- home
- Advanced Search
- Energy Research
- IE
- Energy Research
- IE
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Publicly fundedZhiwen Wang; Chen Shen; Yin Xu; Feng Liu; Xiangyu Wu; Chen-Ching Liu;arXiv: 1704.05411
Microgrids are resources that can be used to restore critical loads after a natural disaster, enhancing resilience of a distribution network. To deal with the stochastic nature of intermittent energy resources, such as wind turbines (WTs) and photovoltaics (PVs), many methods rely on forecast information. However, some microgrids may not be equipped with power forecasting tools. To fill this gap, a risk-limiting strategy based on measurements is proposed. Gaussian mixture model (GMM) is used to represent a prior joint probability density function (PDF) of power outputs of WTs and PVs over multiple periods. As time rolls forward, the distribution of WT/PV generation is updated based the latest measurement data in a recursive manner. The updated distribution is used as an input for the risk-limiting load restoration problem, enabling an equivalent transformation of the original chance constrained problem into a mixed integer linear programming (MILP). Simulation cases on a distribution system with three microgrids demonstrate the effectiveness of the proposed method. Results also indicate that networked microgrids have better uncertainty management capabilities than stand-alone microgrids.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2018.2803141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2018.2803141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Preprint , Journal 2019Embargo end date: 01 Jan 2017Publisher:Institute of Electrical and Electronics Engineers (IEEE) Publicly fundedZhiwen Wang; Chen Shen; Yin Xu; Feng Liu; Xiangyu Wu; Chen-Ching Liu;arXiv: 1704.05411
Microgrids are resources that can be used to restore critical loads after a natural disaster, enhancing resilience of a distribution network. To deal with the stochastic nature of intermittent energy resources, such as wind turbines (WTs) and photovoltaics (PVs), many methods rely on forecast information. However, some microgrids may not be equipped with power forecasting tools. To fill this gap, a risk-limiting strategy based on measurements is proposed. Gaussian mixture model (GMM) is used to represent a prior joint probability density function (PDF) of power outputs of WTs and PVs over multiple periods. As time rolls forward, the distribution of WT/PV generation is updated based the latest measurement data in a recursive manner. The updated distribution is used as an input for the risk-limiting load restoration problem, enabling an equivalent transformation of the original chance constrained problem into a mixed integer linear programming (MILP). Simulation cases on a distribution system with three microgrids demonstrate the effectiveness of the proposed method. Results also indicate that networked microgrids have better uncertainty management capabilities than stand-alone microgrids.
IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2018.2803141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 85 citations 85 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert IEEE Transactions on... arrow_drop_down IEEE Transactions on Smart GridArticle . 2019 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefhttps://dx.doi.org/10.48550/ar...Article . 2017License: arXiv Non-Exclusive DistributionData sources: Dataciteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tsg.2018.2803141&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu