- home
- Advanced Search
- Energy Research
- 6. Clean water
- GB
- Sustainability
- Energy Research
- 6. Clean water
- GB
- Sustainability
description Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:MDPI AG Funded by:EC | RECONECTEC| RECONECTAbdul Naser Majidi; Zoran Vojinovic; Alida Alves; Sutat Weesakul;Arlex Sanchez;
Arlex Sanchez
Arlex Sanchez in OpenAIREFloris Boogaard;
Floris Boogaard
Floris Boogaard in OpenAIREJeroen Kluck;
Jeroen Kluck
Jeroen Kluck in OpenAIREAs a consequence of climate change and urbanization, many cities will have to deal with more flooding and extreme heat stress. This paper presents a framework to maximize the effectiveness of Nature-Based Solutions (NBS) for flood risk reduction and thermal comfort enhancement. The framework involves an assessment of hazards with the use of models and field measurements. It also detects suitable implementation sites for NBS and quantifies their effectiveness for thermal comfort enhancement and flood risk reduction. The framework was applied in a densely urbanized study area, for which different small-scale urban NBS and their potential locations for implementation were assessed. The overall results show that the most effective performance in terms of flood mitigation and thermal comfort enhancement is likely achieved by applying a range of different measures at different locations. Therefore, the work presented here shows the potential of the framework to achieve an effective combination of measures and their locations, which was demonstrated on the case of the Sukhumvit area in Bangkok (Thailand). This can be particularly suitable for assessing and planning flood mitigation measures in combination with heat stress reduction.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11226361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 60 citations 60 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
visibility 23visibility views 23 download downloads 44 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su11226361&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 China (People's Republic of)Publisher:MDPI AG Funded by:UKRI | RootDetect: Remote Detect...UKRI| RootDetect: Remote Detection and Precision Management of Root HealthShu-Di Fan; Yue-Ming Hu; Lu Wang; Zhen-Hua Liu;Zhou Shi;
Wen-Bin Wu; Yu-Chun Pan;Zhou Shi
Zhou Shi in OpenAIREGuang-Xing Wang;
A-Xing Zhu; Bo Li;Guang-Xing Wang
Guang-Xing Wang in OpenAIREdoi: 10.3390/su10103459
To increase the spatial resolution of Soil Moisture Active Passive (SMAP), this study modifies the downscaling factor model based on the Temperature Vegetation Drought Index (TVDI) using data from the Project for On-Board Autonomy (PROBA-V). In the modified model, TVDI parameters were derived from the temperature-vegetation space and the Enhanced Vegetation Index (EVI). This study was conducted in the north China region using SMAP, PROBA-V, and Moderate Resolution Imaging Spectroradiometer satellite images. The 9-km spatial resolution SMAP data was downscaled to 0.3-km spatial resolution soil moisture using a modified downscaling method. Downscaling accuracies from the original and modified downscaling factor models were compared based on field observations. The results show that both methods generated similar spatial distributions in which soil moisture estimates increased as vegetation coverage increased from built-up areas to forest. However, based on the root mean square error between observations and estimations, the modified model demonstrated an increased estimation accuracy of 4.2% for soil moisture compared to the original method. This study also implies that downscaled soil moisture shows promise as a data source for subsequent watershed scale studies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su10103459&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Publicly fundedAuthors:Sarah Bunney;
Sarah Bunney
Sarah Bunney in OpenAIREElizabeth Lawson;
Elizabeth Lawson
Elizabeth Lawson in OpenAIRESarah Cotterill;
Sarah Cotterill
Sarah Cotterill in OpenAIREDavid Butler;
David Butler
David Butler in OpenAIREdoi: 10.3390/su13158609
Water resource management in the UK is multifaceted, with a complexity of issues arising from acute and chronic stressors. Below average rainfall in spring 2020 coincided with large-scale changes to domestic water consumption patterns, arising from the first UK-wide COVID-19 lockdown, resulting in increased pressure on nationwide resources. A sector wide survey, semi-structured interviews with sector executives, meteorological data, water resource management plans and market information were used to evaluate the impact of acute and chronic threats on water demand in the UK, and how resilience to both can be increased. The COVID-19 pandemic was a particularly acute threat: water demand increased across the country, it was unpredictable and hard to forecast, and compounding this, below average rainfall resulted in some areas having to tanker in water to ‘top up’ the network. This occurred in regions of the UK that are ‘water stressed’ as well as those that are not. We therefore propose a need to look beyond ‘design droughts’ and ‘dry weather average demand’ to characterise the management and resilience of future water resources. As a sector, we can learn from this acute threat and administer a more integrated approach, combining action on the social value of water, the implementation of water trading and the development of nationwide multi-sectoral resilience plans to better respond to short and long-term disruptors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13158609&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Ahmed Farouk Kineber;
Ahmed Farouk Kineber
Ahmed Farouk Kineber in OpenAIRESaeed Reza Mohandes;
Saeed Reza Mohandes
Saeed Reza Mohandes in OpenAIREMohammed Magdy Hamed;
Mohammed Magdy Hamed
Mohammed Magdy Hamed in OpenAIREAtul Kumar Singh;
+1 AuthorsAtul Kumar Singh
Atul Kumar Singh in OpenAIREAhmed Farouk Kineber;
Ahmed Farouk Kineber
Ahmed Farouk Kineber in OpenAIRESaeed Reza Mohandes;
Saeed Reza Mohandes
Saeed Reza Mohandes in OpenAIREMohammed Magdy Hamed;
Mohammed Magdy Hamed
Mohammed Magdy Hamed in OpenAIREAtul Kumar Singh;
Soha Elayoty;Atul Kumar Singh
Atul Kumar Singh in OpenAIREdoi: 10.3390/su142113863
Recent years have seen a rise in the frequency and severity of extreme rainstorm events, which have caused widespread damage and death in numerous cities. The manufacture and use of storm drainage materials result in numerous environmental concerns in the construction industry. Green materials for storm drainage networks are environmentally friendly compared to their traditional counterparts. Identifying and assessing sustainability criteria for green materials for storm drain networks has been challenging. This study aims to determine the critical criteria for selecting green materials for storm drainage networks using a stationary analysis approach. To this end, a questionnaire survey was administered to Egyptian storm engineers to assess their importance based on a selection criteria 29 green materials. From the results obtained, “Operation and maintenance cost” and “Use of local material” were seen to be the “stationary materials”. The obtained findings in this research pave the way for the Egyptian storm industry towards becoming environmentally friendly, which will in turn improve the functioning mechanism of sewer networks.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142113863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su142113863&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors:Roua Amami;
Roua Amami
Roua Amami in OpenAIREKhaled Ibrahimi;
Khaled Ibrahimi
Khaled Ibrahimi in OpenAIREFarooq Sher;
Farooq Sher
Farooq Sher in OpenAIREPaul Milham;
+4 AuthorsPaul Milham
Paul Milham in OpenAIRERoua Amami;
Roua Amami
Roua Amami in OpenAIREKhaled Ibrahimi;
Khaled Ibrahimi
Khaled Ibrahimi in OpenAIREFarooq Sher;
Farooq Sher
Farooq Sher in OpenAIREPaul Milham;
Hiba Ghazouani; Sayed Chehaibi;Paul Milham
Paul Milham in OpenAIREZahra Hussain;
Zahra Hussain
Zahra Hussain in OpenAIREHafiz M. N. Iqbal;
Hafiz M. N. Iqbal
Hafiz M. N. Iqbal in OpenAIREdoi: 10.3390/su13063155
Over the years, cultivation using sustainable tillage practices has gained significant importance, but the impact of tillage on soil water infiltration is still a concern for landowners due to the possible effects on crop yield. This study investigates the impact of different tillage managements on the infiltration rate of sandy clay loam soil under a semiarid environment. Field experiments were conducted in Chott Mariem Sousse, Tunisia. The tillage practices consisted of three treatments, including a tine cultivator (TC, 16 cm), moldboard plows (MP, 36 cm) and no-tillage (NT). Three infiltration models, Kostiakov, Philip and Horton, were applied to adjust the observed data and evaluate the infiltration characteristics of the studied soils. Comparison criteria, including the coefficient of determination (R2), along with the root mean square error (RMSE) and mean absolute error (MAE), were used to investigate the best-fit model. The results showed that moldboard plowing enhanced soil infiltration capacity relative to tine cultivation and no-tillage treatments. The mean saturated hydraulic conductivity was highest under MP, while it was lowest in NT, with 33.4% and 34.1% reduction compared to TC and MP, respectively. Based on the obtained results, Philip’s model showed better results with observed infiltration due to a higher R2 (0.981, 0.973 and 0.967), lower RMSE (3.36, 9.04 and 9.21) and lower MAE (1.46, 3.53 and 3.72) recorded, respectively, for NT, MP and TC. Horton’s model had a low regression coefficient between observed and predicted values. It was suggested that the Philip two-term model can adequately describe the infiltration process in the study area.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 33 citations 33 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063155&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:MESTD | Ministry of Education, Sc...MESTD| Ministry of Education, Science and Technological Development, Republic of Serbia, Grant no. 451-03-68/2020-14/200134 (University of Novi Sad, Faculty of Technology)Authors:John Milan van der Bergh;
John Milan van der Bergh
John Milan van der Bergh in OpenAIREBojan Miljević;
Bojan Miljević
Bojan Miljević in OpenAIRESnežana Vučetić;
Snežana Vučetić
Snežana Vučetić in OpenAIREOlja Šovljanski;
+4 AuthorsOlja Šovljanski
Olja Šovljanski in OpenAIREJohn Milan van der Bergh;
John Milan van der Bergh
John Milan van der Bergh in OpenAIREBojan Miljević;
Bojan Miljević
Bojan Miljević in OpenAIRESnežana Vučetić;
Snežana Vučetić
Snežana Vučetić in OpenAIREOlja Šovljanski;
Siniša Markov; Mike Riley; Jonjaua Ranogajec;Olja Šovljanski
Olja Šovljanski in OpenAIREAna Bras;
Ana Bras
Ana Bras in OpenAIREdoi: 10.3390/su13084287
Reinforced concrete crack repair and maintenance costs are around 84% to 125% higher than construction costs, which emphasises the need to increase the infrastructure service life. Prolongation of the designed service life of concrete structures can have significant economic and ecological benefits by minimising the maintenance actions and related increase of carbon and energy expenditure, making it more sustainable. Different mechanisms such as diffusion, permeation and capillary action are responsible for the transport of fluids inside the concrete, which can impact on the structure service life. This paper presents data on microbially induced repair and self-healing solutions for cementitious materials available in the contemporary literature and compares results of compressive strength test and capillary water absorption test, which are relevant to their sealing and mechanical characteristics. The results of the repair and self-healing solutions (relative to unassisted recovery processes) were “normalized.” Externally applied bacteria-based solutions can improve the compressive strength of cementitious materials from 13% to 27%. The internal solution based solely on bacterial suspension had 19% improvement efficacy. Results also show that “hybrid” solutions, based on both bio-based and non-bio-based components, whether externally or internally applied, have the potential for best repair results, synergistically combining their benefits.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13084287&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Authors:Alaa Ahmed;
Amin Sharifi Haddad;Alaa Ahmed
Alaa Ahmed in OpenAIRERoozbeh Rafati;
Roozbeh Rafati
Roozbeh Rafati in OpenAIREAhmed Bashir;
+2 AuthorsAhmed Bashir
Ahmed Bashir in OpenAIREAlaa Ahmed;
Amin Sharifi Haddad;Alaa Ahmed
Alaa Ahmed in OpenAIRERoozbeh Rafati;
Roozbeh Rafati
Roozbeh Rafati in OpenAIREAhmed Bashir;
Ahmed M. AlSabagh;Ahmed Bashir
Ahmed Bashir in OpenAIREAmany A. Aboulrous;
Amany A. Aboulrous
Amany A. Aboulrous in OpenAIREdoi: 10.3390/su13063399
handle: 2164/16083
Esters were found to be promising alternatives to oil, as a constituent of drilling fluids, due to their biodegradability and bioaccumulation attributes. In this study, we used ethyl octanoate ester (EO) as a low molecular weight synthetic oil for formulating an ester-based drilling fluid (EBDF). Aluminum oxide nanorods (nanoparticles) were introduced as a Pickering emulsion stabilizer. Like the commercial emulsifiers, they showed that they stabilized the invert emulsion drilling fluid in our study. The rheological and filtration properties of the EBDF were tested at normal pressure and three temperatures: low temperature deepwater (LT) conditions of 2.6 °C, normal pressure and normal temperature (NPNT) conditions of 26.8 °C, and elevated temperature conditions of 70 °C. To enhance the stability and filtration properties of the drilling fluid, aluminum oxide nanoparticles (NPs) were used. An optimum concentration of 1 wt% was found to provide superior rheological performance and higher stability than samples without NPs at NPNT, LT, and elevated temperature conditions. Steadier gel rheology was exhibited at elevated temperature conditions, and a slow rate of an increasing trend occurred at the lower temperatures, with increasing NP concentrations up to 1.5 wt%. Filtration loss tests presented a reduction of fluid loss with increasing the NP concentration. The results demonstrate that a reduction of up to 45% was achieved with the addition of 1 wt% NP. These results show that nano-enhancement of ethyl octanoate drilling fluids would suffice to provide a wider range of operational temperatures for deepwater drilling operations by providing better thermal stability at elevated temperatures and maintaining stability at lower temperatures.
Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16083Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Aberdeen University ... arrow_drop_down Aberdeen University Research Archive (AURA)Article . 2021License: CC BYFull-Text: https://hdl.handle.net/2164/16083Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su13063399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors:Helena M. Ramos;
Helena M. Ramos
Helena M. Ramos in OpenAIREMohsen Besharat;
Mohsen Besharat
Mohsen Besharat in OpenAIREdoi: 10.3390/su132413889
Urban drainage systems are in transition from functioning simply as a transport system to becoming an important element of urban flood protection measures providing considerable influence on urban infrastructure sustainability. Rapid urbanization combined with the implications of climate change is one of the major emerging challenges. The increased concerns with water security and the ageing of existing drainage infrastructure are new challenges in improving urban water management. This study carried out in the Seixal area in Portugal examines flood risk analyses and mitigation techniques performed by computational modelling using MIKE SHE from the Danish Hydraulic Institute (DHI). Several scenarios were compared regarding flood risk and sustainable urban drainage systems (SuDS) efficiency. To obtain a more accurate analysis, the economic viability of each technique was analyzed as well through (i) life cost analysis and (ii) taking into account the damages caused by a certain type of flood. The results present that the best scenario is the one that will minimize the effects of great urbanization and consequently the flood risk, which combines two different measures: permeable pavement and detention basin. This alternative allows us to fully explore the mitigation capacity of each viable technique, demonstrating a very important improvement in the flood mitigation system in Seixal.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su132413889&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors: Nan Lu; Yang Wei;Zhaoxin Zhang;
Yan Li; +2 AuthorsZhaoxin Zhang
Zhaoxin Zhang in OpenAIRENan Lu; Yang Wei;Zhaoxin Zhang;
Yan Li; Gang Li; Jichang Han;Zhaoxin Zhang
Zhaoxin Zhang in OpenAIREdoi: 10.3390/su14106270
Heavy metal pollution in soils is an issue of global concern, and many scholars have focused on Cadmium (Cd) because of its strong biological migration and toxicity. This study explored arable land soil, changes in external Cd contamination processes and its response to soil moisture conditions, and indoor simulation. After adding an external source of 5 mg/kg d.w., the distribution of soil Cd fractions content, EXC-Cd, CAB-Cd, FMO-Cd, OM-Cd, and RES-Cd, were continuously monitored under different water management regimes, and correlation analysis and regression equations were calculated. The results show that after external Cd entered arable land soils, the binging strength of pollutants and soil gradually increased with incubation time, and the distribution of Cd chemical forms was more stable under different water management regimes. The oversaturated water content promotes the transformation of EXC-Cd to other forms. The transformation of CAB-Cd fractions can be accelerated to other fractions by field capacity, and the active conversion period was 30–60 d. Not all Cd fractions correlated between each other, under the four water management regimes, but it seems that the reducibility of the soil environment was more conducive to external Cd fixation and stability. The response surface design method (RSM) was used to establish quantitative regimes between Cd fractions with incubation time and soil moisture, and the soil moisture content and incubation time had an obvious effect on FMO-Cd content, with R2 = 0.9542.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su14106270&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Indrajit Pal;
Indrajit Pal
Indrajit Pal in OpenAIREGanesh Dhungana;
Ganesh Dhungana
Ganesh Dhungana in OpenAIREAyush Baskota;
Ayush Baskota
Ayush Baskota in OpenAIREParmeshwar Udmale;
+4 AuthorsParmeshwar Udmale
Parmeshwar Udmale in OpenAIREIndrajit Pal;
Indrajit Pal
Indrajit Pal in OpenAIREGanesh Dhungana;
Ganesh Dhungana
Ganesh Dhungana in OpenAIREAyush Baskota;
Ayush Baskota
Ayush Baskota in OpenAIREParmeshwar Udmale;
Parmeshwar Udmale
Parmeshwar Udmale in OpenAIREMayuri Ashokrao Gadhawe;
Mayuri Ashokrao Gadhawe
Mayuri Ashokrao Gadhawe in OpenAIREPuvadol Doydee;
Puvadol Doydee
Puvadol Doydee in OpenAIRETanh T. N. Nguyen;
Tanh T. N. Nguyen
Tanh T. N. Nguyen in OpenAIRESeak Sophat;
Seak Sophat
Seak Sophat in OpenAIREdoi: 10.3390/su15118469
The Lower Mekong Basin (LMB) is a subsidiary region of the Mekong River, with approximately 50 million people directly dependent on the river for livelihood and economic activities. However, communities in the region are increasingly exposed to multiple hazards that have significant direct and indirect impacts on their livelihoods. To implement efficient risk management strategies, it is important to understand the interlinkages between the different dimensions and factors that influence livelihood security and resilience in such communities. Through a literature review and expert workshop, this paper studies the multi-hazard scenario and impacts in the LMB region and the interlinkages between livelihoods and resilience in the LMB communities. The paper consolidates these findings and proposes a localized assessment framework that can be used by stakeholders in decision-making process. Floods and droughts were identified as primary natural hazards, while a multi-hazard assessment highlighted a wide spatial variation in the hazard levels across the region. The primary impacts of such hazards are on the agricultural communities dependent on the basin’s ecosystem and natural resources for their livelihoods. A holistic framework has been proposed to measure the multi-hazard livelihood security and resilience in LMB communities that can be used by government authorities and development partners in planning and implementing mitigation and preparedness activities to manage and reducing the risk of hazards.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15118469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/su15118469&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu