- home
- Advanced Search
- Energy Research
- 13. Climate action
- 11. Sustainability
- IN
- SA
- BE
- Energies
- Energy Research
- 13. Climate action
- 11. Sustainability
- IN
- SA
- BE
- Energies
description Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Md. Abdullah-Al-Mahbub;
Md. Abdullah-Al-Mahbub
Md. Abdullah-Al-Mahbub in OpenAIREAbu Reza Md. Towfiqul Islam;
Abu Reza Md. Towfiqul Islam
Abu Reza Md. Towfiqul Islam in OpenAIREHussein Almohamad;
Ahmed Abdullah Al Dughairi; +2 AuthorsHussein Almohamad
Hussein Almohamad in OpenAIREMd. Abdullah-Al-Mahbub;
Md. Abdullah-Al-Mahbub
Md. Abdullah-Al-Mahbub in OpenAIREAbu Reza Md. Towfiqul Islam;
Abu Reza Md. Towfiqul Islam
Abu Reza Md. Towfiqul Islam in OpenAIREHussein Almohamad;
Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry;Hussein Almohamad
Hussein Almohamad in OpenAIREHazem Ghassan Abdo;
Hazem Ghassan Abdo
Hazem Ghassan Abdo in OpenAIREdoi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Md. Abdullah-Al-Mahbub;
Md. Abdullah-Al-Mahbub
Md. Abdullah-Al-Mahbub in OpenAIREAbu Reza Md. Towfiqul Islam;
Abu Reza Md. Towfiqul Islam
Abu Reza Md. Towfiqul Islam in OpenAIREHussein Almohamad;
Ahmed Abdullah Al Dughairi; +2 AuthorsHussein Almohamad
Hussein Almohamad in OpenAIREMd. Abdullah-Al-Mahbub;
Md. Abdullah-Al-Mahbub
Md. Abdullah-Al-Mahbub in OpenAIREAbu Reza Md. Towfiqul Islam;
Abu Reza Md. Towfiqul Islam
Abu Reza Md. Towfiqul Islam in OpenAIREHussein Almohamad;
Ahmed Abdullah Al Dughairi; Motrih Al-Mutiry;Hussein Almohamad
Hussein Almohamad in OpenAIREHazem Ghassan Abdo;
Hazem Ghassan Abdo
Hazem Ghassan Abdo in OpenAIREdoi: 10.3390/en15186790
Global fossil fuel reserves are declining due to differential uses, especially for power generation. Everybody can help to do their bit for the environment by using solar energy. Geographically, Bangladesh is a potential zone for harnessing solar energy. In March 2021, the renewable generation capacity in Bangladesh amounted to 722.592 MW, including 67.6% from solar, 31.84% from hydro, and 0.55% from other energy sources, including wind, biogas, and biomass, where 488.662 MW of power originated from over 6 million installed solar power systems. Concurrently, over 42% of rural people still suffer from a lack of electricity, where solar energy can play a vital role. This paper highlights the present status of various forms of solar energy progress in Bangladesh, such as solar parks, solar rooftops, solar irrigation, solar charging stations, solar home systems, solar-powered telecoms, solar street lights, and solar drinking water, which can be viable alternative sources of energy. This review will help decision-makers and investors realize Bangladesh’s up-to-date solar energy scenario and plan better for the development of a sustainable society.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 37 citations 37 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15186790&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Gopa Nandikes;Shaik Gouse Peera;
Lakhveer Singh;Shaik Gouse Peera
Shaik Gouse Peera in OpenAIREdoi: 10.3390/en15010272
Microbial fuel cells (MFCs) are biochemical systems having the benefit of producing green energy through the microbial degradation of organic contaminants in wastewater. The efficiency of MFCs largely depends on the cathode oxygen reduction reaction (ORR). A preferable ORR catalyst must have good oxygen reduction kinetics, high conductivity and durability, together with cost-effectiveness. Platinum-based electrodes are considered a state-of-the-art ORR catalyst. However, the scarcity and higher cost of Pt are the main challenges for the commercialization of MFCs; therefore, in search of alternative, cost-effective catalysts, those such as doped carbons and transition-metal-based electrocatalysts have been researched for more than a decade. Recently, perovskite-oxide-based nanocomposites have emerged as a potential ORR catalyst due to their versatile elemental composition, molecular mechanism and the scope of nanoengineering for further developments. In this article, we discuss various studies conducted and opportunities associated with perovskite-based catalysts for ORR in MFCs. Special focus is given to a basic understanding of the ORR reaction mechanism through oxygen vacancy, modification of its microstructure by introducing alkaline earth metals, electron transfer pathways and the synergistic effect of perovskite and carbon. At the end, we also propose various challenges and prospects to further improve the ORR activity of perovskite-based catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2021Publisher:MDPI AG Authors: Gopa Nandikes;Shaik Gouse Peera;
Lakhveer Singh;Shaik Gouse Peera
Shaik Gouse Peera in OpenAIREdoi: 10.3390/en15010272
Microbial fuel cells (MFCs) are biochemical systems having the benefit of producing green energy through the microbial degradation of organic contaminants in wastewater. The efficiency of MFCs largely depends on the cathode oxygen reduction reaction (ORR). A preferable ORR catalyst must have good oxygen reduction kinetics, high conductivity and durability, together with cost-effectiveness. Platinum-based electrodes are considered a state-of-the-art ORR catalyst. However, the scarcity and higher cost of Pt are the main challenges for the commercialization of MFCs; therefore, in search of alternative, cost-effective catalysts, those such as doped carbons and transition-metal-based electrocatalysts have been researched for more than a decade. Recently, perovskite-oxide-based nanocomposites have emerged as a potential ORR catalyst due to their versatile elemental composition, molecular mechanism and the scope of nanoengineering for further developments. In this article, we discuss various studies conducted and opportunities associated with perovskite-based catalysts for ORR in MFCs. Special focus is given to a basic understanding of the ORR reaction mechanism through oxygen vacancy, modification of its microstructure by introducing alkaline earth metals, electron transfer pathways and the synergistic effect of perovskite and carbon. At the end, we also propose various challenges and prospects to further improve the ORR activity of perovskite-based catalysts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15010272&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:MDPI AG Authors:Dhanuja Lekshmi J;
Zakir Hussain Rather; Bikash C Pal;Dhanuja Lekshmi J
Dhanuja Lekshmi J in OpenAIREdoi: 10.3390/en14248529
handle: 10044/1/93161
With diminishing fossil fuel resources and increasing environmental concerns, large-scale deployment of Renewable Energy Sources (RES) has accelerated the transition towards clean energy systems, leading to significant RES generation share in power systems worldwide. Among different RES, solar PV is receiving major focus as it is most abundant in nature compared to others, complimented by falling prices of PV technology. However, variable, intermittent and non-synchronous nature of PV power generation technology introduces several technical challenges, ranging from short-term issues, such as low inertia, frequency stability, voltage stability and small signal stability, to long-term issues, such as unit commitment and scheduling issues. Therefore, such technical issues often limit the amount of non-synchronous instantaneous power that can be securely accommodated by a grid. In this backdrop, this research work proposes a tool to estimate maximum PV penetration level that a given power system can securely accommodate for a given unit commitment interval. The proposed tool will consider voltage and frequency while estimating maximum PV power penetration of a system. The tool will be useful to a system operator in assessing grid stability and security under a given generation mix, network topology and PV penetration level. Besides estimating maximum PV penetration, the proposed tool provides useful inputs to the system operator which will allow the operator to take necessary actions to handle high PV penetration in a secure and stable manner.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2021 United KingdomPublisher:MDPI AG Authors:Dhanuja Lekshmi J;
Zakir Hussain Rather; Bikash C Pal;Dhanuja Lekshmi J
Dhanuja Lekshmi J in OpenAIREdoi: 10.3390/en14248529
handle: 10044/1/93161
With diminishing fossil fuel resources and increasing environmental concerns, large-scale deployment of Renewable Energy Sources (RES) has accelerated the transition towards clean energy systems, leading to significant RES generation share in power systems worldwide. Among different RES, solar PV is receiving major focus as it is most abundant in nature compared to others, complimented by falling prices of PV technology. However, variable, intermittent and non-synchronous nature of PV power generation technology introduces several technical challenges, ranging from short-term issues, such as low inertia, frequency stability, voltage stability and small signal stability, to long-term issues, such as unit commitment and scheduling issues. Therefore, such technical issues often limit the amount of non-synchronous instantaneous power that can be securely accommodated by a grid. In this backdrop, this research work proposes a tool to estimate maximum PV penetration level that a given power system can securely accommodate for a given unit commitment interval. The proposed tool will consider voltage and frequency while estimating maximum PV power penetration of a system. The tool will be useful to a system operator in assessing grid stability and security under a given generation mix, network topology and PV penetration level. Besides estimating maximum PV penetration, the proposed tool provides useful inputs to the system operator which will allow the operator to take necessary actions to handle high PV penetration in a secure and stable manner.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 2 citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/24/8529/pdfData sources: Multidisciplinary Digital Publishing InstituteImperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/93161Data sources: Bielefeld Academic Search Engine (BASE)Spiral - Imperial College Digital RepositoryArticle . 2021License: CC BYData sources: Spiral - Imperial College Digital Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14248529&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors:Flavio R. Arroyo M.;
Flavio R. Arroyo M.
Flavio R. Arroyo M. in OpenAIRELuis J. Miguel;
Luis J. Miguel
Luis J. Miguel in OpenAIREdoi: 10.3390/en13184731
This article describes the results of a study of Ecuador’s energy status, using the system dynamics methodology to model supply, demand and CO2 emissions scenarios for the year 2030. Primary energy production increased in the different projected scenarios, with oil as the most important source of energy. The increase observed in final energy consumption was mainly associated with the transport and industry sectors. A reduction in energy intensity was projected for the different scenarios, which could be associated with the projected economic growth. The results obtained were used to build a proposal for energy policies aimed at mitigating emissions. The proposed changes to the national energy matrix could be the factors that will contribute most to the achievement of carbon emission reductions projected by the different scenarios; changes in the energy matrix are mainly associated with the development of projects to replace fossil fuels with renewable energies, mainly hydropower.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 SpainPublisher:MDPI AG Authors:Flavio R. Arroyo M.;
Flavio R. Arroyo M.
Flavio R. Arroyo M. in OpenAIRELuis J. Miguel;
Luis J. Miguel
Luis J. Miguel in OpenAIREdoi: 10.3390/en13184731
This article describes the results of a study of Ecuador’s energy status, using the system dynamics methodology to model supply, demand and CO2 emissions scenarios for the year 2030. Primary energy production increased in the different projected scenarios, with oil as the most important source of energy. The increase observed in final energy consumption was mainly associated with the transport and industry sectors. A reduction in energy intensity was projected for the different scenarios, which could be associated with the projected economic growth. The results obtained were used to build a proposal for energy policies aimed at mitigating emissions. The proposed changes to the national energy matrix could be the factors that will contribute most to the achievement of carbon emission reductions projected by the different scenarios; changes in the energy matrix are mainly associated with the development of projects to replace fossil fuels with renewable energies, mainly hydropower.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 13 citations 13 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4731/pdfData sources: Multidisciplinary Digital Publishing InstituteRecolector de Ciencia Abierta, RECOLECTAArticle . 2020License: CC BY NC NDData sources: Recolector de Ciencia Abierta, RECOLECTARepositorio Documental de la Universidad de ValladolidArticle . 2020License: CC BY NC NDData sources: Repositorio Documental de la Universidad de Valladolidadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13184731&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Chandan Swaroop Meena;
Chandan Swaroop Meena
Chandan Swaroop Meena in OpenAIREBinju P Raj;
Binju P Raj
Binju P Raj in OpenAIRELohit Saini;
Lohit Saini
Lohit Saini in OpenAIRENehul Agarwal;
+1 AuthorsNehul Agarwal
Nehul Agarwal in OpenAIREChandan Swaroop Meena;
Chandan Swaroop Meena
Chandan Swaroop Meena in OpenAIREBinju P Raj;
Binju P Raj
Binju P Raj in OpenAIRELohit Saini;
Lohit Saini
Lohit Saini in OpenAIRENehul Agarwal;
Nehul Agarwal
Nehul Agarwal in OpenAIREAritra Ghosh;
Aritra Ghosh
Aritra Ghosh in OpenAIREdoi: 10.3390/en14123534
The use of solar energy in water heating applications, such as in solar-assisted heat pump systems, has great benefits, such as reductions in heat transfer losses, control over incident solar heat, and generation of environmentally benign water heat. In the present study, we performed parametric optimization based on an experimental model of a solar-assisted heat pump system for water heating (SAHPSWH) in the context of colder climatic regions receiving minimal solar radiation. Various parameters were investigated, such as the different glazing arrangements, the distances between fluid-circulating tubes, and the absorber sheet arrangement. The results showed that double glazing was more efficient than single glazing, with average COP values of 3.37 and 2.69, respectively, and with similar heat gain rates. When the evaporator tube was soldered below the absorber plate, the COP was 1.19 times greater than when the tube was soldered above the absorber plate. We also analyzed whether the collector efficiency factor F′ has an inverse relationship with the tube distance and a direct relationship with the absorber plate thickness. Through this experimental study, we verified that the SAHPSWH is reliable if designed judiciously. This promising energy-saving system is particularly suitable for areas abundant in solar radiation, such as in India, where the needs for space conditioning and water heating are constant.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2021Publisher:MDPI AG Authors:Chandan Swaroop Meena;
Chandan Swaroop Meena
Chandan Swaroop Meena in OpenAIREBinju P Raj;
Binju P Raj
Binju P Raj in OpenAIRELohit Saini;
Lohit Saini
Lohit Saini in OpenAIRENehul Agarwal;
+1 AuthorsNehul Agarwal
Nehul Agarwal in OpenAIREChandan Swaroop Meena;
Chandan Swaroop Meena
Chandan Swaroop Meena in OpenAIREBinju P Raj;
Binju P Raj
Binju P Raj in OpenAIRELohit Saini;
Lohit Saini
Lohit Saini in OpenAIRENehul Agarwal;
Nehul Agarwal
Nehul Agarwal in OpenAIREAritra Ghosh;
Aritra Ghosh
Aritra Ghosh in OpenAIREdoi: 10.3390/en14123534
The use of solar energy in water heating applications, such as in solar-assisted heat pump systems, has great benefits, such as reductions in heat transfer losses, control over incident solar heat, and generation of environmentally benign water heat. In the present study, we performed parametric optimization based on an experimental model of a solar-assisted heat pump system for water heating (SAHPSWH) in the context of colder climatic regions receiving minimal solar radiation. Various parameters were investigated, such as the different glazing arrangements, the distances between fluid-circulating tubes, and the absorber sheet arrangement. The results showed that double glazing was more efficient than single glazing, with average COP values of 3.37 and 2.69, respectively, and with similar heat gain rates. When the evaporator tube was soldered below the absorber plate, the COP was 1.19 times greater than when the tube was soldered above the absorber plate. We also analyzed whether the collector efficiency factor F′ has an inverse relationship with the tube distance and a direct relationship with the absorber plate thickness. Through this experimental study, we verified that the SAHPSWH is reliable if designed judiciously. This promising energy-saving system is particularly suitable for areas abundant in solar radiation, such as in India, where the needs for space conditioning and water heating are constant.
Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2021License: CC BYFull-Text: http://www.mdpi.com/1996-1073/14/12/3534/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14123534&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:NSF | EAGER: SSDIM: Simulat...NSF| EAGER: SSDIM: Simulated and Synthetic Data for Interdependent Communications and Energy Critical InfrastructuresAuthors:Shahid Tufail;
Shahid Tufail
Shahid Tufail in OpenAIREImtiaz Parvez;
Shanzeh Batool;Imtiaz Parvez
Imtiaz Parvez in OpenAIREArif Sarwat;
Arif Sarwat
Arif Sarwat in OpenAIREdoi: 10.3390/en14185894
The world is transitioning from the conventional grid to the smart grid at a rapid pace. Innovation always comes with some flaws; such is the case with a smart grid. One of the major challenges in the smart grid is to protect it from potential cyberattacks. There are millions of sensors continuously sending and receiving data packets over the network, so managing such a gigantic network is the biggest challenge. Any cyberattack can damage the key elements, confidentiality, integrity, and availability of the smart grid. The overall smart grid network is comprised of customers accessing the network, communication network of the smart devices and sensors, and the people managing the network (decision makers); all three of these levels are vulnerable to cyberattacks. In this survey, we explore various threats and vulnerabilities that can affect the key elements of cybersecurity in the smart grid network and then present the security measures to avert those threats and vulnerabilities at three different levels. In addition to that, we suggest techniques to minimize the chances of cyberattack at all three levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14185894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14185894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:NSF | EAGER: SSDIM: Simulat...NSF| EAGER: SSDIM: Simulated and Synthetic Data for Interdependent Communications and Energy Critical InfrastructuresAuthors:Shahid Tufail;
Shahid Tufail
Shahid Tufail in OpenAIREImtiaz Parvez;
Shanzeh Batool;Imtiaz Parvez
Imtiaz Parvez in OpenAIREArif Sarwat;
Arif Sarwat
Arif Sarwat in OpenAIREdoi: 10.3390/en14185894
The world is transitioning from the conventional grid to the smart grid at a rapid pace. Innovation always comes with some flaws; such is the case with a smart grid. One of the major challenges in the smart grid is to protect it from potential cyberattacks. There are millions of sensors continuously sending and receiving data packets over the network, so managing such a gigantic network is the biggest challenge. Any cyberattack can damage the key elements, confidentiality, integrity, and availability of the smart grid. The overall smart grid network is comprised of customers accessing the network, communication network of the smart devices and sensors, and the people managing the network (decision makers); all three of these levels are vulnerable to cyberattacks. In this survey, we explore various threats and vulnerabilities that can affect the key elements of cybersecurity in the smart grid network and then present the security measures to avert those threats and vulnerabilities at three different levels. In addition to that, we suggest techniques to minimize the chances of cyberattack at all three levels.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14185894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 83 citations 83 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14185894&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, France, BelgiumPublisher:MDPI AG Authors:Emmanuel Garbolino;
Warren Daniel;Emmanuel Garbolino
Emmanuel Garbolino in OpenAIREGuillermo Hinojos Mendoza;
Guillermo Hinojos Mendoza
Guillermo Hinojos Mendoza in OpenAIREdoi: 10.3390/en11123372
handle: 10067/1567880151162165141
The development of collective and industrial energy systems, based on wood biomass, knows a significant increase since the end of the 90’s in France, with more than 6000 power plants and heating plants developed currently. Because these systems are built for a minimal duration of 30 years, it is relevant to assess the availability of wood resources according to the potential impacts of global warming on five tree species mainly used in such a supply chain. The assessment of the potential spatial distribution of the suitable areas of these trees in 2050, by using the IPCC (Intergovernmental Panel on Climate Change) RCP6.0 scenario (Representative Concentration Pathway), shows an average decrease of 22% of the plots in comparison with the current situation. The results also point out that mountain areas would maintain a high probability of the development of four tree species. The assessment of the Net Primary Productivity (NPP) underlines a potential decrease for 93% of the plots in 2050, and an increase of this parameter in mountain areas. According to these assumptions, the proposed ecosystem based methodology can be considered as a prospective approach to support stakeholders’ decisions for the development of the wood energy supply chain.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3372/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3372/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2018 France, France, BelgiumPublisher:MDPI AG Authors:Emmanuel Garbolino;
Warren Daniel;Emmanuel Garbolino
Emmanuel Garbolino in OpenAIREGuillermo Hinojos Mendoza;
Guillermo Hinojos Mendoza
Guillermo Hinojos Mendoza in OpenAIREdoi: 10.3390/en11123372
handle: 10067/1567880151162165141
The development of collective and industrial energy systems, based on wood biomass, knows a significant increase since the end of the 90’s in France, with more than 6000 power plants and heating plants developed currently. Because these systems are built for a minimal duration of 30 years, it is relevant to assess the availability of wood resources according to the potential impacts of global warming on five tree species mainly used in such a supply chain. The assessment of the potential spatial distribution of the suitable areas of these trees in 2050, by using the IPCC (Intergovernmental Panel on Climate Change) RCP6.0 scenario (Representative Concentration Pathway), shows an average decrease of 22% of the plots in comparison with the current situation. The results also point out that mountain areas would maintain a high probability of the development of four tree species. The assessment of the Net Primary Productivity (NPP) underlines a potential decrease for 93% of the plots in 2050, and an increase of this parameter in mountain areas. According to these assumptions, the proposed ecosystem based methodology can be considered as a prospective approach to support stakeholders’ decisions for the development of the wood energy supply chain.
Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3372/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2018License: CC BYFull-Text: http://www.mdpi.com/1996-1073/11/12/3372/pdfData sources: Multidisciplinary Digital Publishing InstituteInstitutional Repository Universiteit AntwerpenArticle . 2018Data sources: Institutional Repository Universiteit Antwerpenadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en11123372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Malaysia, BelgiumPublisher:MDPI AG Authors:Saleh Abujarad;
Mohd Wazir Mustafa;Saleh Abujarad
Saleh Abujarad in OpenAIREJasrul Jamani Jamian;
Abdirahman M. Abdilahi; +3 AuthorsJasrul Jamani Jamian
Jasrul Jamani Jamian in OpenAIRESaleh Abujarad;
Mohd Wazir Mustafa;Saleh Abujarad
Saleh Abujarad in OpenAIREJasrul Jamani Jamian;
Abdirahman M. Abdilahi;Jasrul Jamani Jamian
Jasrul Jamani Jamian in OpenAIREJeroen D. M. De Kooning;
Jeroen D. M. De Kooning
Jeroen D. M. De Kooning in OpenAIREJan Desmet;
Jan Desmet
Jan Desmet in OpenAIRELieven Vandevelde;
Lieven Vandevelde
Lieven Vandevelde in OpenAIREdoi: 10.3390/en13215658
handle: 1854/LU-8679355
With the increasing shares of intermittent renewable sources in the grid, it becomes increasingly essential to quantify the requirements of the power systems flexibility. In this article, an adjusted weight flexibility metric (AWFM) is developed to quantify the available flexibility within individual generators as well as within the overall system. The developed metric is useful for power system operators who require a fast, simple, and offline metric. This provides a more realistic and accurate quantification of the available technical flexibility without performing time-consuming multi-temporal simulations. Another interesting feature is that it can be used to facilitate scenario comparisons. This is achieved by developing a new framework to assure the consistency of the metric and by proposing a new adjusted weighting mechanism based on correlation analysis and analytic hierarchy process (AHP). A new ranking approach based on flexibility was also proposed to increase the share of the renewable energy sources (RESs). The proposed framework was tested on the IEEE RTS-96 test-system. The results demonstrate the consistency of the AWFM. Moreover, the results show that the proposed metric is adaptive as it automatically adjusts the flexibility index with the addition or removal of generators. The new ranking approach proved its ability to increase the wind share from 28% to 37.2% within the test system. The AWFM can be a valuable contribution to the field of flexibility for its ability to provide systematic formulation for the precise analysis and accurate assessment of inherent technical flexibility for a low carbon power system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5658/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5658/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020 Malaysia, BelgiumPublisher:MDPI AG Authors:Saleh Abujarad;
Mohd Wazir Mustafa;Saleh Abujarad
Saleh Abujarad in OpenAIREJasrul Jamani Jamian;
Abdirahman M. Abdilahi; +3 AuthorsJasrul Jamani Jamian
Jasrul Jamani Jamian in OpenAIRESaleh Abujarad;
Mohd Wazir Mustafa;Saleh Abujarad
Saleh Abujarad in OpenAIREJasrul Jamani Jamian;
Abdirahman M. Abdilahi;Jasrul Jamani Jamian
Jasrul Jamani Jamian in OpenAIREJeroen D. M. De Kooning;
Jeroen D. M. De Kooning
Jeroen D. M. De Kooning in OpenAIREJan Desmet;
Jan Desmet
Jan Desmet in OpenAIRELieven Vandevelde;
Lieven Vandevelde
Lieven Vandevelde in OpenAIREdoi: 10.3390/en13215658
handle: 1854/LU-8679355
With the increasing shares of intermittent renewable sources in the grid, it becomes increasingly essential to quantify the requirements of the power systems flexibility. In this article, an adjusted weight flexibility metric (AWFM) is developed to quantify the available flexibility within individual generators as well as within the overall system. The developed metric is useful for power system operators who require a fast, simple, and offline metric. This provides a more realistic and accurate quantification of the available technical flexibility without performing time-consuming multi-temporal simulations. Another interesting feature is that it can be used to facilitate scenario comparisons. This is achieved by developing a new framework to assure the consistency of the metric and by proposing a new adjusted weighting mechanism based on correlation analysis and analytic hierarchy process (AHP). A new ranking approach based on flexibility was also proposed to increase the share of the renewable energy sources (RESs). The proposed framework was tested on the IEEE RTS-96 test-system. The results demonstrate the consistency of the AWFM. Moreover, the results show that the proposed metric is adaptive as it automatically adjusts the flexibility index with the addition or removal of generators. The new ranking approach proved its ability to increase the wind share from 28% to 37.2% within the test system. The AWFM can be a valuable contribution to the field of flexibility for its ability to provide systematic formulation for the precise analysis and accurate assessment of inherent technical flexibility for a low carbon power system.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5658/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/21/5658/pdfData sources: Multidisciplinary Digital Publishing InstituteGhent University Academic BibliographyArticle . 2020Data sources: Ghent University Academic Bibliographyadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13215658&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Muhammad Abdul Qyyum;
Muhammad Abdul Qyyum
Muhammad Abdul Qyyum in OpenAIREMuhammad Yasin;
Muhammad Yasin
Muhammad Yasin in OpenAIREAlam Nawaz;
Alam Nawaz
Alam Nawaz in OpenAIRETianbiao He;
+6 AuthorsTianbiao He
Tianbiao He in OpenAIREMuhammad Abdul Qyyum;
Muhammad Abdul Qyyum
Muhammad Abdul Qyyum in OpenAIREMuhammad Yasin;
Muhammad Yasin
Muhammad Yasin in OpenAIREAlam Nawaz;
Alam Nawaz
Alam Nawaz in OpenAIRETianbiao He;
Tianbiao He
Tianbiao He in OpenAIREWahid Ali;
Junaid Haider;Wahid Ali
Wahid Ali in OpenAIREKinza Qadeer;
Kinza Qadeer
Kinza Qadeer in OpenAIREAbdul-Sattar Nizami;
Abdul-Sattar Nizami
Abdul-Sattar Nizami in OpenAIREKonstantinos Moustakas;
Moonyong Lee;Konstantinos Moustakas
Konstantinos Moustakas in OpenAIREdoi: 10.3390/en13071732
Propane-Precooled Mixed Refrigerant (C3MR) and Single Mixed Refrigerant (SMR) processes are considered as optimal choices for onshore and offshore natural gas liquefaction, respectively. However, from thermodynamics point of view, these processes are still far away from their maximum achievable energy efficiency due to nonoptimal execution of the design variables. Therefore, Liquefied Natural Gas (LNG) production is considered as one of the energy-intensive cryogenic industries. In this context, this study examines a single-solution-based Vortex Search (VS) approach to find the optimal design variables corresponding to minimal energy consumption for LNG processes, i.e., C3MR and SMR. The LNG processes are simulated using Aspen Hysys and then linked with VS algorithm, which is coded in MATLAB. The results indicated that the SMR process is a potential process for offshore sites that can liquefy natural gas with 16.1% less energy consumption compared with the published base case. Whereas, for onshore LNG production, the energy consumption for the C3MR process is reduced up to 27.8% when compared with the previously published base case. The optimal designs of the SMR and C3MR processes are also found via distinctive well-established optimization approaches (i.e., genetic algorithm and particle swarm optimization) and their performance is compared with that of the VS methodology. The authors believe this work will greatly help the process engineers overcome the challenges relating to the energy efficiency of LNG industry, as well as other mixed refrigerant-based cryogenic processes.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1732/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1732/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal , Other literature type 2020Publisher:MDPI AG Authors:Muhammad Abdul Qyyum;
Muhammad Abdul Qyyum
Muhammad Abdul Qyyum in OpenAIREMuhammad Yasin;
Muhammad Yasin
Muhammad Yasin in OpenAIREAlam Nawaz;
Alam Nawaz
Alam Nawaz in OpenAIRETianbiao He;
+6 AuthorsTianbiao He
Tianbiao He in OpenAIREMuhammad Abdul Qyyum;
Muhammad Abdul Qyyum
Muhammad Abdul Qyyum in OpenAIREMuhammad Yasin;
Muhammad Yasin
Muhammad Yasin in OpenAIREAlam Nawaz;
Alam Nawaz
Alam Nawaz in OpenAIRETianbiao He;
Tianbiao He
Tianbiao He in OpenAIREWahid Ali;
Junaid Haider;Wahid Ali
Wahid Ali in OpenAIREKinza Qadeer;
Kinza Qadeer
Kinza Qadeer in OpenAIREAbdul-Sattar Nizami;
Abdul-Sattar Nizami
Abdul-Sattar Nizami in OpenAIREKonstantinos Moustakas;
Moonyong Lee;Konstantinos Moustakas
Konstantinos Moustakas in OpenAIREdoi: 10.3390/en13071732
Propane-Precooled Mixed Refrigerant (C3MR) and Single Mixed Refrigerant (SMR) processes are considered as optimal choices for onshore and offshore natural gas liquefaction, respectively. However, from thermodynamics point of view, these processes are still far away from their maximum achievable energy efficiency due to nonoptimal execution of the design variables. Therefore, Liquefied Natural Gas (LNG) production is considered as one of the energy-intensive cryogenic industries. In this context, this study examines a single-solution-based Vortex Search (VS) approach to find the optimal design variables corresponding to minimal energy consumption for LNG processes, i.e., C3MR and SMR. The LNG processes are simulated using Aspen Hysys and then linked with VS algorithm, which is coded in MATLAB. The results indicated that the SMR process is a potential process for offshore sites that can liquefy natural gas with 16.1% less energy consumption compared with the published base case. Whereas, for onshore LNG production, the energy consumption for the C3MR process is reduced up to 27.8% when compared with the previously published base case. The optimal designs of the SMR and C3MR processes are also found via distinctive well-established optimization approaches (i.e., genetic algorithm and particle swarm optimization) and their performance is compared with that of the VS methodology. The authors believe this work will greatly help the process engineers overcome the challenges relating to the energy efficiency of LNG industry, as well as other mixed refrigerant-based cryogenic processes.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1732/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/7/1732/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en13071732&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South AfricaPublisher:MDPI AG Authors: Sajna Parimita Panigrahi; Sarat Kumar Maharana; Thejaraju Rajashekaraiah;Ravichandran Gopalashetty;
+4 AuthorsRavichandran Gopalashetty
Ravichandran Gopalashetty in OpenAIRESajna Parimita Panigrahi; Sarat Kumar Maharana; Thejaraju Rajashekaraiah;Ravichandran Gopalashetty;
Ravichandran Gopalashetty
Ravichandran Gopalashetty in OpenAIREMohsen Sharifpur;
Mohsen Sharifpur
Mohsen Sharifpur in OpenAIREMohammad Hossein Ahmadi;
Mohammad Hossein Ahmadi
Mohammad Hossein Ahmadi in OpenAIREC. Ahamed Saleel;
C. Ahamed Saleel
C. Ahamed Saleel in OpenAIREMohamed Abbas;
Mohamed Abbas
Mohamed Abbas in OpenAIREdoi: 10.3390/en15238843
handle: 2263/91053
Engineering applications including food processing, wastewater treatment, home heating, commercial heating, and institutional heating successfully use unglazed transpired solar collectors (UTCs). Trapping of solar energy is the prime goal of developing an unglazed transpired solar collector. The UTC is usually developed in and around the walls of the building and absorbs the solar energy to heat the air. One of the key challenges faced by the UTC designer is the prediction of performance and its warranty under uncertain operating conditions of flow variables. Some of the flow features are the velocity distribution, plate temperature, exit temperature and perforation location. The objective of the present study was to establish correlations among these flow features and demonstrate a method of predicting the performance of the UTC. Hence, a correlation matrix was generated from the dataset prepared after solving the airflow over a perforated flat UTC. Further, both strong and weak correlations of flow features were captured through Pearson’s correlation coefficient. A comparison between the outcomes from a linear regression model and that of computational simulation was showcased. The performance probability for the UTC was interlinked with correlation matrix data. The Monte Carlo simulation was used to predict the performance from random values of the flow parameters. The study showed that the difference between the free stream value of temperature and the value of temperature inside the UTC’s chamber varied between 15 and 20 °C. The probability of achieving system efficiency greater than 35% was 55.2%. This has raised the hope of recommending the UTC for drying and heating where the required temperature differential is within 20 °C.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/8843/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/8843/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2022 South AfricaPublisher:MDPI AG Authors: Sajna Parimita Panigrahi; Sarat Kumar Maharana; Thejaraju Rajashekaraiah;Ravichandran Gopalashetty;
+4 AuthorsRavichandran Gopalashetty
Ravichandran Gopalashetty in OpenAIRESajna Parimita Panigrahi; Sarat Kumar Maharana; Thejaraju Rajashekaraiah;Ravichandran Gopalashetty;
Ravichandran Gopalashetty
Ravichandran Gopalashetty in OpenAIREMohsen Sharifpur;
Mohsen Sharifpur
Mohsen Sharifpur in OpenAIREMohammad Hossein Ahmadi;
Mohammad Hossein Ahmadi
Mohammad Hossein Ahmadi in OpenAIREC. Ahamed Saleel;
C. Ahamed Saleel
C. Ahamed Saleel in OpenAIREMohamed Abbas;
Mohamed Abbas
Mohamed Abbas in OpenAIREdoi: 10.3390/en15238843
handle: 2263/91053
Engineering applications including food processing, wastewater treatment, home heating, commercial heating, and institutional heating successfully use unglazed transpired solar collectors (UTCs). Trapping of solar energy is the prime goal of developing an unglazed transpired solar collector. The UTC is usually developed in and around the walls of the building and absorbs the solar energy to heat the air. One of the key challenges faced by the UTC designer is the prediction of performance and its warranty under uncertain operating conditions of flow variables. Some of the flow features are the velocity distribution, plate temperature, exit temperature and perforation location. The objective of the present study was to establish correlations among these flow features and demonstrate a method of predicting the performance of the UTC. Hence, a correlation matrix was generated from the dataset prepared after solving the airflow over a perforated flat UTC. Further, both strong and weak correlations of flow features were captured through Pearson’s correlation coefficient. A comparison between the outcomes from a linear regression model and that of computational simulation was showcased. The performance probability for the UTC was interlinked with correlation matrix data. The Monte Carlo simulation was used to predict the performance from random values of the flow parameters. The study showed that the difference between the free stream value of temperature and the value of temperature inside the UTC’s chamber varied between 15 and 20 °C. The probability of achieving system efficiency greater than 35% was 55.2%. This has raised the hope of recommending the UTC for drying and heating where the required temperature differential is within 20 °C.
Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/8843/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 3 citations 3 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2022License: CC BYFull-Text: http://www.mdpi.com/1996-1073/15/23/8843/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15238843&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu