- home
- Advanced Search
- Energy Research
- Open Access
- CN
- IN
- Solar Energy
- Energy Research
- Open Access
- CN
- IN
- Solar Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2020 TaiwanPublisher:Elsevier BV Authors: Jih-Sheng Chiu; Yiman Zhao; Yiman Zhao;Sam Zhang;
+1 AuthorsSam Zhang
Sam Zhang in OpenAIREJih-Sheng Chiu; Yiman Zhao; Yiman Zhao;Sam Zhang;
Sam Zhang
Sam Zhang in OpenAIREDong-Sing Wuu;
Dong-Sing Wuu
Dong-Sing Wuu in OpenAIREhandle: 11455/100038
Abstract The passivated emitter and rear cell (PERC), with advantages of reducing rear surface recombination and improving rear surface reflectivity, is extensively applied in monocrystalline and multicrystalline silicon solar cells. In this study, we investigated the rear PERC structure with various contact patterns (type I to VI) and line spacings (800–1000 µm) using 156.75 mm × 156.75 mm p-type Czochralski mono crystalline silicon wafers. The void formation on the rear-side contacts of PERC structures played an important role in affecting conversion efficiencies. A smaller laser ablated opening width may easily lead to the formation of voids under screen printing and co-firing backside aluminum. Further evidence from the electroluminescence (EL) measurements confirmed that the higher laser ablation power would result in a slightly dark region for the solar cell with a rear-side contact opening width greater than 45 µm. The type III backside contact pattern (dash 2:1) with a line spacing of 900 µm surpassed all other contact patterns owing to its excellent aluminum back surface field. As a result, by optimizing both the backside contact pattern and line spacing of PERC solar cells, the best conversion efficiency of 22.25% and 20.9% for the average PERC solar cells were achieved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 28 citations 28 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.12.044&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Elsevier BV Authors: Wu, Yongxin;Wang, Cong;
Sun, Ying; Ning, Yuping; +6 AuthorsWang, Cong
Wang, Cong in OpenAIREWu, Yongxin;Wang, Cong;
Sun, Ying; Ning, Yuping; Liu, Yingfang; Xue, Yafei; Wang, Wenwen; Zhao, Shuxi;Wang, Cong
Wang, Cong in OpenAIRETomasella, Eric;
Tomasella, Eric
Tomasella, Eric in OpenAIREBousquet, Angélique;
Bousquet, Angélique
Bousquet, Angélique in OpenAIREIn this work, the NbTiSiN and NbTiSiON layers are used instead of NbTiN and NbTiON layers to further improve the thermal stability of Al/NbTiN/NbTiON/SiO2 multilayer solar selective absorbing coating. The thermal stability of Si-doped individual layers and multilayer coatings are investigated. The X-ray diffraction (XRD) results show that Si incorporation into NbTiN (NbTiSiN) layer does not change its preferred orientation, and the Si-doped NbTiON (NbTiSiON) layer remains in amorphous phase. On the other hand, by introducing Si into NbTiN and NbTiON layers induce significant improvement of the oxidation resistance at 500 °C in air. After ageing in air at 500 °C for 2 h, the absorptance and emittance (at 400 °C) of Al/NbTiN/NbTiON/SiO2 and Al/NbTiSiN/NbTiSiON/SiO2 multilayer coatings change from 0.934/0.13 and 0.931/0.12 to 0.538/0.14 and 0.922/0.13, respectively. Meanwhile the surface roughness increases from 18.3 and 7.9 to 41.5 and 14.7 respectively, as atomic force microscopy (AFM) shows. The Al/NbTiSiN/NbTiSiON/SiO2 coating still has a high absorptance (0.910) and low emittance (0.13, at 400 °C) after ageing at 550 °C in vacuum for 100 h. It displays that Si-doping play an important role in the improvement of the thermal stability.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.06.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 27 citations 27 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.06.021&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 FrancePublisher:Elsevier BV Authors: Liu, Bin;Ma, Xiaoyan;
Ma, Xiaoyan
Ma, Xiaoyan in OpenAIREWang, Xiaolin;
Dang, Chao; +2 AuthorsWang, Xiaolin
Wang, Xiaolin in OpenAIRELiu, Bin;Ma, Xiaoyan;
Ma, Xiaoyan
Ma, Xiaoyan in OpenAIREWang, Xiaolin;
Dang, Chao; Wang, Qingwei; Bennacer, Rachid;Wang, Xiaolin
Wang, Xiaolin in OpenAIREThe solar hybrid-wall is widely used in natural ventilation and air heating in buildings. This article aims to experimentally study the induced chimney effect in a solar hybrid double wall. The effect of the air ventilation gap width and solar radiation intensity on the temperature distribution and induced air flow rate at the outlet of the hybrid wall was investigated with a variable chimney gap width-to-height ratio between 1:10 and 3:5. The results demonstrated that a lowest temperature position exists in the air gap and the position varies with the width of the air gap. The average air velocity in the air gap increases with the strength of the radiation intensity, and it shows a peak value with decreasing chimney gap width. The induced mass flow rate increases with both the radiation intensity and the chimney gap width. The optimum chimney gap width-to-height ratio is around 0.2–0.3 according to the coupling effect of the temperature and the air volume. Smoke visualization experiment demonstrates that reverse flow occurs in solar chimneys with a gap width-to-height ratio bigger than 0.3. It was found that the prediction method available in the literature can be well applied to narrow chimneys with a gap width-to-height ratio less than 0.3.
INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.02.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 29 citations 29 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert INRIA a CCSD electro... arrow_drop_down INRIA a CCSD electronic archive serverArticle . 2015Data sources: INRIA a CCSD electronic archive serveradd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2015.02.012&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors:M.S. Tivanov;
I.A. Svito;M.S. Tivanov
M.S. Tivanov in OpenAIRES. Rasool;
S. Rasool
S. Rasool in OpenAIREK. Saritha;
+2 AuthorsK. Saritha
K. Saritha in OpenAIREM.S. Tivanov;
I.A. Svito;M.S. Tivanov
M.S. Tivanov in OpenAIRES. Rasool;
S. Rasool
S. Rasool in OpenAIREK. Saritha;
K.T. Ramakrishna Reddy; V.F. Gremenok;K. Saritha
K. Saritha in OpenAIREAbstract Crystallinity, optical band gap, resistivity and photoresponse of thermally evaporated In2S3 thin films deposited at a temperature of 350 °C and further annealed in sulfur vapour at different temperature range of 200–300 °C is investigated. It is observed that with an increase of annealing temperature, predominantly β-In2S3 phase is formed and the optical band gap for indirect allowed transitions increases from 1.6 eV to 2.0 eV and for direct allowed transitions from 2.3 eV to 2.7 eV. The electrophysical properties indicate that the activation mechanism of conductivity with an activation energy in the range of 0.5–0.73 eV, which is typical for the presence of indium vacancies in the β-In2S3 crystal structure and for the replacement of sulfur by oxygen atoms. It is also noted that sulfur annealing at temperatures of 250–300 °C leads to an increase in the conductivity and photosensitivity of films, which is suitable for photovoltaic applications.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.04.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2019Publisher:Elsevier BV Authors:D. Kishore Kumar;
Srinivasa R. Popuri;D. Kishore Kumar
D. Kishore Kumar in OpenAIRESanjay Kumar Swami;
Obinna R. Onuoha; +4 AuthorsSanjay Kumar Swami
Sanjay Kumar Swami in OpenAIRED. Kishore Kumar;
Srinivasa R. Popuri;D. Kishore Kumar
D. Kishore Kumar in OpenAIRESanjay Kumar Swami;
Obinna R. Onuoha;Sanjay Kumar Swami
Sanjay Kumar Swami in OpenAIREJan-Willem G. Bos;
Jan-Willem G. Bos
Jan-Willem G. Bos in OpenAIREBaixin Chen;
Baixin Chen
Baixin Chen in OpenAIRENick Bennett;
H.M. Upadhyaya;Nick Bennett
Nick Bennett in OpenAIREAbstract In this work, the scalable screen printing process has been adopted to prepare low-cost and earth-abundant tin selenide (SnSe) films to study as the counter electrode in dye-sensitized solar cells (DSSCs). The SnSe powder was synthesized by solid state reaction method and corresponding films were fabricated by screen printing technique. The electrocatalytic activity of SnSe for redox iodide/triiodide (I−/I3−) couple and charge transfer resistance at the CE/electrolyte interface were characterized by cyclic voltammetry and electrochemical impedance spectroscopy. The DSSC with SnSe counter electrode exhibited with power conversion efficiency (PCE) of ~5.76% with open-circuit voltage of 0.63 V and short circuit current density of 12.39 mA/cm2 whereas the DSSC with platinum counter electrode showed PCE of 8.09% with open-circuit voltage of 0.68 V and short circuit current density of 14.77 mA/cm2. Thus, earth abundant and low cost SnSe films fabricated by screen printing technique could be an alternative to costly platinum counter electrode in DSSC.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.07.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 26 citations 26 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2019.07.066&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 United KingdomPublisher:Elsevier BV Authors:Zhou, Chang;
Wang, Yinfeng; Li, Jing; Ma, Xiaoli; +4 AuthorsZhou, Chang
Zhou, Chang in OpenAIREZhou, Chang;
Wang, Yinfeng; Li, Jing; Ma, Xiaoli; Li, Qiyuan; Yang, Moucun;Zhou, Chang
Zhou, Chang in OpenAIREZhao, Xudong;
Zhu, Yuezhao;Zhao, Xudong
Zhao, Xudong in OpenAIRESolar energy technology and energy storage technology are promising to make a contribution to current energy and global climate issue. The energy demand of daily cooking is enormous, and conventional cooking methods use gas or electricity with large carbon emissions. This paper proposes an innovative solar cooking system (SCS) integrated with rock-bed thermocline storage. Thermal oils transfer heat from the collectors to the rocks in the charging process and release heat in cooktop unit for cooking. The energy consumption of a household is first assessed by a reasonable hypothesis. Mathematical models and simulation models are then established to analyze the heat transfer performance of the cooktop unit and the annual running performance of the SCS. The rock-bed thermocline storage, single-tank thermocline storage and two-tank storage are compared. The simulation results indicate that the rock-bed thermocline storage unit employed to SCS will enhance the annual running performance and acquire the minimum initial investment cost. The economic analysis shows that the lowest levelized cost of cooking energy (LCOC) of the SCS is 0.3884 $/kWh, while the corresponding levelized cost of cooking a meal (LCCM) is 0.953 $/Meal and the solar fraction (SF) is 71%. Compared to the electrical and natural gas cooker, the SCS saves 1.75 tons and 0.52 tons of carbon emissions annually, respectively.
University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.111816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert University of Hull: ... arrow_drop_down University of Hull: Repository@HullArticle . 2023License: CC BY NC NDData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.111816&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Authors: Imre T. Horváth; Hans Goverde;Patrizio Manganiello;
Patrizio Manganiello
Patrizio Manganiello in OpenAIREJonathan Govaerts;
+6 AuthorsJonathan Govaerts
Jonathan Govaerts in OpenAIREImre T. Horváth; Hans Goverde;Patrizio Manganiello;
Patrizio Manganiello
Patrizio Manganiello in OpenAIREJonathan Govaerts;
Jonathan Govaerts
Jonathan Govaerts in OpenAIRELoic Tous;
Bader Aldalali; Eszter Vörösházi; Jozef Szlufcik; Francky Catthoor; Jef Poortmans;Loic Tous
Loic Tous in OpenAIREAbstract PV module testing under standard conditions is an important and well-established procedure, which plays a vital role in module rating. However, PV modules rarely operate at standard conditions therefore their field performance should be predicted based on long term outdoor monitoring or by means of models – so called energy yield models, which combine PV module characteristics with varying environmental conditions. The present work employs a bottom-up, physics-based energy yield modelling approach, which accounts to the interacting optical, thermal and electrical mechanisms in a detailed manner. Additionally, measured data is used for the accurate calibration of the models. Such an approach permits to explore the influence of cell- and module technology details on energy yield under any specific environmental conditions. The present work employs such a method to evaluate the influence of Silicon solar cell technology on energy yield under desert and moderate climates, where the interplay of different irradiance and ambient temperature levels result in a challenging PV performance prediction problem. The purpose of this work is to identify the best-suited solar cell technologies and to understand the underlying mechanisms, which lead to superior PV performance under specific climate conditions. The study is performed by means of physics-based exploratory energy yield simulations with detailed resolution of the thermal effects. Our comparison of four different cell technologies in monofacial modules highlights that superior illumination-dependent performance can contribute to annual energy yield enhancement under both moderate and desert climates amounting to 1.75% and 0.4%, respectively; while a 0.04%/°C advantage in relative temperature coefficient increases annual energy yield (by 1.2%) only under a desert climate.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.07.079&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Authors: Bhrigu Rishi Mishra; Shireesh B. Kedare; Natalie Hanrieder;Anish Modi;
Anish Modi
Anish Modi in OpenAIREAbstract This paper compares three attenuation models for the distinct meteorological conditions of India and assesses the feasibility of using the satellite data to calculate the slant path extinction coefficient and the slant path transmissivity of the lower atmosphere. The attenuation models are compared for the sites of Pune, Kanpur, and Jaipur. The AERONET data is used with REST2 to model the direct normal irradiance and the total optical depth. The results indicate that the three models give similar transmissivity values for low aerosol concentrations. As the aerosol concentrations increase, the difference in the slant path transmissivity as calculated by two of the models increases with respect to the third reference model. The slant path transmissivity comparison shows that for AERONET AOD at 550 nm (AOD550) less than 0.3, the relative error in the transmissivity values estimated by two of the compared models with respect to the third model is not higher than 10 % for Pune, 18 % for Kanpur, and 12 % for Jaipur. The mean relative error in the slant path transmissivity values obtained from the reference model using MODIS data with respect to the values obtained using AERONET data is 4.8 %, 10.2 %, and 9.2 % for Pune, Kanpur, and Jaipur, respectively. A difference of 0.2 between AERONET AOD550 and MODIS AOD550 values resulted in a difference of 0.05–0.08 between the transmissivity values calculated by the reference model using AERONET AOD550 and using MODIS AOD550 for the three sites.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.10.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.10.049&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018 United KingdomPublisher:Elsevier BV Funded by:FCT | LA 25FCT| LA 25Authors: Yihua Hu;Xingshuo Li;
Xingshuo Li;Xingshuo Li
Xingshuo Li in OpenAIREHuiqing Wen;
+3 AuthorsHuiqing Wen
Huiqing Wen in OpenAIREYihua Hu;Xingshuo Li;
Xingshuo Li;Xingshuo Li
Xingshuo Li in OpenAIREHuiqing Wen;
Lin Jiang;Huiqing Wen
Huiqing Wen in OpenAIREGuanying Chu;
Guanying Chu;Guanying Chu
Guanying Chu in OpenAIREAbstract Due to dust, structural interfering from surrounding buildings or trees, partial shading conditions (PSCs) are frequently occurred in photovoltaic (PV) arrays, which affects the generated power and system reliability significantly. Under PSCs, PV arrays exhibit multiple local maximum power points (LMPPs), which make the conventional maximum power point tracking (MPPT) algorithms difficult to quickly allocate the optimal operating point with the maximum output power. In order to solve this issue, a novel power-increment based global MPPT (GMPPT) algorithm is proposed by combining the voltage line, the load line, and the power line altogether in determining the tracking direction and the step size. The proposed algorithm retains the advantages of the conventional power incremental based GMPPT technique. Moreover, it can realize a successful convergence to the GMPP under any pattern of PSC, which is difficult to accomplish for some GMPPT algorithms. It simplifies the control implementation since it is not necessary to know exactly the internal connection of the PV array for the practical implementation of the algorithm. Furthermore, the proposed algorithm shows improved tracking speed and higher accuracy than other GMPPT techniques. It directly regulates the duty-cycle of the power interface rather than the output power command. Thus, the circuit design becomes easier. Finally, various partial shading scenarios are evaluated experimentally in order to validate the effectiveness of the proposed algorithm.
CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.04.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 29 citations 29 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 2visibility views 2 download downloads 43 Powered bymore_vert CORE arrow_drop_down add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2018.04.055&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 United KingdomPublisher:Elsevier BV Authors:Wu, Yupeng;
Connelly, Karen; Liu, Yuzhe; Gu, Xiaowen; +2 AuthorsWu, Yupeng
Wu, Yupeng in OpenAIREWu, Yupeng;
Connelly, Karen; Liu, Yuzhe; Gu, Xiaowen;Wu, Yupeng
Wu, Yupeng in OpenAIREGao, Yanfeng;
Gao, Yanfeng
Gao, Yanfeng in OpenAIREChen, George Z.;
Chen, George Z.
Chen, George Z. in OpenAIREIn this study a novel static concentrating photovoltaic (PV) system, suitable for use in windows or glazing façades, has been designed. The developed smart Concentrating PV (CPV) system is lightweight, low cost and able to generate electricity. Additionally, this system automatically responds to climate by varying the balance of electricity generated from the PV with the amount of solar light and heat permitted through it into the building. It therefore offers the potential to contribute to, and control, energy consumption within buildings. A comprehensive optical analysis of the smart CPV is undertaken via 3-D ray tracing technique. To obtain optimal overall optical performance of the novel smart CPV analysis has been based upon all necessary design parameters including the average reflectivity of the thermotropic reflective layer, the glazing cover dimension, the glazing cover materials as well as the dimensions of the solar cells. In addition, a hydroxypropyl cellulose (HPC) hydrogel polymer, suitable for use as the reflective thermotropic layer for the smart CPV system, was synthesized and experimentally studied.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 56 citations 56 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
visibility 5visibility views 5 download downloads 59 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.03.046&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu