- home
- Advanced Search
- Energy Research
- HR
- Energy Research
- HR
description Publicationkeyboard_double_arrow_right Article , Journal 2014 CroatiaPublisher:Elsevier BV Andrew Van Blarigan; Darko Kozarac; Reinhard Seiser; J.Y. Chen; Robert Cattolica; Robert Dibble;Abstract This paper investigates the formation of the pollutant nitric oxides (NOx) in the low-nitrogen (N2) environment of methane oxycombustion in a spark-ignited (SI) internal combustion engine. Working fluid composition, N2 concentration, O2 concentration, compression ratio (CR) and spark-timing have been investigated to evaluate the feasibility of operating such a system below NOx regulation levels without after-treatment systems. NOx emissions in g/kW h are shown under equivalent CR, intake temperature, and indicated mean effective pressure (IMEP) at maximum brake torque spark-timing, to have an approximately linear dependence on N2 concentration from no N2 to normal air combustion. At a given N2 concentration, NOx emissions were found to be adversely correlated with power, thermal efficiency, and the coefficient of variation of IMEP. It was found that with 2–3% N2 by volume in the working fluid, it was possible to reduce NOx emissions to satisfy regulation levels, but this corresponds to non-ideal engine performance in other metrics. Satisfying regulations while operating at the maximum thermal efficiency required the N2 concentration be reduced to 1–2% by volume. The system was simulated using an AVL Boost model, with results indicating that the increasing NOx concentrations at higher O2 cases and earlier spark-timings can largely be attributed to higher burned-gas temperatures. An additional simulation utilizing CHEMKIN and the GRI 3.0 mechanism was used to estimate NOx formation, and with results indicating that air-calibrated NOx mechanisms maintain reasonable accuracy in low-N2 environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 CroatiaPublisher:SAE International Kozarac, Darko; Tomić, Rudolf; Taritaš, Ivan; Chen, Jyh-Yuan; Dibble, Robert W.;doi: 10.4271/2015-01-1245
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-01-1245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-01-1245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2014 CroatiaPublisher:Elsevier BV Andrew Van Blarigan; Darko Kozarac; Reinhard Seiser; J.Y. Chen; Robert Cattolica; Robert Dibble;Abstract This paper investigates the formation of the pollutant nitric oxides (NOx) in the low-nitrogen (N2) environment of methane oxycombustion in a spark-ignited (SI) internal combustion engine. Working fluid composition, N2 concentration, O2 concentration, compression ratio (CR) and spark-timing have been investigated to evaluate the feasibility of operating such a system below NOx regulation levels without after-treatment systems. NOx emissions in g/kW h are shown under equivalent CR, intake temperature, and indicated mean effective pressure (IMEP) at maximum brake torque spark-timing, to have an approximately linear dependence on N2 concentration from no N2 to normal air combustion. At a given N2 concentration, NOx emissions were found to be adversely correlated with power, thermal efficiency, and the coefficient of variation of IMEP. It was found that with 2–3% N2 by volume in the working fluid, it was possible to reduce NOx emissions to satisfy regulation levels, but this corresponds to non-ideal engine performance in other metrics. Satisfying regulations while operating at the maximum thermal efficiency required the N2 concentration be reduced to 1–2% by volume. The system was simulated using an AVL Boost model, with results indicating that the increasing NOx concentrations at higher O2 cases and earlier spark-timings can largely be attributed to higher burned-gas temperatures. An additional simulation utilizing CHEMKIN and the GRI 3.0 mechanism was used to estimate NOx formation, and with results indicating that air-calibrated NOx mechanisms maintain reasonable accuracy in low-N2 environments.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2013.12.007&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 CroatiaPublisher:SAE International Kozarac, Darko; Tomić, Rudolf; Taritaš, Ivan; Chen, Jyh-Yuan; Dibble, Robert W.;doi: 10.4271/2015-01-1245
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-01-1245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4271/2015-01-1245&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu