- home
- Advanced Search
- Energy Research
- 7. Clean energy
- GB
- Wind Energy Science
- Energy Research
- 7. Clean energy
- GB
- Wind Energy Science
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Copernicus GmbH Funded by:EC | NEXUSEC| NEXUSAuthors: Puisa, Romanas; Bolbot, Victor; Newman, Andrew; Vassalos, Dracos;Abstract. As wind farms are moving farther offshore, logistical concepts increasingly include service operation vessels (SOVs) as the prime means of service delivery. However, given the complexity of SOV operations in hostile environments, their safety management is challenging. The objective of this paper is to propose a quantitative, non-probabilistic metric for the preliminary comparison of SOV operational phases. The metric is used as a conditional proxy for the incident likelihood, conditioned upon the presence of similar resources (manpower, time, skills, knowledge, information, etc.) for risk management across compared operational phases. The comparison shows that the three considered phases of SOV operation have rather comparable levels of variability, hence the likelihood for incidents. However, the interface between the SOV and turbine via the gangway system and the manoeuvring between turbines seem to show a higher potential for incidents and performance (work efficiency) shortfalls.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-273-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 12 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-273-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Authors: Charlotte Strang-Moran;doi: 10.5194/wes-2020-56
Abstract. Subsea power cable failure is an issue which is detrimental to both export cables for Offshore Transmission Owners (OFTO) and inter-array cables for wind farm operators. As the offshore wind sector advances in technology, size and capability, future sites will be farther offshore to harness the most powerful of wind conditions. As technology adapts and offshore wind develops, subsea cables are also required to acclimatise and become more reliable. This paper will review current subsea cable failures in the UK sector. In addition, it will provide an overview of the methodology used to initiate the failure trending, and further discuss the importance of accurate data and the constraints on the initial findings.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-56&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-56&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Copernicus GmbH Funded by:UKRI | Supergen Wind HubUKRI| Supergen Wind HubAuthors: Peyman Amirafshari; Feargal Brenan; Athanasios Kolios;Abstract. Offshore wind turbine (OWT) support structures need to be designed against fatigue failure under cyclic aerodynamic and wave loading. The fatigue failure can be accelerated in a corrosive sea environment. Traditionally, a stress–life approach called the S–N (stress–number of cycles) curve method has been used for the design of structures against fatigue failure. There are a number of limitations in the S–N approach related to welded structures which can be addressed by the fracture mechanics approach. In this paper the limitations of the S–N approach related to OWT support structure are addressed and a fatigue design framework based on fracture mechanics is developed. The application of the framework to a monopile OWT support structure is demonstrated and optimisation of in-service inspection of the structure is studied. It was found that both the design of the weld joint and non-destructive testing (NDT) techniques can be optimised to reduce in-service inspection frequency. Furthermore, probabilistic fracture mechanics as a form of risk-based design is outlined and its application to the monopile support structure is studied. The probabilistic model showed a better capability to account for NDT reliability over a range of possible crack sizes as well as to provide a risk associated with the chosen inspection time which can be used in inspection cost–benefit analysis. There are a number of areas for future research, including a better estimate of fatigue stress with a time-history analysis, the application of the framework to other types of support structures such as jackets and tripods, and integration of risk-based optimisation with a cost–benefit analysis.
Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-677-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 44 Powered bymore_vert Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-677-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, United KingdomPublisher:Copernicus GmbH Funded by:EC | AEOLUS4FUTUREEC| AEOLUS4FUTUREA. Bianchini; A. Bianchini; G. Bangga; G. Bangga; I. Baring-Gould; A. Croce; A. Croce; J. I. Cruz; R. Damiani; G. Erfort; G. Erfort; C. Simao Ferreira; C. Simao Ferreira; D. Infield; C. N. Nayeri; C. N. Nayeri; G. Pechlivanoglou; M. Runacres; M. Runacres; G. Schepers; G. Schepers; B. Summerville; D. Wood; A. Orrell;Abstract. While modern wind turbines have become by far the largest rotating machines on Earth with further upscaling planned for the future, a renewed interest in small wind turbines is fostering energy transition and smart grid development. Small machines have traditionally not received the same level of aerodynamic refinement of their larger counterparts, resulting in lower efficiency, lower capacity factors, and therefore a higher cost of energy. In an effort to reduce this gap, research programmes are developing worldwide. With this background, the scope of the present study is twofold. In the first part of this paper, an overview of the current status of the technology is presented in terms of technical maturity, diffusion, and cost. The second part of the study proposes five grand challenges that are thought to be key to fostering the development of small wind turbine technology in the near future, i.e.: (1) improve energy conversion of modern SWTs through better design and control, especially in the case of turbulent wind; (2) better predict long-term turbine performance with limited resource measurements and prove reliability; (3) improve the economic viability of small wind energy; (4) facilitate the contribution of SWTs to the energy demand and electrical system integration; (5) foster engagement, social acceptance, and deployment for global distributed wind markets. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Based on them, improvement areas are suggested within which ten key enabling actions are finally proposed.
Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 6 Powered bymore_vert Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2020Embargo end date: 04 Jan 2021 United Kingdom, GermanyPublisher:Copernicus GmbH Jörg Alber; Rodrigo Soto-Valle; Marinos Manolesos; Sirko Bartholomay; Christian Navid Nayeri; Marvin Schönlau; Christian Menzel; Christian Oliver Paschereit; Joachim Twele; Jens Fortmann;Abstract. This paper investigates the aerodynamic impact of Gurney flaps on a research wind turbine of the Hermann-Föttinger Institute at the Technische Universität Berlin. The rotor radius is 1.5 m, and the blade configurations consist of the clean and the tripped baseline cases, emulating the effects of forced leading-edge transition. The wind tunnel experiments include three operation points based on tip speed ratios of 3.0, 4.3, and 5.6, reaching Reynolds numbers of approximately 2.5×105. The measurements are taken by means of three different methods: ultrasonic anemometry in the wake, surface pressure taps in the midspan blade region, and strain gauges at the blade root. The retrofit applications consist of two Gurney flap heights of 0.5 % and 1.0 % in relation to the chord length, which are implemented perpendicular to the pressure side at the trailing edge. As a result, the Gurney flap configurations lead to performance improvements in terms of the axial wake velocities, the angles of attack and the lift coefficients. The enhancement of the root bending moments implies an increase in both the rotor torque and the thrust. Furthermore, the aerodynamic impact appears to be more pronounced in the tripped case compared to the clean case. Gurney flaps are considered a passive flow-control device worth investigating for the use on horizontal-axis wind turbines.
CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-5-1645-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 14 Powered bymore_vert CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-5-1645-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Copernicus GmbH Funded by:UKRI | Improving Understanding a...UKRI| Improving Understanding and Parameterisation of the Marine Atmospheric Boundary Layer (MABL) in near coastal regionsAuthors: Sarah J. Ollier; Simon J. Watson;Abstract. Mesoscale meteorological phenomena, including atmospheric gravity waves (AGWs) and including trapped lee waves (TLWs), can result from flow over topography or coastal transition in the presence of stable atmospheric stratification, particularly with strong capping inversions. Satellite images show that topographically forced TLWs frequently occur around near-coastal offshore wind farms. Yet current understanding of how they interact with individual turbines and whole farm energy output is limited. This parametric study investigates the potential impact of TLWs on a UK near-coastal offshore wind farm, Westermost Rough (WMR), resulting from westerly–southwesterly flow over topography in the southeast of England. Computational fluid dynamics (CFD) modelling (using Ansys CFX) of TLW situations based on real atmospheric conditions at WMR was used to better understand turbine level and whole wind farm performance in this parametric study based on real inflow conditions. These simulations indicated that TLWs have the potential to significantly alter the wind speeds experienced by and the resultant power output of individual turbines and the whole wind farm. The location of the wind farm in the TLW wave cycle was an important factor in determining the magnitude of TLW impacts, given the expected wavelength of the TLW. Where the TLW trough was coincident with the wind farm, the turbine wind speeds and power outputs were more substantially reduced compared with when the TLW peak was coincident with the location of the wind farm. These reductions were mediated by turbine wind speeds and wake losses being superimposed on the TLW. However, the same initial flow conditions interacting with topography under different atmospheric stability settings produce differing near-wind-farm flow. Factors influencing the flow within the wind farm under the different stability conditions include differing, hill and coastal transition recovery, wind farm blockage effects, and wake recovery. Determining how much of the differences in wind speed and power output in the wind farm resulted from the TLW is an area for future development.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-1179-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-1179-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2016 Denmark, Netherlands, NetherlandsPublisher:Copernicus GmbH G. A. M. van Kuik; J. Peinke; R. Nijssen; D. Lekou; J. Mann; J. N. Sørensen; C. Ferreira; J. W. van Wingerden; D. Schlipf; P. Gebraad; H. Polinder; A. Abrahamsen; G. J. W. van Bussel; J. D. Sørensen; P. Tavner; C. L. Bottasso; C. L. Bottasso; M. Muskulus; D. Matha; H. J. Lindeboom; S. Degraer; O. Kramer; S. Lehnhoff; M. Sonnenschein; P. E. Sørensen; R. W. Künneke; P. E. Morthorst; K. Skytte;doi: 10.5194/wes-1-1-2016
Abstract. The European Academy of Wind Energy (eawe), representing universities and institutes with a significant wind energy programme in 14 countries, has discussed the long-term research challenges in wind energy. In contrast to research agendas addressing short- to medium-term research activities, this eawe document takes a longer-term perspective, addressing the scientific knowledge base that is required to develop wind energy beyond the applications of today and tomorrow. In other words, this long-term research agenda is driven by problems and curiosity, addressing basic research and fundamental knowledge in 11 research areas, ranging from physics and design to environmental and societal aspects. Because of the very nature of this initiative, this document does not intend to be permanent or complete. It shows the vision of the experts of the eawe, but other views may be possible. We sincerely hope that it will spur an even more intensive discussion worldwide within the wind energy community.
Wind Energy Science arrow_drop_down DANS (Data Archiving and Networked Services)Review . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryReview . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-1-1-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 187 citations 187 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 231visibility views 231 download downloads 77 Powered bymore_vert Wind Energy Science arrow_drop_down DANS (Data Archiving and Networked Services)Review . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryReview . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-1-1-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Copernicus GmbH Authors: Lin Wang; Athanasios Kolios; Maria Martinez Luengo; Xiongwei Liu;doi: 10.5194/wes-2016-41
Abstract. A wind turbine tower supports the main components of the wind turbine (e.g. rotor, nacelle, drive train components, etc.). The structural properties of the tower (such as stiffness and natural frequency) can significantly affect the performance of the wind turbine, and the cost of the tower is a considerable portion of the overall wind turbine cost. Therefore, an optimal structural design of the tower, which has a minimum cost and meets all design criteria (such as stiffness and strength requirements), is crucial to ensure efficient, safe and economic design of the whole wind turbine system. In this work, a structural optimisation model for wind turbine towers has been developed based on a combined parametric FEA (finite element analysis) and GA (genetic algorithm) model. The top diameter, bottom diameter and thickness distributions of the tower are taken as design variables. The optimisation model minimises the tower mass with six constraint conditions, i.e. deformation, ultimate stress, fatigue, buckling, vibration and design variable constraints. After validation, the model has been applied to the structural optimisation of a 5MW wind turbine tower. The results demonstrate that the proposed structural optimisation model is capable of accurately and effectively achieving an optimal structural design of wind turbine towers, which significantly improves the efficiency of structural optimisation of wind turbine towers. The developed framework is generic in nature and can be employed for a series of related problems, when advanced numerical models are required to predict structural responses and to optimise the structure.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2016-41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2016-41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Copernicus GmbH M. J. LoCascio; M. J. LoCascio; C. J. Bay; M. Bastankhah; G. E. Barter; P. A. Fleming; L. A. Martínez-Tossas;Abstract. Annual energy production (AEP) is often the objective function in wind plant layout optimization studies. The conventional method to compute AEP for a wind farm is to first evaluate power production for each discrete wind direction and speed using either computational fluid dynamics simulations or engineering wake models. The AEP is then calculated by weighted-averaging (based on the wind rose at the wind farm site) the power produced across all wind directions and speeds. We propose a novel formulation for time-averaged wake velocity that incorporates an analytical integral of a wake deficit model across every wind direction. This approach computes the average flow field more efficiently, and layout optimization is an obvious application to exploit this benefit. The clear advantage of this new approach is that the layout optimization produces solutions with comparable AEP performance yet is completed 2 orders of magnitude faster. The analytical integral and the use of a Fourier expansion to express the wind speed and wind direction frequency create a relatively smooth solution space for the gradient-based optimizer to excel in comparison to the existing weighted-averaging power calculation.
Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2022License: CC BYFull-Text: http://dro.dur.ac.uk/36470/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1137-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2022License: CC BYFull-Text: http://dro.dur.ac.uk/36470/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1137-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Copernicus GmbH Avi Purkayastha; Nicola Bodini; Vincent Pronk; Caroline Draxl; Caroline Draxl; Ethan Young; Mike Optis; Julie K. Lundquist; Julie K. Lundquist; Julie K. Lundquist; Patrick Moriarty;Abstract. Mesoscale numerical weather prediction (NWP) models are generally considered more accurate than reanalysis products in characterizing the wind resource at heights of interest for wind energy, given their finer spatial resolution and more comprehensive physics. However, advancements in the latest ERA-5 reanalysis product motivate an assessment on whether ERA-5 can model wind speeds as well as a state-of-the-art NWP model – the Weather Research and Forecasting (WRF) Model. We consider this research question for both simple terrain and offshore applications. Specifically, we compare wind profiles from ERA-5 and the preliminary WRF runs of the Wind Integration National Dataset (WIND) Toolkit Long-term Ensemble Dataset (WTK-LED) to those observed by lidars at a site in Oklahoma, United States, and in a United States Atlantic offshore wind energy area. We find that ERA-5 shows a significant negative bias (∼-1ms-1) at both locations, with a larger bias at the land-based site. WTK-LED-predicted wind speed profiles show a limited negative bias (∼-0.5ms-1) offshore and a slight positive bias (∼+0.5ms-1) at the land-based site. On the other hand, we find that ERA-5 outperforms WTK-LED in terms of the centered root-mean-square error (cRMSE) and correlation coefficient, for both the land-based and offshore cases, in all atmospheric stability conditions. We find that WTK-LED's higher cRMSE is caused by its tendency to overpredict the amplitude of the wind speed diurnal cycle. At the land-based site, this is partially caused by wind plant wake effects not being accurately captured by WTK-LED.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-487-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-487-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:Copernicus GmbH Funded by:EC | NEXUSEC| NEXUSAuthors: Puisa, Romanas; Bolbot, Victor; Newman, Andrew; Vassalos, Dracos;Abstract. As wind farms are moving farther offshore, logistical concepts increasingly include service operation vessels (SOVs) as the prime means of service delivery. However, given the complexity of SOV operations in hostile environments, their safety management is challenging. The objective of this paper is to propose a quantitative, non-probabilistic metric for the preliminary comparison of SOV operational phases. The metric is used as a conditional proxy for the incident likelihood, conditioned upon the presence of similar resources (manpower, time, skills, knowledge, information, etc.) for risk management across compared operational phases. The comparison shows that the three considered phases of SOV operation have rather comparable levels of variability, hence the likelihood for incidents. However, the interface between the SOV and turbine via the gangway system and the manoeuvring between turbines seem to show a higher potential for incidents and performance (work efficiency) shortfalls.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-273-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
visibility 1visibility views 1 download downloads 12 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-273-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Copernicus GmbH Authors: Charlotte Strang-Moran;doi: 10.5194/wes-2020-56
Abstract. Subsea power cable failure is an issue which is detrimental to both export cables for Offshore Transmission Owners (OFTO) and inter-array cables for wind farm operators. As the offshore wind sector advances in technology, size and capability, future sites will be farther offshore to harness the most powerful of wind conditions. As technology adapts and offshore wind develops, subsea cables are also required to acclimatise and become more reliable. This paper will review current subsea cable failures in the UK sector. In addition, it will provide an overview of the methodology used to initiate the failure trending, and further discuss the importance of accurate data and the constraints on the initial findings.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-56&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2020-56&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020 United KingdomPublisher:Copernicus GmbH Funded by:UKRI | Supergen Wind HubUKRI| Supergen Wind HubAuthors: Peyman Amirafshari; Feargal Brenan; Athanasios Kolios;Abstract. Offshore wind turbine (OWT) support structures need to be designed against fatigue failure under cyclic aerodynamic and wave loading. The fatigue failure can be accelerated in a corrosive sea environment. Traditionally, a stress–life approach called the S–N (stress–number of cycles) curve method has been used for the design of structures against fatigue failure. There are a number of limitations in the S–N approach related to welded structures which can be addressed by the fracture mechanics approach. In this paper the limitations of the S–N approach related to OWT support structure are addressed and a fatigue design framework based on fracture mechanics is developed. The application of the framework to a monopile OWT support structure is demonstrated and optimisation of in-service inspection of the structure is studied. It was found that both the design of the weld joint and non-destructive testing (NDT) techniques can be optimised to reduce in-service inspection frequency. Furthermore, probabilistic fracture mechanics as a form of risk-based design is outlined and its application to the monopile support structure is studied. The probabilistic model showed a better capability to account for NDT reliability over a range of possible crack sizes as well as to provide a risk associated with the chosen inspection time which can be used in inspection cost–benefit analysis. There are a number of areas for future research, including a better estimate of fatigue stress with a time-history analysis, the application of the framework to other types of support structures such as jackets and tripods, and integration of risk-based optimisation with a cost–benefit analysis.
Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-677-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 44 Powered bymore_vert Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-6-677-2021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 Netherlands, United KingdomPublisher:Copernicus GmbH Funded by:EC | AEOLUS4FUTUREEC| AEOLUS4FUTUREA. Bianchini; A. Bianchini; G. Bangga; G. Bangga; I. Baring-Gould; A. Croce; A. Croce; J. I. Cruz; R. Damiani; G. Erfort; G. Erfort; C. Simao Ferreira; C. Simao Ferreira; D. Infield; C. N. Nayeri; C. N. Nayeri; G. Pechlivanoglou; M. Runacres; M. Runacres; G. Schepers; G. Schepers; B. Summerville; D. Wood; A. Orrell;Abstract. While modern wind turbines have become by far the largest rotating machines on Earth with further upscaling planned for the future, a renewed interest in small wind turbines is fostering energy transition and smart grid development. Small machines have traditionally not received the same level of aerodynamic refinement of their larger counterparts, resulting in lower efficiency, lower capacity factors, and therefore a higher cost of energy. In an effort to reduce this gap, research programmes are developing worldwide. With this background, the scope of the present study is twofold. In the first part of this paper, an overview of the current status of the technology is presented in terms of technical maturity, diffusion, and cost. The second part of the study proposes five grand challenges that are thought to be key to fostering the development of small wind turbine technology in the near future, i.e.: (1) improve energy conversion of modern SWTs through better design and control, especially in the case of turbulent wind; (2) better predict long-term turbine performance with limited resource measurements and prove reliability; (3) improve the economic viability of small wind energy; (4) facilitate the contribution of SWTs to the energy demand and electrical system integration; (5) foster engagement, social acceptance, and deployment for global distributed wind markets. To tackle these challenges, a series of unknowns and gaps are first identified and discussed. Based on them, improvement areas are suggested within which ten key enabling actions are finally proposed.
Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 13visibility views 13 download downloads 6 Powered bymore_vert Strathprints arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2022-34&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2020Embargo end date: 04 Jan 2021 United Kingdom, GermanyPublisher:Copernicus GmbH Jörg Alber; Rodrigo Soto-Valle; Marinos Manolesos; Sirko Bartholomay; Christian Navid Nayeri; Marvin Schönlau; Christian Menzel; Christian Oliver Paschereit; Joachim Twele; Jens Fortmann;Abstract. This paper investigates the aerodynamic impact of Gurney flaps on a research wind turbine of the Hermann-Föttinger Institute at the Technische Universität Berlin. The rotor radius is 1.5 m, and the blade configurations consist of the clean and the tripped baseline cases, emulating the effects of forced leading-edge transition. The wind tunnel experiments include three operation points based on tip speed ratios of 3.0, 4.3, and 5.6, reaching Reynolds numbers of approximately 2.5×105. The measurements are taken by means of three different methods: ultrasonic anemometry in the wake, surface pressure taps in the midspan blade region, and strain gauges at the blade root. The retrofit applications consist of two Gurney flap heights of 0.5 % and 1.0 % in relation to the chord length, which are implemented perpendicular to the pressure side at the trailing edge. As a result, the Gurney flap configurations lead to performance improvements in terms of the axial wake velocities, the angles of attack and the lift coefficients. The enhancement of the root bending moments implies an increase in both the rotor torque and the thrust. Furthermore, the aerodynamic impact appears to be more pronounced in the tripped case compared to the clean case. Gurney flaps are considered a passive flow-control device worth investigating for the use on horizontal-axis wind turbines.
CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-5-1645-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 15 citations 15 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 14visibility views 14 download downloads 14 Powered bymore_vert CORE arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-5-1645-2020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 NetherlandsPublisher:Copernicus GmbH Funded by:UKRI | Improving Understanding a...UKRI| Improving Understanding and Parameterisation of the Marine Atmospheric Boundary Layer (MABL) in near coastal regionsAuthors: Sarah J. Ollier; Simon J. Watson;Abstract. Mesoscale meteorological phenomena, including atmospheric gravity waves (AGWs) and including trapped lee waves (TLWs), can result from flow over topography or coastal transition in the presence of stable atmospheric stratification, particularly with strong capping inversions. Satellite images show that topographically forced TLWs frequently occur around near-coastal offshore wind farms. Yet current understanding of how they interact with individual turbines and whole farm energy output is limited. This parametric study investigates the potential impact of TLWs on a UK near-coastal offshore wind farm, Westermost Rough (WMR), resulting from westerly–southwesterly flow over topography in the southeast of England. Computational fluid dynamics (CFD) modelling (using Ansys CFX) of TLW situations based on real atmospheric conditions at WMR was used to better understand turbine level and whole wind farm performance in this parametric study based on real inflow conditions. These simulations indicated that TLWs have the potential to significantly alter the wind speeds experienced by and the resultant power output of individual turbines and the whole wind farm. The location of the wind farm in the TLW wave cycle was an important factor in determining the magnitude of TLW impacts, given the expected wavelength of the TLW. Where the TLW trough was coincident with the wind farm, the turbine wind speeds and power outputs were more substantially reduced compared with when the TLW peak was coincident with the location of the wind farm. These reductions were mediated by turbine wind speeds and wake losses being superimposed on the TLW. However, the same initial flow conditions interacting with topography under different atmospheric stability settings produce differing near-wind-farm flow. Factors influencing the flow within the wind farm under the different stability conditions include differing, hill and coastal transition recovery, wind farm blockage effects, and wake recovery. Determining how much of the differences in wind speed and power output in the wind farm resulted from the TLW is an area for future development.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-1179-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2022 . Peer-reviewedLicense: CC BYData sources: CrossrefDelft University of Technology: Institutional RepositoryArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-8-1179-2023&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Review , Other literature type 2016 Denmark, Netherlands, NetherlandsPublisher:Copernicus GmbH G. A. M. van Kuik; J. Peinke; R. Nijssen; D. Lekou; J. Mann; J. N. Sørensen; C. Ferreira; J. W. van Wingerden; D. Schlipf; P. Gebraad; H. Polinder; A. Abrahamsen; G. J. W. van Bussel; J. D. Sørensen; P. Tavner; C. L. Bottasso; C. L. Bottasso; M. Muskulus; D. Matha; H. J. Lindeboom; S. Degraer; O. Kramer; S. Lehnhoff; M. Sonnenschein; P. E. Sørensen; R. W. Künneke; P. E. Morthorst; K. Skytte;doi: 10.5194/wes-1-1-2016
Abstract. The European Academy of Wind Energy (eawe), representing universities and institutes with a significant wind energy programme in 14 countries, has discussed the long-term research challenges in wind energy. In contrast to research agendas addressing short- to medium-term research activities, this eawe document takes a longer-term perspective, addressing the scientific knowledge base that is required to develop wind energy beyond the applications of today and tomorrow. In other words, this long-term research agenda is driven by problems and curiosity, addressing basic research and fundamental knowledge in 11 research areas, ranging from physics and design to environmental and societal aspects. Because of the very nature of this initiative, this document does not intend to be permanent or complete. It shows the vision of the experts of the eawe, but other views may be possible. We sincerely hope that it will spur an even more intensive discussion worldwide within the wind energy community.
Wind Energy Science arrow_drop_down DANS (Data Archiving and Networked Services)Review . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryReview . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-1-1-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 187 citations 187 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 231visibility views 231 download downloads 77 Powered bymore_vert Wind Energy Science arrow_drop_down DANS (Data Archiving and Networked Services)Review . 2016Data sources: DANS (Data Archiving and Networked Services)Online Research Database In TechnologyArticle . 2016Data sources: Online Research Database In TechnologyWageningen Staff PublicationsArticle . 2016License: CC BYData sources: Wageningen Staff PublicationsDelft University of Technology: Institutional RepositoryReview . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-1-1-2016&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2016Publisher:Copernicus GmbH Authors: Lin Wang; Athanasios Kolios; Maria Martinez Luengo; Xiongwei Liu;doi: 10.5194/wes-2016-41
Abstract. A wind turbine tower supports the main components of the wind turbine (e.g. rotor, nacelle, drive train components, etc.). The structural properties of the tower (such as stiffness and natural frequency) can significantly affect the performance of the wind turbine, and the cost of the tower is a considerable portion of the overall wind turbine cost. Therefore, an optimal structural design of the tower, which has a minimum cost and meets all design criteria (such as stiffness and strength requirements), is crucial to ensure efficient, safe and economic design of the whole wind turbine system. In this work, a structural optimisation model for wind turbine towers has been developed based on a combined parametric FEA (finite element analysis) and GA (genetic algorithm) model. The top diameter, bottom diameter and thickness distributions of the tower are taken as design variables. The optimisation model minimises the tower mass with six constraint conditions, i.e. deformation, ultimate stress, fatigue, buckling, vibration and design variable constraints. After validation, the model has been applied to the structural optimisation of a 5MW wind turbine tower. The results demonstrate that the proposed structural optimisation model is capable of accurately and effectively achieving an optimal structural design of wind turbine towers, which significantly improves the efficiency of structural optimisation of wind turbine towers. The developed framework is generic in nature and can be employed for a series of related problems, when advanced numerical models are required to predict structural responses and to optimise the structure.
https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2016-41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert https://doi.org/10.5... arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2016 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-2016-41&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:Copernicus GmbH M. J. LoCascio; M. J. LoCascio; C. J. Bay; M. Bastankhah; G. E. Barter; P. A. Fleming; L. A. Martínez-Tossas;Abstract. Annual energy production (AEP) is often the objective function in wind plant layout optimization studies. The conventional method to compute AEP for a wind farm is to first evaluate power production for each discrete wind direction and speed using either computational fluid dynamics simulations or engineering wake models. The AEP is then calculated by weighted-averaging (based on the wind rose at the wind farm site) the power produced across all wind directions and speeds. We propose a novel formulation for time-averaged wake velocity that incorporates an analytical integral of a wake deficit model across every wind direction. This approach computes the average flow field more efficiently, and layout optimization is an obvious application to exploit this benefit. The clear advantage of this new approach is that the layout optimization produces solutions with comparable AEP performance yet is completed 2 orders of magnitude faster. The analytical integral and the use of a Fourier expansion to express the wind speed and wind direction frequency create a relatively smooth solution space for the gradient-based optimizer to excel in comparison to the existing weighted-averaging power calculation.
Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2022License: CC BYFull-Text: http://dro.dur.ac.uk/36470/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1137-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Durham University: D... arrow_drop_down Durham University: Durham Research OnlineArticle . 2022License: CC BYFull-Text: http://dro.dur.ac.uk/36470/Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-1137-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021Publisher:Copernicus GmbH Avi Purkayastha; Nicola Bodini; Vincent Pronk; Caroline Draxl; Caroline Draxl; Ethan Young; Mike Optis; Julie K. Lundquist; Julie K. Lundquist; Julie K. Lundquist; Patrick Moriarty;Abstract. Mesoscale numerical weather prediction (NWP) models are generally considered more accurate than reanalysis products in characterizing the wind resource at heights of interest for wind energy, given their finer spatial resolution and more comprehensive physics. However, advancements in the latest ERA-5 reanalysis product motivate an assessment on whether ERA-5 can model wind speeds as well as a state-of-the-art NWP model – the Weather Research and Forecasting (WRF) Model. We consider this research question for both simple terrain and offshore applications. Specifically, we compare wind profiles from ERA-5 and the preliminary WRF runs of the Wind Integration National Dataset (WIND) Toolkit Long-term Ensemble Dataset (WTK-LED) to those observed by lidars at a site in Oklahoma, United States, and in a United States Atlantic offshore wind energy area. We find that ERA-5 shows a significant negative bias (∼-1ms-1) at both locations, with a larger bias at the land-based site. WTK-LED-predicted wind speed profiles show a limited negative bias (∼-0.5ms-1) offshore and a slight positive bias (∼+0.5ms-1) at the land-based site. On the other hand, we find that ERA-5 outperforms WTK-LED in terms of the centered root-mean-square error (cRMSE) and correlation coefficient, for both the land-based and offshore cases, in all atmospheric stability conditions. We find that WTK-LED's higher cRMSE is caused by its tendency to overpredict the amplitude of the wind speed diurnal cycle. At the land-based site, this is partially caused by wind plant wake effects not being accurately captured by WTK-LED.
Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-487-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Wind Energy Science arrow_drop_down https://doi.org/10.5194/wes-20...Article . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5194/wes-7-487-2022&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu