- home
- Advanced Search
- Energy Research
- GB
- Energy Research
- GB
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Lu ZHANG; Ying CHEN; Chen SHEN; Wei TANG; Jun LIANG;Abstract In a hybrid AC/DC medium voltage distribution network, distributed generations (DGs), energy storage systems (ESSs), and the voltage source converters (VSCs) between AC and DC lines, have the ability to regulate node voltages in real-time. However, the voltage regulation abilities of above devices are limited by their ratings. And the voltage regulation efficiencies of these devices are also different. Besides, due to high r/x ratio, node voltages are influenced by both real and reactive power. In order to achieve the coordinated voltage regulation in a hybrid AC/DC distribution network, a priority-based real-time control strategy is proposed based on the voltage control effect of real and reactive power adjustment. The equivalence of real and reactive power adjustment on voltage control is considered in control area partition optimization, in which regulation efficiency and capability are taken as objectives. In order to accommodate more DGs, the coordination of controllable devices is achieved according to voltage sensitivities. Simulations studies are performed to verify the proposed method.
CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Lu ZHANG; Ying CHEN; Chen SHEN; Wei TANG; Jun LIANG;Abstract In a hybrid AC/DC medium voltage distribution network, distributed generations (DGs), energy storage systems (ESSs), and the voltage source converters (VSCs) between AC and DC lines, have the ability to regulate node voltages in real-time. However, the voltage regulation abilities of above devices are limited by their ratings. And the voltage regulation efficiencies of these devices are also different. Besides, due to high r/x ratio, node voltages are influenced by both real and reactive power. In order to achieve the coordinated voltage regulation in a hybrid AC/DC distribution network, a priority-based real-time control strategy is proposed based on the voltage control effect of real and reactive power adjustment. The equivalence of real and reactive power adjustment on voltage control is considered in control area partition optimization, in which regulation efficiency and capability are taken as objectives. In order to accommodate more DGs, the coordination of controllable devices is achieved according to voltage sensitivities. Simulations studies are performed to verify the proposed method.
CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Lu ZHANG; Ying CHEN; Chen SHEN; Wei TANG; Jun LIANG;Abstract In a hybrid AC/DC medium voltage distribution network, distributed generations (DGs), energy storage systems (ESSs), and the voltage source converters (VSCs) between AC and DC lines, have the ability to regulate node voltages in real-time. However, the voltage regulation abilities of above devices are limited by their ratings. And the voltage regulation efficiencies of these devices are also different. Besides, due to high r/x ratio, node voltages are influenced by both real and reactive power. In order to achieve the coordinated voltage regulation in a hybrid AC/DC distribution network, a priority-based real-time control strategy is proposed based on the voltage control effect of real and reactive power adjustment. The equivalence of real and reactive power adjustment on voltage control is considered in control area partition optimization, in which regulation efficiency and capability are taken as objectives. In order to accommodate more DGs, the coordination of controllable devices is achieved according to voltage sensitivities. Simulations studies are performed to verify the proposed method.
CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017 United KingdomPublisher:Springer Science and Business Media LLC Lu ZHANG; Ying CHEN; Chen SHEN; Wei TANG; Jun LIANG;Abstract In a hybrid AC/DC medium voltage distribution network, distributed generations (DGs), energy storage systems (ESSs), and the voltage source converters (VSCs) between AC and DC lines, have the ability to regulate node voltages in real-time. However, the voltage regulation abilities of above devices are limited by their ratings. And the voltage regulation efficiencies of these devices are also different. Besides, due to high r/x ratio, node voltages are influenced by both real and reactive power. In order to achieve the coordinated voltage regulation in a hybrid AC/DC distribution network, a priority-based real-time control strategy is proposed based on the voltage control effect of real and reactive power adjustment. The equivalence of real and reactive power adjustment on voltage control is considered in control area partition optimization, in which regulation efficiency and capability are taken as objectives. In order to accommodate more DGs, the coordination of controllable devices is achieved according to voltage sensitivities. Simulations studies are performed to verify the proposed method.
CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 17 citations 17 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert CORE arrow_drop_down COREArticle . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORECORE (RIOXX-UK Aggregator)Article . 2017License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/112378/1/ZHANG2018_Article_CoordinatedVoltageRegulationOf.pdfData sources: CORE (RIOXX-UK Aggregator)Journal of Modern Power Systems and Clean EnergyArticle . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefJournal of Modern Power Systems and Clean EnergyArticleLicense: CC BY NC NDData sources: UnpayWalladd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s40565-017-0324-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu