- home
- Advanced Search
- Energy Research
- 2021-2025
- National Science Foundation
- GB
- Energy Research
- 2021-2025
- National Science Foundation
- GB
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;pmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Funded by:NSF | COLLABORATIVE RESEARCH: A...NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsNoah F. Greenwald; Sara Labrousse; Philip N. Trathan; Stéphanie Jenouvrier; Julienne Stroeve; Julienne Stroeve; Julienne Stroeve; Marika M. Holland; Barbara Wienecke; Shaye Wolf; Peter T. Fretwell; Judy Che-Castaldo; Christophe Barbraud; Michelle A. LaRue; Michelle A. LaRue;AbstractSpecies extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate‐dependent meta‐population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi‐extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 17 Powered bymore_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJucker, Tommaso; Fischer, Fabian Jörg; Chave, Jérôme; Coomes, David; Caspersen, John; Ali, Arshad; Panzou, Grace Jopaul Loubota; Feldpausch, Ted R; Falster, Daniel; Usoltsev, Vladimir A; Adu-Bredu, Stephen; Alves, Luciana F; Aminpour, Mohammad; Angoboy, Ilondea B; Anten, Niels PR; Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan; Balvanera, Patricia; Banin, Lindsay; Barbier, Nicolas; Battles, John J; Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev; Dai, Jingyu; Dalponte, Michele; Dimobe, Kangbéni; Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A; Enríquez, Moisés; Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric; Forrester, David I; Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat; Hutley, Lindsay B; Ichie, Tomoaki; Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan; Larsary, Maryam Kazempour; Kenzo, Tanaka; Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem; Kvasnica, Jakub; Lin, Siliang; Lines, Emily; Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L; Mattsson, Eskil; Matula, Radim; Meave, Jorge A; Mensah, Sylvanus; Mi, Xiangcheng; Momo, Stéphane; Moncrieff, Glenn R; Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C; Ryan, Casey; Sanaei, Anvar; Sanger, Jennifer; Schlund, Michael; Sellan, Giacomo; Shenkin, Alexander; Sonké, Bonaventure; Sterck, Frank J; Svátek, Martin; Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C; Vovides, Alejandra G; Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan; Yamada, Toshihiro; Zavala, Miguel A;pmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 SwitzerlandPublisher:Elsevier BV Funded by:NSF | Compressive Sampling for ..., EC | DyVirtNSF| Compressive Sampling for Uncertainty Modeling and Quantification of Dynamical Systems Subject to Highly Limited/Incomplete Data ,EC| DyVirtIoannis A. Kougioumtzoglou; George D. Pasparakis; Michael Beer; Michael Beer; Michael Beer; Ketson R. M. dos Santos;Abstract A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l 1 -norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain.
CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107975&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 45 Powered bymore_vert CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107975&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 PortugalPublisher:Inter-Research Science Center Funded by:NSF | NSF Postdoctoral Fellowsh...NSF| NSF Postdoctoral Fellowship in Biology FY 2019: Trophic response of marine top predators to decadal changes in food web structureAuthors: Fuentes, Mariana M. P. B.; McMichael, Erin; Kot, Connie Y.; Silver-Gorges, Ian; +34 AuthorsFuentes, Mariana M. P. B.; McMichael, Erin; Kot, Connie Y.; Silver-Gorges, Ian; Wallace, Bryan P.; Godley, Brendan; Brooks, Annabelle M. L; Ceriani, Simona A; Cortés-Gómez, Adriana A.; Dawson, Tiffany M.; Dodge, Kara L.; Flint, Mark; Jensen, Michael P; Komoroske, Lisa M.; Kophamel, Sara; Lettrich, Matthew; Long, Christopher A.; Nelms, Sarah E.; Patrício, Ana Rita; Robinson, Nathan J.; Seminoff, Jeffrey; Ware, Matthew; Whitman, Elizabeth R.; Chevallier, Damien; Clyde-Brockway, Chelsea E.; Korgaonkar, Sumedha A.; Mancini, Agnese; Mello-Fonseca, J; Monsinjon, Jonathan; Neves-Ferreira, Isabella; Ortega, Anna A.; Patel, Samir H.; Pfaller, Joseph B.; Ramirez, Matthew D.; Raposo, Cheila; Smith, Caitlin E.; Abreu-Grobois, F. Alberto; Hays, Graeme C.;doi: 10.3354/esr01278
Sea turtles are an iconic group of marine megafauna that have been exposed to multiple anthropogenic threats across their different life stages, especially in the past decades. This has resulted in population declines, and consequently many sea turtle populations are now classified as threatened or endangered globally. Although some populations of sea turtles worldwide are showing early signs of recovery, many still face fundamental threats. This is problematic since sea turtles have important ecological roles. To encourage informed conservation planning and direct future research, we surveyed experts to identify the key contemporary threats (climate change, direct take, fisheries, pollution, disease, predation, and coastal and marine development) faced by sea turtles. Using the survey results and current literature, we also outline knowledge gaps in our understanding of the impact of these threats and how targeted future research, often involving emerging technologies, could close those gaps.
Endangered Species R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr01278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Endangered Species R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr01278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A..., NSF | Collaborative Research: N..., EC | LeMoKiAC +1 projectsNSF| Collaborative Research: Arctic Stream Networks as Nutrient Sensors in Permafrost Ecosystems ,NSF| Collaborative Research: Network Cluster: Using Big Data approaches to assess ecohydrological resilience across scales ,EC| LeMoKiAC ,NSF| Collaborative Research: Network Cluster: Using Big Data approaches to assess ecohydrological resilience across scalesSayedeh Sara Sayedi; Benjamin W. Abbott; Boris Vannière; Bérangère Leys; Daniele Colombaroli; Graciela Gil Romera; Michał Słowiński; Julie C. Aleman; Olivier Blarquez; Angelica Feurdean; Kendrick Brown; Tuomas Aakala; Teija Alenius; Kathryn Allen; Maja Andric; Yves Bergeron; Siria Biagioni; Richard Bradshaw; Laurent Bremond; Elodie Brisset; Joseph Brooks; Sandra O. Brugger; Thomas Brussel; Haidee Cadd; Eleonora Cagliero; Christopher Carcaillet; Vachel Carter; Filipe X. Catry; Antoine Champreux; Emeline Chaste; Raphaël Daniel Chavardès; Melissa Chipman; Marco Conedera; Simon Connor; Mark Constantine; Colin Courtney Mustaphi; Abraham N. Dabengwa; William Daniels; Erik De Boer; Elisabeth Dietze; Joan Estrany; Paulo Fernandes; Walter Finsinger; Suzette G. A. Flantua; Paul Fox-Hughes; Dorian M. Gaboriau; Eugenia M.Gayo; Martin. P. Girardin; Jeffrey Glenn; Ramesh Glückler; Catalina González-Arango; Mariangelica Groves; Douglas S. Hamilton; Rebecca Jenner Hamilton; Stijn Hantson; K. Anggi Hapsari; Mark Hardiman; Donna Hawthorne; Kira Hoffman; Jun Inoue; Allison T. Karp; Patrik Krebs; Charuta Kulkarni; Niina Kuosmanen; Terri Lacourse; Marie-Pierre Ledru; Marion Lestienne; Colin Long; José Antonio López-Sáez; Nicholas Loughlin; Mats Niklasson; Javier Madrigal; S. Yoshi Maezumi; Katarzyna Marcisz; Michela Mariani; David McWethy; Grant Meyer; Chiara Molinari; Encarni Montoya; Scott Mooney; Cesar Morales-Molino; Jesse Morris; Patrick Moss; Imma Oliveras; José Miguel Pereira; Gianni Boris Pezzatti; Nadine Pickarski; Roberta Pini; Emma Rehn; Cécile C. Remy; Jordi Revelles; Damien Rius; Vincent Robin; Yanming Ruan; Natalia Rudaya; Jeremy Russell-Smith; Heikki Seppä; Lyudmila Shumilovskikh; William T.Sommers; Çağatay Tavşanoğlu; Charles Umbanhowar; Erickson Urquiaga; Dunia Urrego; Richard S. Vachula; Tuomo Wallenius; Chao You; Anne-Laure Daniau;Abstract Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.
Fire Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42408-023-00237-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Fire Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42408-023-00237-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Oxford University Press (OUP) Funded by:NSF | NSF Engineering Research ..., EC | SoBigData, UKRI | Digitally Assisted Collec... +3 projectsNSF| NSF Engineering Research Center for Ultra-wide-area Resilient Electric Energy Transmission Network ,EC| SoBigData ,UKRI| Digitally Assisted Collective Governance of Smart City Commons - ARTIO ,SNSF| FuturICT 2.0 - Large scale experiments and simulations for the second generation of FuturICT ,EC| CoCi ,EC| ASSETAuthors: Evangelos Pournaras; Mark Christopher Ballandies; Stefano Bennati; Chien-fei Chen;Abstract Collective privacy loss becomes a colossal problem, an emergency for personal freedoms and democracy. But, are we prepared to handle personal data as scarce resource and collectively share data under the doctrine: as little as possible, as much as necessary? We hypothesize a significant privacy recovery if a population of individuals, the data collective, coordinates to share minimum data for running online services with the required quality. Here, we show how to automate and scale-up complex collective arrangements for privacy recovery using decentralized artificial intelligence. For this, we compare for the first time attitudinal, intrinsic, rewarded, and coordinated data sharing in a rigorous living-lab experiment of high realism involving >27,000 real data disclosures. Using causal inference and cluster analysis, we differentiate criteria predicting privacy and five key data-sharing behaviors. Strikingly, data-sharing coordination proves to be a win–win for all: remarkable privacy recovery for people with evident costs reduction for service providers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgae029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgae029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ...NSF| Collaborative Research: Inferring admixture history in non-model organisms using local ancestry detectionMing-Shan Wang; Gemma G. R. Murray; Daniel Mann; Pamela Groves; Alisa O. Vershinina; Megan A. Supple; Joshua D. Kapp; Russell Corbett-Detig; Sarah E. Crump; Ian Stirling; Kristin L. Laidre; Michael Kunz; Love Dalén; Richard E. Green; Beth Shapiro;pmid: 35711062
Polar bears (Ursus maritimus) and brown bears (Ursus arctos) are sister species possessing distinct physiological and behavioural adaptations that evolved over the last 500,000 years. However, comparative and population genomics analyses have revealed that several extant and extinct brown bear populations have relatively recent polar bear ancestry, probably as the result of geographically localized instances of gene flow from polar bears into brown bears. Here, we generate and analyse an approximate 20X paleogenome from an approximately 100,000-year-old polar bear that reveals a massive prehistoric admixture event, which is evident in the genomes of all living brown bears. This ancient admixture event was not visible from genomic data derived from living polar bears. Like more recent events, this massive admixture event mainly involved unidirectional gene flow from polar bears into brown bears and occurred as climate changes caused overlap in the ranges of the two species. These findings highlight the complex reticulate paths that evolution can take within a regime of radically shifting climate.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01753-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01753-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Sweden, United Kingdom, Sweden, Switzerland, Denmark, Australia, AustraliaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:RCN | UV effect on the carbon c..., NSF | Collaborative LTREB Propo..., ARC | Discovery Projects - Gran... +4 projectsRCN| UV effect on the carbon cycle – Global Environmental Effects Assessment Panel ,NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,ARC| Discovery Projects - Grant ID: DP180100113 ,RCN| FlowConn: Connectivity enhancement due to thin liquid films in porous media flows ,NSF| OPUS: CRS Synthesis to add dissolved organic matter to the trophic paradigm: the importance of water transparency in structuring pelagic ecosystems ,NSF| Spokes: SMALL: NORTHEAST: Collaborative: Building the Community to Address Data Integration of the Ecological Long Tail ,ARC| Discovery Projects - Grant ID: DP200100223Barnes, null; Robson, null; Neale, null; Williamson, null; Zepp, null; Madronich, null; Wilson, null; Andrady, null; Heikkilä, null; Bernhard, null; Bais, null; Neale, null; Bornman, null; Jansen, null; Klekociuk, null; Martinez-Abaigar, null; Robinson, null; Wang, null; Banaszak, null; Häder, null; Hylander, null; Rose, null; Wängberg, null; Foereid, null; Hou, null; Ossola, null; Paul, null; Ukpebor, null; Andersen, null; Longstreth, null; Schikowski, null; Solomon, null; Sulzberger, null; Bruckman, null; Pandey, null; White, null; Zhu, null; Zhu, null; Aucamp, null; Liley, null; McKenzie, null; Berwick, null; Byrne, null; Hollestein, null; Lucas, null; Olsen, null; Rhodes, null; Yazar, null; Young, null; 0000-0002-5715-3679; 0000-0002-8631-796X; 0000-0002-4047-8098; 0000-0001-7350-1912; 0000-0003-3720-4042; 0000-0003-0983-1313; 0000-0003-4546-2527; 0000-0001-8683-9998; 0000-0002-1050-5673; 0000-0002-1264-0756; 0000-0003-3899-2001; 0000-0001-7162-0854; 0000-0002-4635-4301; 0000-0003-2014-5859; 0000-0003-3335-0034; 0000-0002-9762-9862; 0000-0002-7130-9617; 0000-0002-5169-9881; 0000-0002-6667-3983; 0000-0002-4295-5660; 0000-0002-3740-5998; 0000-0002-1292-9381; 0000-0002-8531-1013; 0000-0002-2082-0466; 0000-0001-9884-2932; 0000-0003-4648-5958; 0000-0001-6959-4239; 0000-0002-0147-9952; 0000-0002-7976-5852; 0000-0001-7923-6726; 0000-0002-4559-9374; 0000-0002-8496-6413; 0000-0001-5475-3073; 0000-0003-1271-1072; 0000-0001-6563-6219; 0000-0002-3284-4043; 0000-0002-8601-0562; 0000-0003-0359-3633; 0000-0003-0977-9228; 0000-0002-8844-7928; 0000-0002-4484-7057; 0000-0001-5062-2180; 0000-0003-3029-1710; 0000-0001-8922-6791; 0000-0003-2736-3541; 0000-0003-4483-1888; 0000-0002-9107-6654; 0000-0003-0994-6196; 0000-0002-4163-6772;doi: 10.1007/s43630-022-00176-5 , 10.3929/ethz-b-000536700 , 10.60692/68wd9-rz432 , 10.60692/nh6e0-5rq74
pmid: 35191005
pmc: PMC8860140
doi: 10.1007/s43630-022-00176-5 , 10.3929/ethz-b-000536700 , 10.60692/68wd9-rz432 , 10.60692/nh6e0-5rq74
pmid: 35191005
pmc: PMC8860140
AbstractThe Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth’s surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1–67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.
Linnaeus University ... arrow_drop_down Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Photochemical & Photobiological SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-022-00176-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Linnaeus University ... arrow_drop_down Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Photochemical & Photobiological SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-022-00176-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Funded by:NSF | Collaborative Research: R...NSF| Collaborative Research: RUI: Transduction of Physiological Stress through Species Interactions: Indirect Effects of Climate ChangeEmily K. Lam; Emily K. Lam; Emily K. Lam; Metadel Abegaz; Metadel Abegaz; Alex R. Gunderson; Alex R. Gunderson; Alex R. Gunderson; Brian Tsukimura; Jonathon H. Stillman; Jonathon H. Stillman; Jonathon H. Stillman;Thermal extremes alter population processes, which can result in part from temperature-induced movement at different spatial and temporal scales. Thermal thresholds for animal movement likely change based on underlying thermal physiology and life-history stage, a topic that requires greater study. The intertidal porcelain crab Petrolisthes cinctipes currently experiences temperatures that can reach near-lethal levels in the high-intertidal zone at low tide. However, the thermal thresholds that trigger migration to cooler microhabitats, and the extent to which crabs move in response to temperature, remain unknown. Moreover, the influence of reproductive status on these thresholds is rarely investigated. We integrated demographic, molecular, behavioral, and physiological measurements to determine if behavioral thermal limits varied due to reproductive state. Demographic data showed a trend for gravid, egg bearing, crabs to appear more often under rocks in the cooler intertidal zone where crab density is highest. In situ expression of 31 genes related to stress, metabolism, and growth in the field differed significantly based on intertidal elevation, with mid-intertidal crabs expressing the gene for the reproductive yolk protein vitellogenin (vg) earlier in the season. Furthermore, VG protein levels were shown to increase with density for female hemolymph. Testing for temperatures that elicit movement revealed that gravid females engage in heat avoidance behavior at lower temperatures (i.e., have a lower voluntary thermal maximum, VTmax) than non-gravid females. VTmax was positively correlated with the temperature of peak firing rate for distal afferent nerve fibers in the walking leg, a physiological relationship that could correspond to the mechanistic underpinning for temperature dependent movement. The vulnerability of marine organisms to global change is predicated by their ability to utilize and integrate physiological and behavioral strategies in response to temperature to maximize survival and reproduction. Interactions between fine-scale temperature variation and reproductive biology can have important consequences for the ecology of species, and is likely to influence how populations respond to ongoing climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2022.796125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2022.796125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 23 Feb 2021 Switzerland, United StatesPublisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ..., NSF | Belmont Forum Collaborati...NSF| Collaborative Research: Combining NEON and remotely sensed habitats to determine climate impacts on community dynamics ,NSF| Belmont Forum Collaborative Research: Scenarios of Biodiversity and Ecosystem ServiceOrrin Myers; Georges Kunstler; Jalene M. LaMontagne; James A. Lutz; Istem Fer; Jordan Luongo; Renata Poulton-Kamakura; Janneke HilleRisLambers; Yassine Messaoud; Sam Pearse; Gregory S. Gilbert; Natalie L. Cleavitt; C. D. Reid; Inés Ibáñez; Michael A. Steele; Miranda D. Redmond; Susan L. Cohen; Jerry F. Franklin; Benoît Courbaud; Don C. Bragg; Ethan Ready; C. Lane Scher; Andreas P. Wion; William H. Schlesinger; Shubhi Sharma; Robert R. Parmenter; Amanda M. Schwantes; Scott M. Pearson; Thomas G. Whitham; Thomas T. Veblen; Christopher L. Kilner; Samantha Sutton; Chase L. Nuñez; Emily V. Moran; Nathan L. Stephenson; Adrian J. Das; Jennifer J. Swenson; Cathryn H. Greenberg; Roman Zlotin; James S. Clark; James S. Clark; Walter D. Koenig; Robert A. Andrus; Amy V. Whipple; Jill F. Johnstone; Eliot J. B. McIntire; Kyle C. Rodman; Timothy J. Fahey; Erin Shanahan; Jonathan Myers; Johannes M. H. Knops; Catherine A. Gehring; Diana Macias; Qinfeng Guo; Christopher M. Moore; Michael Dietze; Mélaine Aubry-Kientz; Dale G. Brockway; Michał Bogdziewicz; Kai Zhu; Yves Bergeron; Robert Daley; Margaret Swift; Kristin Legg;pmc: PMC7902660
AbstractIndirect climate effects on tree fecundity that come through variation in size and growth (climate-condition interactions) are not currently part of models used to predict future forests. Trends in species abundances predicted from meta-analyses and species distribution models will be misleading if they depend on the conditions of individuals. Here we find from a synthesis of tree species in North America that climate-condition interactions dominate responses through two pathways, i) effects of growth that depend on climate, and ii) effects of climate that depend on tree size. Because tree fecundity first increases and then declines with size, climate change that stimulates growth promotes a shift of small trees to more fecund sizes, but the opposite can be true for large sizes. Change the depresses growth also affects fecundity. We find a biogeographic divide, with these interactions reducing fecundity in the West and increasing it in the East. Continental-scale responses of these forests are thus driven largely by indirect effects, recommending management for climate change that considers multiple demographic rates.
Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Nature Communication... arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41467-020-20836-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, United Kingdom, United KingdomPublisher:Wiley Funded by:NSF | COLLABORATIVE RESEARCH: A...NSF| COLLABORATIVE RESEARCH: A Multi-scale Approach to Understanding Spatial and Population Variability in Emperor PenguinsNoah F. Greenwald; Sara Labrousse; Philip N. Trathan; Stéphanie Jenouvrier; Julienne Stroeve; Julienne Stroeve; Julienne Stroeve; Marika M. Holland; Barbara Wienecke; Shaye Wolf; Peter T. Fretwell; Judy Che-Castaldo; Christophe Barbraud; Michelle A. LaRue; Michelle A. LaRue;AbstractSpecies extinction risk is accelerating due to anthropogenic climate change, making it urgent to protect vulnerable species through legal frameworks in order to facilitate conservation actions that help mitigate risk. Here, we discuss fundamental concepts for assessing climate change risks to species using the example of the emperor penguin (Aptenodytes forsteri), currently being considered for protection under the US Endangered Species Act (ESA). This species forms colonies on Antarctic sea ice, which is projected to significantly decline due to ongoing greenhouse gas (GHG) emissions. We project the dynamics of all known emperor penguin colonies under different GHG emission scenarios using a climate‐dependent meta‐population model including the effects of extreme climate events based on the observational satellite record of colonies. Assessments for listing species under the ESA require information about how species resiliency, redundancy and representation (3Rs) will be affected by threats within the foreseeable future. Our results show that if sea ice declines at the rate projected by climate models under current energy system trends and policies, the 3Rs would be dramatically reduced and almost all colonies would become quasi‐extinct by 2100. We conclude that the species should be listed as threatened under the ESA.
Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 6visibility views 6 download downloads 17 Powered bymore_vert Woods Hole Open Acce... arrow_drop_down Woods Hole Open Access ServerArticle . 2021License: CC BYFull-Text: https://doi.org/10.1111/gcb.15806Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2021License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)Université de Versailles Saint-Quentin-en-Yvelines: HAL-UVSQArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)École Polytechnique, Université Paris-Saclay: HALArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)Institut national des sciences de l'Univers: HAL-INSUArticle . 2021License: CC BY ND SAFull-Text: https://hal.science/hal-03335774Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.15806&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Embargo end date: 29 Jun 2022 Russian Federation, Italy, United Kingdom, France, Russian Federation, Netherlands, ItalyPublisher:Wiley Funded by:NSF | Collaborative Research: P..., UKRI | Do past fires explain cur..., UKRI | Forecasting the impacts o...NSF| Collaborative Research: Predicting ecosystem resilience to climate and disturbance events with a multi-scale hydraulic trait framework ,UKRI| Do past fires explain current carbon dynamics of Amazonian forests? ,UKRI| Forecasting the impacts of drought on human-modified tropical forests by integrating models with dataJucker, Tommaso; Fischer, Fabian Jörg; Chave, Jérôme; Coomes, David; Caspersen, John; Ali, Arshad; Panzou, Grace Jopaul Loubota; Feldpausch, Ted R; Falster, Daniel; Usoltsev, Vladimir A; Adu-Bredu, Stephen; Alves, Luciana F; Aminpour, Mohammad; Angoboy, Ilondea B; Anten, Niels PR; Antin, Cécile; Askari, Yousef; Avilés, Rodrigo Muñoz; Ayyappan, Narayanan; Balvanera, Patricia; Banin, Lindsay; Barbier, Nicolas; Battles, John J; Beeckman, Hans; Bocko, Yannick E; Bond-Lamberty, Ben; Bongers, Frans; Bowers, Samuel; Brade, Thomas; Van Breugel, Michiel; Chantrain, Arthur; Chaudhary, Rajeev; Dai, Jingyu; Dalponte, Michele; Dimobe, Kangbéni; Domec, Jean-Christophe; Doucet, Jean-Louis; Duursma, Remko A; Enríquez, Moisés; Van Ewijk, Karin Y; Farfán-Rios, William; Fayolle, Adeline; Forni, Eric; Forrester, David I; Gilani, Hammad; Godlee, John L; Gourlet-Fleury, Sylvie; Haeni, Matthias; Hall, Jefferson S; He, Jie-Kun; Hemp, Andreas; Hernández-Stefanoni, José L; Higgins, Steven I; Holdaway, Robert J; Hussain, Kiramat; Hutley, Lindsay B; Ichie, Tomoaki; Iida, Yoshiko; Jiang, Hai-Sheng; Joshi, Puspa Raj; Kaboli, Hasan; Larsary, Maryam Kazempour; Kenzo, Tanaka; Kloeppel, Brian D; Kohyama, Takashi; Kunwar, Suwash; Kuyah, Shem; Kvasnica, Jakub; Lin, Siliang; Lines, Emily; Liu, Hongyan; Lorimer, Craig; Loumeto, Jean-Joël; Malhi, Yadvinder; Marshall, Peter L; Mattsson, Eskil; Matula, Radim; Meave, Jorge A; Mensah, Sylvanus; Mi, Xiangcheng; Momo, Stéphane; Moncrieff, Glenn R; Mora, Francisco; Nissanka, Sarath P; O'Hara, Kevin L; Pearce, Steven; Pelissier, Raphaël; Peri, Pablo L; Ploton, Pierre; Poorter, Lourens; Pour, Mohsen Javanmiri; Pourbabaei, Hassan; Rada, Juan Manuel Dupuy; Ribeiro, Sabina C; Ryan, Casey; Sanaei, Anvar; Sanger, Jennifer; Schlund, Michael; Sellan, Giacomo; Shenkin, Alexander; Sonké, Bonaventure; Sterck, Frank J; Svátek, Martin; Takagi, Kentaro; Trugman, Anna T; Ullah, Farman; Vadeboncoeur, Matthew A; Valipour, Ahmad; Vanderwel, Mark C; Vovides, Alejandra G; Wang, Weiwei; Wang, Li-Qiu; Wirth, Christian; Woods, Murray; Xiang, Wenhua; De Aquino Ximenes, Fabiano; Xu, Yaozhan; Yamada, Toshihiro; Zavala, Miguel A;pmid: 35703577
pmc: PMC9542605
AbstractData capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research—from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non‐forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC‐BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology—from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 59visibility views 59 download downloads 59 Powered bymore_vert CORE arrow_drop_down Fondazione Edmund Mach: IRIS-OpenPubArticle . 2022Full-Text: http://hdl.handle.net/10449/75855Data sources: Bielefeld Academic Search Engine (BASE)Natural Environment Research Council: NERC Open Research ArchiveArticle . 2022License: CC BYData sources: Bielefeld Academic Search Engine (BASE)Wageningen Staff PublicationsArticle . 2022License: CC BYData sources: Wageningen Staff PublicationsUniversity of Bristol: Bristol ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)CIRAD: HAL (Agricultural Research for Development)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1111/gcb.16302&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2022 SwitzerlandPublisher:Elsevier BV Funded by:NSF | Compressive Sampling for ..., EC | DyVirtNSF| Compressive Sampling for Uncertainty Modeling and Quantification of Dynamical Systems Subject to Highly Limited/Incomplete Data ,EC| DyVirtIoannis A. Kougioumtzoglou; George D. Pasparakis; Michael Beer; Michael Beer; Michael Beer; Ketson R. M. dos Santos;Abstract A methodology based on compressive sampling is developed for incomplete wind time-histories reconstruction and extrapolation in a single spatial dimension, as well as for related stochastic field statistics estimation. This relies on l 1 -norm minimization in conjunction with an adaptive basis re-weighting scheme. Indicatively, the proposed methodology can be employed for monitoring of wind turbine systems, where the objective relates to either reconstructing incomplete time-histories measured at specific points along the height of a turbine tower, or to extrapolating to other locations in the vertical dimension where sensors and measurement records are not available. Further, the methodology can be used potentially for environmental hazard modeling within the context of performance-based design optimization of structural systems. Unfortunately, a straightforward implementation of the aforementioned approach to account for two spatial dimensions is hindered by significant, even prohibitive in some cases, computational cost. In this regard, to address computational challenges associated with higher-dimensional domains, a methodology based on low rank matrices and nuclear norm minimization is developed next for wind field extrapolation in two spatial dimensions. The efficacy of the proposed methodologies is demonstrated by considering various numerical examples. These refer to reconstruction of wind time-histories with missing data compatible with a joint wavenumber-frequency power spectral density, as well as to extrapolation to various locations in the spatial domain.
CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107975&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 22visibility views 22 download downloads 45 Powered bymore_vert CORE arrow_drop_down Mechanical Systems and Signal ProcessingArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.ymssp.2021.107975&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 PortugalPublisher:Inter-Research Science Center Funded by:NSF | NSF Postdoctoral Fellowsh...NSF| NSF Postdoctoral Fellowship in Biology FY 2019: Trophic response of marine top predators to decadal changes in food web structureAuthors: Fuentes, Mariana M. P. B.; McMichael, Erin; Kot, Connie Y.; Silver-Gorges, Ian; +34 AuthorsFuentes, Mariana M. P. B.; McMichael, Erin; Kot, Connie Y.; Silver-Gorges, Ian; Wallace, Bryan P.; Godley, Brendan; Brooks, Annabelle M. L; Ceriani, Simona A; Cortés-Gómez, Adriana A.; Dawson, Tiffany M.; Dodge, Kara L.; Flint, Mark; Jensen, Michael P; Komoroske, Lisa M.; Kophamel, Sara; Lettrich, Matthew; Long, Christopher A.; Nelms, Sarah E.; Patrício, Ana Rita; Robinson, Nathan J.; Seminoff, Jeffrey; Ware, Matthew; Whitman, Elizabeth R.; Chevallier, Damien; Clyde-Brockway, Chelsea E.; Korgaonkar, Sumedha A.; Mancini, Agnese; Mello-Fonseca, J; Monsinjon, Jonathan; Neves-Ferreira, Isabella; Ortega, Anna A.; Patel, Samir H.; Pfaller, Joseph B.; Ramirez, Matthew D.; Raposo, Cheila; Smith, Caitlin E.; Abreu-Grobois, F. Alberto; Hays, Graeme C.;doi: 10.3354/esr01278
Sea turtles are an iconic group of marine megafauna that have been exposed to multiple anthropogenic threats across their different life stages, especially in the past decades. This has resulted in population declines, and consequently many sea turtle populations are now classified as threatened or endangered globally. Although some populations of sea turtles worldwide are showing early signs of recovery, many still face fundamental threats. This is problematic since sea turtles have important ecological roles. To encourage informed conservation planning and direct future research, we surveyed experts to identify the key contemporary threats (climate change, direct take, fisheries, pollution, disease, predation, and coastal and marine development) faced by sea turtles. Using the survey results and current literature, we also outline knowledge gaps in our understanding of the impact of these threats and how targeted future research, often involving emerging technologies, could close those gaps.
Endangered Species R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr01278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Endangered Species R... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2023 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3354/esr01278&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2024Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: A..., NSF | Collaborative Research: N..., EC | LeMoKiAC +1 projectsNSF| Collaborative Research: Arctic Stream Networks as Nutrient Sensors in Permafrost Ecosystems ,NSF| Collaborative Research: Network Cluster: Using Big Data approaches to assess ecohydrological resilience across scales ,EC| LeMoKiAC ,NSF| Collaborative Research: Network Cluster: Using Big Data approaches to assess ecohydrological resilience across scalesSayedeh Sara Sayedi; Benjamin W. Abbott; Boris Vannière; Bérangère Leys; Daniele Colombaroli; Graciela Gil Romera; Michał Słowiński; Julie C. Aleman; Olivier Blarquez; Angelica Feurdean; Kendrick Brown; Tuomas Aakala; Teija Alenius; Kathryn Allen; Maja Andric; Yves Bergeron; Siria Biagioni; Richard Bradshaw; Laurent Bremond; Elodie Brisset; Joseph Brooks; Sandra O. Brugger; Thomas Brussel; Haidee Cadd; Eleonora Cagliero; Christopher Carcaillet; Vachel Carter; Filipe X. Catry; Antoine Champreux; Emeline Chaste; Raphaël Daniel Chavardès; Melissa Chipman; Marco Conedera; Simon Connor; Mark Constantine; Colin Courtney Mustaphi; Abraham N. Dabengwa; William Daniels; Erik De Boer; Elisabeth Dietze; Joan Estrany; Paulo Fernandes; Walter Finsinger; Suzette G. A. Flantua; Paul Fox-Hughes; Dorian M. Gaboriau; Eugenia M.Gayo; Martin. P. Girardin; Jeffrey Glenn; Ramesh Glückler; Catalina González-Arango; Mariangelica Groves; Douglas S. Hamilton; Rebecca Jenner Hamilton; Stijn Hantson; K. Anggi Hapsari; Mark Hardiman; Donna Hawthorne; Kira Hoffman; Jun Inoue; Allison T. Karp; Patrik Krebs; Charuta Kulkarni; Niina Kuosmanen; Terri Lacourse; Marie-Pierre Ledru; Marion Lestienne; Colin Long; José Antonio López-Sáez; Nicholas Loughlin; Mats Niklasson; Javier Madrigal; S. Yoshi Maezumi; Katarzyna Marcisz; Michela Mariani; David McWethy; Grant Meyer; Chiara Molinari; Encarni Montoya; Scott Mooney; Cesar Morales-Molino; Jesse Morris; Patrick Moss; Imma Oliveras; José Miguel Pereira; Gianni Boris Pezzatti; Nadine Pickarski; Roberta Pini; Emma Rehn; Cécile C. Remy; Jordi Revelles; Damien Rius; Vincent Robin; Yanming Ruan; Natalia Rudaya; Jeremy Russell-Smith; Heikki Seppä; Lyudmila Shumilovskikh; William T.Sommers; Çağatay Tavşanoğlu; Charles Umbanhowar; Erickson Urquiaga; Dunia Urrego; Richard S. Vachula; Tuomo Wallenius; Chao You; Anne-Laure Daniau;Abstract Background The global human footprint has fundamentally altered wildfire regimes, creating serious consequences for human health, biodiversity, and climate. However, it remains difficult to project how long-term interactions among land use, management, and climate change will affect fire behavior, representing a key knowledge gap for sustainable management. We used expert assessment to combine opinions about past and future fire regimes from 99 wildfire researchers. We asked for quantitative and qualitative assessments of the frequency, type, and implications of fire regime change from the beginning of the Holocene through the year 2300. Results Respondents indicated some direct human influence on wildfire since at least ~ 12,000 years BP, though natural climate variability remained the dominant driver of fire regime change until around 5,000 years BP, for most study regions. Responses suggested a ten-fold increase in the frequency of fire regime change during the last 250 years compared with the rest of the Holocene, corresponding first with the intensification and extensification of land use and later with anthropogenic climate change. Looking to the future, fire regimes were predicted to intensify, with increases in frequency, severity, and size in all biomes except grassland ecosystems. Fire regimes showed different climate sensitivities across biomes, but the likelihood of fire regime change increased with higher warming scenarios for all biomes. Biodiversity, carbon storage, and other ecosystem services were predicted to decrease for most biomes under higher emission scenarios. We present recommendations for adaptation and mitigation under emerging fire regimes, while recognizing that management options are constrained under higher emission scenarios. Conclusion The influence of humans on wildfire regimes has increased over the last two centuries. The perspective gained from past fires should be considered in land and fire management strategies, but novel fire behavior is likely given the unprecedented human disruption of plant communities, climate, and other factors. Future fire regimes are likely to degrade key ecosystem services, unless climate change is aggressively mitigated. Expert assessment complements empirical data and modeling, providing a broader perspective of fire science to inform decision making and future research priorities.
Fire Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42408-023-00237-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 18 citations 18 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Fire Ecology arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2024 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticle . 2024Data sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1186/s42408-023-00237-9&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Preprint 2024Embargo end date: 01 Jan 2024 SwitzerlandPublisher:Oxford University Press (OUP) Funded by:NSF | NSF Engineering Research ..., EC | SoBigData, UKRI | Digitally Assisted Collec... +3 projectsNSF| NSF Engineering Research Center for Ultra-wide-area Resilient Electric Energy Transmission Network ,EC| SoBigData ,UKRI| Digitally Assisted Collective Governance of Smart City Commons - ARTIO ,SNSF| FuturICT 2.0 - Large scale experiments and simulations for the second generation of FuturICT ,EC| CoCi ,EC| ASSETAuthors: Evangelos Pournaras; Mark Christopher Ballandies; Stefano Bennati; Chien-fei Chen;Abstract Collective privacy loss becomes a colossal problem, an emergency for personal freedoms and democracy. But, are we prepared to handle personal data as scarce resource and collectively share data under the doctrine: as little as possible, as much as necessary? We hypothesize a significant privacy recovery if a population of individuals, the data collective, coordinates to share minimum data for running online services with the required quality. Here, we show how to automate and scale-up complex collective arrangements for privacy recovery using decentralized artificial intelligence. For this, we compare for the first time attitudinal, intrinsic, rewarded, and coordinated data sharing in a rigorous living-lab experiment of high realism involving >27,000 real data disclosures. Using causal inference and cluster analysis, we differentiate criteria predicting privacy and five key data-sharing behaviors. Strikingly, data-sharing coordination proves to be a win–win for all: remarkable privacy recovery for people with evident costs reduction for service providers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgae029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1093/pnasnexus/pgae029&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Springer Science and Business Media LLC Funded by:NSF | Collaborative Research: ...NSF| Collaborative Research: Inferring admixture history in non-model organisms using local ancestry detectionMing-Shan Wang; Gemma G. R. Murray; Daniel Mann; Pamela Groves; Alisa O. Vershinina; Megan A. Supple; Joshua D. Kapp; Russell Corbett-Detig; Sarah E. Crump; Ian Stirling; Kristin L. Laidre; Michael Kunz; Love Dalén; Richard E. Green; Beth Shapiro;pmid: 35711062
Polar bears (Ursus maritimus) and brown bears (Ursus arctos) are sister species possessing distinct physiological and behavioural adaptations that evolved over the last 500,000 years. However, comparative and population genomics analyses have revealed that several extant and extinct brown bear populations have relatively recent polar bear ancestry, probably as the result of geographically localized instances of gene flow from polar bears into brown bears. Here, we generate and analyse an approximate 20X paleogenome from an approximately 100,000-year-old polar bear that reveals a massive prehistoric admixture event, which is evident in the genomes of all living brown bears. This ancient admixture event was not visible from genomic data derived from living polar bears. Like more recent events, this massive admixture event mainly involved unidirectional gene flow from polar bears into brown bears and occurred as climate changes caused overlap in the ranges of the two species. These findings highlight the complex reticulate paths that evolution can take within a regime of radically shifting climate.
Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01753-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Nature Ecology & Evo... arrow_drop_down Nature Ecology & EvolutionArticle . 2022 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1038/s41559-022-01753-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022Embargo end date: 01 Jan 2022 Sweden, United Kingdom, Sweden, Switzerland, Denmark, Australia, AustraliaPublisher:Springer Science and Business Media LLC Publicly fundedFunded by:RCN | UV effect on the carbon c..., NSF | Collaborative LTREB Propo..., ARC | Discovery Projects - Gran... +4 projectsRCN| UV effect on the carbon cycle – Global Environmental Effects Assessment Panel ,NSF| Collaborative LTREB Proposal: Will increases in dissolved organic matter accelerate a shift in trophic status through anoxia-driven positive feedbacks in an oligotrophic lake? ,ARC| Discovery Projects - Grant ID: DP180100113 ,RCN| FlowConn: Connectivity enhancement due to thin liquid films in porous media flows ,NSF| OPUS: CRS Synthesis to add dissolved organic matter to the trophic paradigm: the importance of water transparency in structuring pelagic ecosystems ,NSF| Spokes: SMALL: NORTHEAST: Collaborative: Building the Community to Address Data Integration of the Ecological Long Tail ,ARC| Discovery Projects - Grant ID: DP200100223Barnes, null; Robson, null; Neale, null; Williamson, null; Zepp, null; Madronich, null; Wilson, null; Andrady, null; Heikkilä, null; Bernhard, null; Bais, null; Neale, null; Bornman, null; Jansen, null; Klekociuk, null; Martinez-Abaigar, null; Robinson, null; Wang, null; Banaszak, null; Häder, null; Hylander, null; Rose, null; Wängberg, null; Foereid, null; Hou, null; Ossola, null; Paul, null; Ukpebor, null; Andersen, null; Longstreth, null; Schikowski, null; Solomon, null; Sulzberger, null; Bruckman, null; Pandey, null; White, null; Zhu, null; Zhu, null; Aucamp, null; Liley, null; McKenzie, null; Berwick, null; Byrne, null; Hollestein, null; Lucas, null; Olsen, null; Rhodes, null; Yazar, null; Young, null; 0000-0002-5715-3679; 0000-0002-8631-796X; 0000-0002-4047-8098; 0000-0001-7350-1912; 0000-0003-3720-4042; 0000-0003-0983-1313; 0000-0003-4546-2527; 0000-0001-8683-9998; 0000-0002-1050-5673; 0000-0002-1264-0756; 0000-0003-3899-2001; 0000-0001-7162-0854; 0000-0002-4635-4301; 0000-0003-2014-5859; 0000-0003-3335-0034; 0000-0002-9762-9862; 0000-0002-7130-9617; 0000-0002-5169-9881; 0000-0002-6667-3983; 0000-0002-4295-5660; 0000-0002-3740-5998; 0000-0002-1292-9381; 0000-0002-8531-1013; 0000-0002-2082-0466; 0000-0001-9884-2932; 0000-0003-4648-5958; 0000-0001-6959-4239; 0000-0002-0147-9952; 0000-0002-7976-5852; 0000-0001-7923-6726; 0000-0002-4559-9374; 0000-0002-8496-6413; 0000-0001-5475-3073; 0000-0003-1271-1072; 0000-0001-6563-6219; 0000-0002-3284-4043; 0000-0002-8601-0562; 0000-0003-0359-3633; 0000-0003-0977-9228; 0000-0002-8844-7928; 0000-0002-4484-7057; 0000-0001-5062-2180; 0000-0003-3029-1710; 0000-0001-8922-6791; 0000-0003-2736-3541; 0000-0003-4483-1888; 0000-0002-9107-6654; 0000-0003-0994-6196; 0000-0002-4163-6772;doi: 10.1007/s43630-022-00176-5 , 10.3929/ethz-b-000536700 , 10.60692/68wd9-rz432 , 10.60692/nh6e0-5rq74
pmid: 35191005
pmc: PMC8860140
doi: 10.1007/s43630-022-00176-5 , 10.3929/ethz-b-000536700 , 10.60692/68wd9-rz432 , 10.60692/nh6e0-5rq74
pmid: 35191005
pmc: PMC8860140
AbstractThe Environmental Effects Assessment Panel of the Montreal Protocol under the United Nations Environment Programme evaluates effects on the environment and human health that arise from changes in the stratospheric ozone layer and concomitant variations in ultraviolet (UV) radiation at the Earth’s surface. The current update is based on scientific advances that have accumulated since our last assessment (Photochem and Photobiol Sci 20(1):1–67, 2021). We also discuss how climate change affects stratospheric ozone depletion and ultraviolet radiation, and how stratospheric ozone depletion affects climate change. The resulting interlinking effects of stratospheric ozone depletion, UV radiation, and climate change are assessed in terms of air quality, carbon sinks, ecosystems, human health, and natural and synthetic materials. We further highlight potential impacts on the biosphere from extreme climate events that are occurring with increasing frequency as a consequence of climate change. These and other interactive effects are examined with respect to the benefits that the Montreal Protocol and its Amendments are providing to life on Earth by controlling the production of various substances that contribute to both stratospheric ozone depletion and climate change.
Linnaeus University ... arrow_drop_down Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Photochemical & Photobiological SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-022-00176-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 55 citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Linnaeus University ... arrow_drop_down Linnaeus University Kalmar Växjö: Publications (DiVA)Article . 2022Data sources: Bielefeld Academic Search Engine (BASE)Photochemical & Photobiological SciencesArticle . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefRecolector de Ciencia Abierta, RECOLECTAArticle . 2022Data sources: Recolector de Ciencia Abierta, RECOLECTAKing's College, London: Research PortalArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)University of Copenhagen: ResearchArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Lancaster University: Lancaster EprintsArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s43630-022-00176-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Frontiers Media SA Funded by:NSF | Collaborative Research: R...NSF| Collaborative Research: RUI: Transduction of Physiological Stress through Species Interactions: Indirect Effects of Climate ChangeEmily K. Lam; Emily K. Lam; Emily K. Lam; Metadel Abegaz; Metadel Abegaz; Alex R. Gunderson; Alex R. Gunderson; Alex R. Gunderson; Brian Tsukimura; Jonathon H. Stillman; Jonathon H. Stillman; Jonathon H. Stillman;Thermal extremes alter population processes, which can result in part from temperature-induced movement at different spatial and temporal scales. Thermal thresholds for animal movement likely change based on underlying thermal physiology and life-history stage, a topic that requires greater study. The intertidal porcelain crab Petrolisthes cinctipes currently experiences temperatures that can reach near-lethal levels in the high-intertidal zone at low tide. However, the thermal thresholds that trigger migration to cooler microhabitats, and the extent to which crabs move in response to temperature, remain unknown. Moreover, the influence of reproductive status on these thresholds is rarely investigated. We integrated demographic, molecular, behavioral, and physiological measurements to determine if behavioral thermal limits varied due to reproductive state. Demographic data showed a trend for gravid, egg bearing, crabs to appear more often under rocks in the cooler intertidal zone where crab density is highest. In situ expression of 31 genes related to stress, metabolism, and growth in the field differed significantly based on intertidal elevation, with mid-intertidal crabs expressing the gene for the reproductive yolk protein vitellogenin (vg) earlier in the season. Furthermore, VG protein levels were shown to increase with density for female hemolymph. Testing for temperatures that elicit movement revealed that gravid females engage in heat avoidance behavior at lower temperatures (i.e., have a lower voluntary thermal maximum, VTmax) than non-gravid females. VTmax was positively correlated with the temperature of peak firing rate for distal afferent nerve fibers in the walking leg, a physiological relationship that could correspond to the mechanistic underpinning for temperature dependent movement. The vulnerability of marine organisms to global change is predicated by their ability to utilize and integrate physiological and behavioral strategies in response to temperature to maximize survival and reproduction. Interactions between fine-scale temperature variation and reproductive biology can have important consequences for the ecology of species, and is likely to influence how populations respond to ongoing climate change.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2022.796125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3389/fphys.2022.796125&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu