performance than the electrode with multiple dominant peaks over a wide pore size distribution (i.e., SGL paper), whilst the presence of a small fraction of large pores is beneficial for pressure drop. This framework is useful to design electrodes with optimal microstructures for RFB applications.
University of Surrey... arrow_drop_down University of Surrey, Guildford: Surrey Scholarship Online.Article . 2020License: CC BYFull-Text: http://epubs.surrey.ac.uk/853190/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.227249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Surrey... arrow_drop_down University of Surrey, Guildford: Surrey Scholarship Online.Article . 2020License: CC BYFull-Text: http://epubs.surrey.ac.uk/853190/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2019.227249&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu