- home
- Advanced Search
- Energy Research
- Open Access
- Closed Access
- CN
- IN
- Energy Research
- Open Access
- Closed Access
- CN
- IN
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Shengyuan Li; Zhonghua Gou;doi: 10.3390/land12101956
In the context of climate change and rural revitalization, numerous solar photovoltaic (PV) panels are being installed on village roofs and lands, impacting the enjoyment of the new rural landscape characterized by PV panels. However, the visual acceptance of PV panels in rural areas of China is not yet fully understood. This study aims to identify and correlate three key influential factors that contribute to the acceptance and appreciation of PV panels in China’s rural settings. A quasi-experiment was conducted, incorporating diverse landscapes into six rural settings, each containing both the original landscape and PV panels. The findings demonstrated that the original rural landscape was significantly more scenic than PV panels, and factors contributing to the appreciation of traditional landscapes, such as nostalgia, played a vital role in rejecting PV panels. Conversely, renewable energy-related factors, such as economic stakes and moral desirability, were found to contribute to the acceptance of PV panels. This study contributes to the strategic planning and design of solar PV panels in rural landscapes, taking into consideration social acceptance and local contexts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Chengjun Wang; Weidong Liang; Yueyue Yang; Fang Liu; Hanxue Sun; Zhaoqi Zhu; An Li;Abstract The development of high-performance shape-stable phase change materials composites (ss-PCMCs) with enhanced thermal conductivity and high phase change enthalpy is of great importance for thermal energy storage. Herein, we report the creation of novel ss-PCMCs by incorporation of organic PCMs (1-hexadecanamine (HDA) and palmitic acid (PA)) into the biomass carbon aerogels (BCAs refer to sunflower receptacle spongy carbon aerogel (r-CA) and sunflower stem carbon aerogel (s-CA)) through a simple vacuum infusion. Due to their abundant porosity, light weight and high specific surface area, organic PCMs can be spontaneously loaded into BCAs with an ultrahigh loading rate of up to 1988 wt%. The obtained of PCM/BCAs composites show high phase change enthalpy of ranging from 207.9 kJ kg−1 to 271 kJ kg−1, in addition to their excellent thermal stability and recyclability, e.g., their phase change enthalpy nearly remains unchanged even after 50 times of melting/freezing cycles. The PCM/BCAs composites also show an enhanced thermal conductivity. Furthermore, the light-to-thermal conversion efficiency was found to be promising candidates for light-to-thermal energy storage applications on basis of their 75.6% for HDA/r-CA and 67.8% for HDA/s-CA, respectively, making them abundant resource, cost-efficiency, simple and scalable fabrication process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.141 selected citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Sébastien M. R. Dente; Toshiyuki Shimizu; Tao Wang; Seiji Hashimoto;doi: 10.3390/su12208730
The current organization of water supply systems demands drinking standards for all the households’ usage of water. Few dual water systems, i.e., systems in which the quality of the water supplied is differentiated by types of use, exist but are mainly circumscribed to developing countries. Besides, bath and showers are so far considered as a potable use of water despite only drinking and cooking activities requiring the high-quality standards of potable water. The present work demonstrates how the principles of dual water systems can be incorporated into the sustainable concept of product-service system (PSS) using a dual water system of a municipal water supply treatment plant in France as a case study. The PSS is based on the water quality, and the bathing activity of households is considered with a dedicated standard for the first time. Two systems are considered, S1 and S2, supplied with the same raw water quality and treated with drinking (S1) bathing standards (S2). The quality parameters considered are total organic carbon (TOC) and turbidity (T) and the potential savings related to costs, material, and energy consumptions are assessed using EVALEAU as a process modeling tool. The treatment lines consisted of powdered activated carbon (PAC) addition, coagulation, flocculation, settling, and rapid sand filtration. Results show that material consumption can be reduced by 41% mainly through the decrease in chemical consumption associated with the change of requirement for the TOC parameter. On the opposite, energy consumption was found dependent on the water of volume treated rather than its quality leading to only marginal savings. The cost was decreased by 37% as a result of the reduction of the chemicals consumed.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Sheesh Ram Ola; Amit Saraswat; Sunil Kumar Goyal; S. K. Jhajharia; Baseem Khan; Om Prakash Mahela; Hassan Haes Alhelou; Pierluigi Siano;doi: 10.3390/app10041516
handle: 11386/4757678
As renewable energy (RE) penetration has a continuously increasing trend, the protection of RE integrated power systems is a critical issue. Recently, power networks developed for grid integration of solar energy (SE) have been designed with the help of multi-tapped lines to integrate small- and medium-sized SE plants and simultaneously supplying power to the loads. These tapped lines create protection challenges. This paper introduces an algorithm for the recognition of faults in the grid to which a solar photovoltaic (PV) system is integrated. A fault index (FI) was introduced to identify faults. This FI was calculated by multiplying the Wigner distribution (WD) index and Alienation (ALN) index. The WD-index was based on the energy density of the current signal evaluated using Wigner distribution function. The ALN-index was evaluated using sample-based alienation coefficients of the current signal. The performance of the algorithm was validated for various scenarios with different fault types at various locations, different fault incident angles, fault impedances, sampling frequencies, hybrid line consisting of overhead (OH) line and underground (UG) cable sections, different types of transformer windings and the presence of noise. Two phase faults with and without the involvement of ground were differentiated using the ground fault index based on the zero sequence current. This study was performed on the IEEE-13 nodes test network to which a solar PV plant with a capacity of 1 MW was integrated. The performance of the algorithm was also tested on the western part of utility grid in the Rajasthan State in India where solar PV energy integration is high. The performance of the algorithm was effectively established by comparing it with the discrete Wavelet transform (DWT), Wavelet packet transform (WPT) and Stockwell transform-based methods.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/4/1516/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2020Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 34 selected citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/4/1516/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2020Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Shan Hu; Xin Zhou; Da Yan; Fei Guo; Tianzhen Hong; Yi Jiang;Among the sufficiency, efficiency, and renewable frameworks for reducing energy use and energy-related carbon emissions, Building Energy Sufficiency (BES) is gaining attention from policy makers and engineers. Despite the significant role of the building sector in the success of national energy and climate plans, there is a lack of research on the drivers, technologies, and effective policy instruments required to achieve BES in the building operational phase. To fill this gap, this study presents a systematic review of the definition and paradigm of BES and concludes that BES should address both occupant demand and energy or emissions requirements simultaneously. The characteristics of occupant demand in building services are divided into four dimensions: time and space, quality and quantity, control and adjustment, and flexibility. Technical options regarding the building architecture, the envelope system, and the building energy system are reviewed. Finally, policy implications and recommendations are discussed. The multiple benefits and multidisciplinary nature of BES justify further research and accelerated policy implementation in developed and developing countries.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BY NCFull-Text: https://escholarship.org/uc/item/7mz5b1sdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 55 selected citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BY NCFull-Text: https://escholarship.org/uc/item/7mz5b1sdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Dongsen Li; Ciwei Gao; Tao Chen; Xiaoxuan Guo; Shuai Han;Abstract Power-to-gas (PtG), as a promising technology proposed to store surplus renewable energy (RE), can hardly be commercialized for its low profitability. In this paper, three approaches are proposed in this paper to enhance the profitability of the PtG. Firstly, a cooperative union containing PtG is proposed and its sustainability analysis is undertaken based on Shapley Value method. Secondly, the PtG reaction heat, as an essential by-product of PtG which is valuable and therefore requires further study, is fully exploited for district heating in the operation of regional integrated energy system, which is solved by an improved SOCP method. Thirdly, a symbiosis cooperation mode is designed for wind power and PtG to enhance the benefit of PtG through optimization-based trading strategy, which is a MINLP model and solved by Big-M method. The results show that the daily profit of PtG is significantly increased with the cooperative union as the symbiosis cooperation mode can produce a 15.1% profit lift, meanwhile, exploitation of reaction heat can produce an 8.6% profit lift. Finally, our study reveals the conflict of interest between wind power and the cogeneration. A sensitivity study on the proportion of reaction heat used for district heating is performed to verify the mutually beneficial relation between PtG and the cogeneration. The findings of this paper can guide the commercialization of PtG.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.25 selected citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2008Publisher:Elsevier BV Authors: Yu Dao, Chen; James F, Barker; Lai, Gui;pmid: 17964687
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.
Journal of Contamina... arrow_drop_down Journal of Contaminant HydrologyArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.56 selected citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Contamina... arrow_drop_down Journal of Contaminant HydrologyArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Xianyu Yu; Zemin Wu; Qunwei Wang; Xiuzhi Sang; Dequn Zhou;Abstract This paper aims to explore the appropriate investment strategy for Chinese power enterprises with the effect of the nationwide carbon emissions trading (NCET) market. Based on the system dynamics (SD) theory and the analysis of investment strategies, the SD model for the investment analysis of power enterprises is proposed. The simulation experiments based on three different investment policy scenarios (i.e., conservative, neutral and active) are conducted. According to the simulation results, the reasonable short-term investment for enterprises should be increased. If enterprises choose to invest more resources in the installation of green powers (hydropower, wind power and photovoltaic), their carbon emissions and profits may be more difficult to achieve qualitative changes in the short term. It is suggested that before the establishment of NCET market, enterprises should give priority to investing in clean technology instead of large-scale green energy installation. In the long run, increasing the investment of green power generation will help enterprises resist the rising cost of carbon trading. In addition, even in the conservative policy environment, the enterprise can still achieve its carbon discharges peak value before 2030, so the government may consider adopting a loose policy standard to support the economic interests of power enterprises.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.80 selected citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2002Publisher:Wiley Frederik, Accoe; Pascal, Boeckx; Oswald, Van Cleemput; Georges, Hofman; Xu, Hui; Huang, Bin; Chen, Guanxiong;doi: 10.1002/rcm.827
pmid: 12442289
Abstract Variations in 13 C natural abundance and distribution of total C among five size and density fractions of soil organic matter, water soluble organic C (WSOC) and microbial biomass C (MBC) were investigated in the upper layer (0–20 cm) of a continuous grassland soil (CG, C 3 vegetation), a C 3 ‐humus soil converted to continuous maize cultivation (CM, C 4 vegetation) and a C 3 ‐humus soil converted to a rotation of maize cultivation and grassland (R). The amounts of WSOC and MBC were both significantly larger in the CG than in the CM and the R. In the three soils, WSOC was depleted while MBC was enriched in 13 C as compared with whole soil C. The relative contributions to the total C content of C stored in the macro‐organic matter and in the size fraction 50–150 µm decreased with decreasing total C contents in the order CG > R > CM, while the relative contribution of C associated with the clay‐ and silt‐sized fraction <50 µm increased. This reflects a greater stability and physical protection against microbial degradation associated with soil disruption (tillage) of the clay‐ and silt‐associated organic C, in relation to the organic C in larger size fractions. The size and density fractions from the CG soil showed significant differences in 13 C enrichment, indicating different degrees of microbial degradation and stability of soil organic C associated with physically different soil organic matter (SOM) fractions. δ 13 C analysis of the size and density fractions from CM and R soils reflected a decreasing turnover rate of soil organic C with increasing density among the macro‐organic matter fractions and with decreasing particle size. Copyright © 2002 John Wiley & Sons, Ltd.
Rapid Communications... arrow_drop_down Rapid Communications in Mass SpectrometryArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.29 selected citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Rapid Communications... arrow_drop_down Rapid Communications in Mass SpectrometryArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Sulogna, Chatterjee; S, Venkata Mohan;pmid: 34426236
The study evaluates the potential of different vegetable wastes namely, composite vegetable waste (CVW), potato waste (PW), sweet potato waste (SPW) and yam waste (YW) as an alternative feedstock for the production of renewable sugars. Thermal assisted chemical pretreatment followed by enzymatic saccharification yielded maximum sugars (0.515 g/g CVW, 0.56 g/g PW, 0.57 g/g SPW and 0.56 g/g YW) with total carbohydrate depolymerization of 95.01%, 88.30%, 90.32% and 88.59% respectively. Obtained sugars were valorized into bioethanol through fermentation using S. cerevisiae by optimizing the pH and temperature. The highest ethanol yield of 251.85 mg/g was obtained from SPW at 35°C followed by YW (240.98 mg/g), PW (235.4 mg/g) and CVW (125.6 mg/g) at pH 5.0. Utilizing the abundantly available vegetable wastes as a renewable feedstock for reducing sugars and subsequent bioethanol production will influence the economics and sustainability of the process positively in circular biorefinery format.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.29 selected citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Shengyuan Li; Zhonghua Gou;doi: 10.3390/land12101956
In the context of climate change and rural revitalization, numerous solar photovoltaic (PV) panels are being installed on village roofs and lands, impacting the enjoyment of the new rural landscape characterized by PV panels. However, the visual acceptance of PV panels in rural areas of China is not yet fully understood. This study aims to identify and correlate three key influential factors that contribute to the acceptance and appreciation of PV panels in China’s rural settings. A quasi-experiment was conducted, incorporating diverse landscapes into six rural settings, each containing both the original landscape and PV panels. The findings demonstrated that the original rural landscape was significantly more scenic than PV panels, and factors contributing to the appreciation of traditional landscapes, such as nostalgia, played a vital role in rejecting PV panels. Conversely, renewable energy-related factors, such as economic stakes and moral desirability, were found to contribute to the acceptance of PV panels. This study contributes to the strategic planning and design of solar PV panels in rural landscapes, taking into consideration social acceptance and local contexts.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Chengjun Wang; Weidong Liang; Yueyue Yang; Fang Liu; Hanxue Sun; Zhaoqi Zhu; An Li;Abstract The development of high-performance shape-stable phase change materials composites (ss-PCMCs) with enhanced thermal conductivity and high phase change enthalpy is of great importance for thermal energy storage. Herein, we report the creation of novel ss-PCMCs by incorporation of organic PCMs (1-hexadecanamine (HDA) and palmitic acid (PA)) into the biomass carbon aerogels (BCAs refer to sunflower receptacle spongy carbon aerogel (r-CA) and sunflower stem carbon aerogel (s-CA)) through a simple vacuum infusion. Due to their abundant porosity, light weight and high specific surface area, organic PCMs can be spontaneously loaded into BCAs with an ultrahigh loading rate of up to 1988 wt%. The obtained of PCM/BCAs composites show high phase change enthalpy of ranging from 207.9 kJ kg−1 to 271 kJ kg−1, in addition to their excellent thermal stability and recyclability, e.g., their phase change enthalpy nearly remains unchanged even after 50 times of melting/freezing cycles. The PCM/BCAs composites also show an enhanced thermal conductivity. Furthermore, the light-to-thermal conversion efficiency was found to be promising candidates for light-to-thermal energy storage applications on basis of their 75.6% for HDA/r-CA and 67.8% for HDA/s-CA, respectively, making them abundant resource, cost-efficiency, simple and scalable fabrication process.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.141 selected citations 141 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Sébastien M. R. Dente; Toshiyuki Shimizu; Tao Wang; Seiji Hashimoto;doi: 10.3390/su12208730
The current organization of water supply systems demands drinking standards for all the households’ usage of water. Few dual water systems, i.e., systems in which the quality of the water supplied is differentiated by types of use, exist but are mainly circumscribed to developing countries. Besides, bath and showers are so far considered as a potable use of water despite only drinking and cooking activities requiring the high-quality standards of potable water. The present work demonstrates how the principles of dual water systems can be incorporated into the sustainable concept of product-service system (PSS) using a dual water system of a municipal water supply treatment plant in France as a case study. The PSS is based on the water quality, and the bathing activity of households is considered with a dedicated standard for the first time. Two systems are considered, S1 and S2, supplied with the same raw water quality and treated with drinking (S1) bathing standards (S2). The quality parameters considered are total organic carbon (TOC) and turbidity (T) and the potential savings related to costs, material, and energy consumptions are assessed using EVALEAU as a process modeling tool. The treatment lines consisted of powdered activated carbon (PAC) addition, coagulation, flocculation, settling, and rapid sand filtration. Results show that material consumption can be reduced by 41% mainly through the decrease in chemical consumption associated with the change of requirement for the TOC parameter. On the opposite, energy consumption was found dependent on the water of volume treated rather than its quality leading to only marginal savings. The cost was decreased by 37% as a result of the reduction of the chemicals consumed.
Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 2 selected citations 2 popularity Average influence Average impulse Average Powered by BIP!
more_vert Sustainability arrow_drop_down SustainabilityOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2071-1050/12/20/8730/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Sheesh Ram Ola; Amit Saraswat; Sunil Kumar Goyal; S. K. Jhajharia; Baseem Khan; Om Prakash Mahela; Hassan Haes Alhelou; Pierluigi Siano;doi: 10.3390/app10041516
handle: 11386/4757678
As renewable energy (RE) penetration has a continuously increasing trend, the protection of RE integrated power systems is a critical issue. Recently, power networks developed for grid integration of solar energy (SE) have been designed with the help of multi-tapped lines to integrate small- and medium-sized SE plants and simultaneously supplying power to the loads. These tapped lines create protection challenges. This paper introduces an algorithm for the recognition of faults in the grid to which a solar photovoltaic (PV) system is integrated. A fault index (FI) was introduced to identify faults. This FI was calculated by multiplying the Wigner distribution (WD) index and Alienation (ALN) index. The WD-index was based on the energy density of the current signal evaluated using Wigner distribution function. The ALN-index was evaluated using sample-based alienation coefficients of the current signal. The performance of the algorithm was validated for various scenarios with different fault types at various locations, different fault incident angles, fault impedances, sampling frequencies, hybrid line consisting of overhead (OH) line and underground (UG) cable sections, different types of transformer windings and the presence of noise. Two phase faults with and without the involvement of ground were differentiated using the ground fault index based on the zero sequence current. This study was performed on the IEEE-13 nodes test network to which a solar PV plant with a capacity of 1 MW was integrated. The performance of the algorithm was also tested on the western part of utility grid in the Rajasthan State in India where solar PV energy integration is high. The performance of the algorithm was effectively established by comparing it with the discrete Wavelet transform (DWT), Wavelet packet transform (WPT) and Stockwell transform-based methods.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/4/1516/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2020Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 34 selected citations 34 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/4/1516/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2020Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Shan Hu; Xin Zhou; Da Yan; Fei Guo; Tianzhen Hong; Yi Jiang;Among the sufficiency, efficiency, and renewable frameworks for reducing energy use and energy-related carbon emissions, Building Energy Sufficiency (BES) is gaining attention from policy makers and engineers. Despite the significant role of the building sector in the success of national energy and climate plans, there is a lack of research on the drivers, technologies, and effective policy instruments required to achieve BES in the building operational phase. To fill this gap, this study presents a systematic review of the definition and paradigm of BES and concludes that BES should address both occupant demand and energy or emissions requirements simultaneously. The characteristics of occupant demand in building services are divided into four dimensions: time and space, quality and quantity, control and adjustment, and flexibility. Technical options regarding the building architecture, the envelope system, and the building energy system are reviewed. Finally, policy implications and recommendations are discussed. The multiple benefits and multidisciplinary nature of BES justify further research and accelerated policy implementation in developed and developing countries.
University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BY NCFull-Text: https://escholarship.org/uc/item/7mz5b1sdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 55 selected citations 55 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert University of Califo... arrow_drop_down University of California: eScholarshipArticle . 2023License: CC BY NCFull-Text: https://escholarship.org/uc/item/7mz5b1sdData sources: Bielefeld Academic Search Engine (BASE)eScholarship - University of CaliforniaArticle . 2023Data sources: eScholarship - University of CaliforniaRenewable and Sustainable Energy ReviewsArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Dongsen Li; Ciwei Gao; Tao Chen; Xiaoxuan Guo; Shuai Han;Abstract Power-to-gas (PtG), as a promising technology proposed to store surplus renewable energy (RE), can hardly be commercialized for its low profitability. In this paper, three approaches are proposed in this paper to enhance the profitability of the PtG. Firstly, a cooperative union containing PtG is proposed and its sustainability analysis is undertaken based on Shapley Value method. Secondly, the PtG reaction heat, as an essential by-product of PtG which is valuable and therefore requires further study, is fully exploited for district heating in the operation of regional integrated energy system, which is solved by an improved SOCP method. Thirdly, a symbiosis cooperation mode is designed for wind power and PtG to enhance the benefit of PtG through optimization-based trading strategy, which is a MINLP model and solved by Big-M method. The results show that the daily profit of PtG is significantly increased with the cooperative union as the symbiosis cooperation mode can produce a 15.1% profit lift, meanwhile, exploitation of reaction heat can produce an 8.6% profit lift. Finally, our study reveals the conflict of interest between wind power and the cogeneration. A sensitivity study on the proportion of reaction heat used for district heating is performed to verify the mutually beneficial relation between PtG and the cogeneration. The findings of this paper can guide the commercialization of PtG.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.25 selected citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2008Publisher:Elsevier BV Authors: Yu Dao, Chen; James F, Barker; Lai, Gui;pmid: 17964687
Increased use of ethanol-blended gasoline (gasohol) and its potential release into the subsurface have spurred interest in studying the biodegradation of and interactions between ethanol and gasoline components such as benzene, toluene, ethylbenzene and xylene isomers (BTEX) in groundwater plumes. The preferred substrate status and the high biological oxygen demand (BOD) posed by ethanol and its biodegradation products suggests that anaerobic electron acceptors (EAs) will be required to support in situ bioremediation of BTEX. To develop a strategy for aromatic hydrocarbon bioremediation and to understand the impacts of ethanol on BTEX biodegradation under strictly anaerobic conditions, a microcosm experiment was conducted using pristine aquifer sand and groundwater obtained from Canadian Forces Base Borden, Canada. The initial electron accepter pool included nitrate, sulfate and/or ferric iron. The microcosms typically contained 400 g of sediment, 600 approximately 800 ml of groundwater, and with differing EAs added, and were run under anaerobic conditions. Ethanol was added to some at concentrations of 500 and 5000 mg/L. Trends for biodegradation of aromatic hydrocarbons for the Borden aquifer material were first developed in the absence of ethanol, The results showed that indigenous microorganisms could degrade all aromatic hydrocarbons (BTEX and trimethylbenzene isomers-TMB) under nitrate- and ferric iron-combined conditions, but not under sulfate-reducing conditions. Toluene, ethylbenzene and m/p-xylene were biodegraded under denitrifying conditions. However, the persistence of benzene indicated that enhancing denitrification alone was insufficient. Both benzene and o-xylene biodegraded significantly under iron-reducing conditions, but only after denitrification had removed other aromatics. For the trimethylbenzene isomers, 1,3,5-TMB biodegradation was found under denitrifying and then iron-reducing conditions. Biodegradation of 1,2,3-TMB or 1,2,4-TMB was slower under iron-reducing conditions. This study suggests that addition of excess ferric iron combined with limited nitrate has promise for in situ bioremediation of BTEX and TMB in the Borden aquifer and possibly for other sites contaminated by hydrocarbons. This study is the first to report 1,2,3-TMB biodegradation under strictly anaerobic condition. With the addition of 500 mg/L ethanol but without EA addition, ethanol and its main intermediate, acetate, were quickly biodegraded within 41 d with methane as a major product. Ethanol initially present at 5000 mg/L without EA addition declined slowly with the persistence of unidentified volatile fatty acids, likely propionate and butyrate, but less methane. In contrast, all ethanol disappeared with repeated additions of either nitrate or ferric iron, but acetate and unidentified intermediates persisted under iron-enhanced conditions. With the addition of 500 mg/L ethanol and nitrate, only minor toluene biodegradation was observed under denitrifying conditions and only after ethanol and acetate were utilized. The higher ethanol concentration (5000 mg/L) essentially shut down BTEX biodegradation likely due to high EA demand provided by ethanol and its intermediates. The negative findings for anaerobic BTEX biodegradation in the presence of ethanol and/or its biodegradation products are in contrast to recent research reported by Da Silva et al. [Da Silva, M.L.B., Ruiz-Aguilar, G.M.L., Alvarez, P.J.J., 2005. Enhanced anaerobic biodegradation of BTEX-ethanol mixtures in aquifer columns amended with sulfate, chelated ferric iron or nitrate. Biodegradation. 16, 105-114]. Our results suggest that the apparent conservation of high residual labile carbon as biodegradation products such as acetate makes natural attenuation of aromatics less effective, and makes subsequent addition of EAs to promote in situ BTEX biodegradation problematic.
Journal of Contamina... arrow_drop_down Journal of Contaminant HydrologyArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.56 selected citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Journal of Contamina... arrow_drop_down Journal of Contaminant HydrologyArticle . 2008 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Xianyu Yu; Zemin Wu; Qunwei Wang; Xiuzhi Sang; Dequn Zhou;Abstract This paper aims to explore the appropriate investment strategy for Chinese power enterprises with the effect of the nationwide carbon emissions trading (NCET) market. Based on the system dynamics (SD) theory and the analysis of investment strategies, the SD model for the investment analysis of power enterprises is proposed. The simulation experiments based on three different investment policy scenarios (i.e., conservative, neutral and active) are conducted. According to the simulation results, the reasonable short-term investment for enterprises should be increased. If enterprises choose to invest more resources in the installation of green powers (hydropower, wind power and photovoltaic), their carbon emissions and profits may be more difficult to achieve qualitative changes in the short term. It is suggested that before the establishment of NCET market, enterprises should give priority to investing in clean technology instead of large-scale green energy installation. In the long run, increasing the investment of green power generation will help enterprises resist the rising cost of carbon trading. In addition, even in the conservative policy environment, the enterprise can still achieve its carbon discharges peak value before 2030, so the government may consider adopting a loose policy standard to support the economic interests of power enterprises.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.80 selected citations 80 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2002Publisher:Wiley Frederik, Accoe; Pascal, Boeckx; Oswald, Van Cleemput; Georges, Hofman; Xu, Hui; Huang, Bin; Chen, Guanxiong;doi: 10.1002/rcm.827
pmid: 12442289
Abstract Variations in 13 C natural abundance and distribution of total C among five size and density fractions of soil organic matter, water soluble organic C (WSOC) and microbial biomass C (MBC) were investigated in the upper layer (0–20 cm) of a continuous grassland soil (CG, C 3 vegetation), a C 3 ‐humus soil converted to continuous maize cultivation (CM, C 4 vegetation) and a C 3 ‐humus soil converted to a rotation of maize cultivation and grassland (R). The amounts of WSOC and MBC were both significantly larger in the CG than in the CM and the R. In the three soils, WSOC was depleted while MBC was enriched in 13 C as compared with whole soil C. The relative contributions to the total C content of C stored in the macro‐organic matter and in the size fraction 50–150 µm decreased with decreasing total C contents in the order CG > R > CM, while the relative contribution of C associated with the clay‐ and silt‐sized fraction <50 µm increased. This reflects a greater stability and physical protection against microbial degradation associated with soil disruption (tillage) of the clay‐ and silt‐associated organic C, in relation to the organic C in larger size fractions. The size and density fractions from the CG soil showed significant differences in 13 C enrichment, indicating different degrees of microbial degradation and stability of soil organic C associated with physically different soil organic matter (SOM) fractions. δ 13 C analysis of the size and density fractions from CM and R soils reflected a decreasing turnover rate of soil organic C with increasing density among the macro‐organic matter fractions and with decreasing particle size. Copyright © 2002 John Wiley & Sons, Ltd.
Rapid Communications... arrow_drop_down Rapid Communications in Mass SpectrometryArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.29 selected citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert Rapid Communications... arrow_drop_down Rapid Communications in Mass SpectrometryArticle . 2002 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors: Sulogna, Chatterjee; S, Venkata Mohan;pmid: 34426236
The study evaluates the potential of different vegetable wastes namely, composite vegetable waste (CVW), potato waste (PW), sweet potato waste (SPW) and yam waste (YW) as an alternative feedstock for the production of renewable sugars. Thermal assisted chemical pretreatment followed by enzymatic saccharification yielded maximum sugars (0.515 g/g CVW, 0.56 g/g PW, 0.57 g/g SPW and 0.56 g/g YW) with total carbohydrate depolymerization of 95.01%, 88.30%, 90.32% and 88.59% respectively. Obtained sugars were valorized into bioethanol through fermentation using S. cerevisiae by optimizing the pH and temperature. The highest ethanol yield of 251.85 mg/g was obtained from SPW at 35°C followed by YW (240.98 mg/g), PW (235.4 mg/g) and CVW (125.6 mg/g) at pH 5.0. Utilizing the abundantly available vegetable wastes as a renewable feedstock for reducing sugars and subsequent bioethanol production will influence the economics and sustainability of the process positively in circular biorefinery format.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.29 selected citations 29 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
