- home
- Advanced Search
- Energy Research
- 2016-2025
- CN
- IN
- Solar Energy
- Energy Research
- 2016-2025
- CN
- IN
- Solar Energy
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Xianyang Gao; Lei Su; Ze Sun; Guimin Lu; Xingfu Song; Jianguo Yu;Abstract Molten nitrate salts are widely used as heat transfer and energy storage medium in Concentrated Solar Power (CSP) systems. Solar Salt (60 wt% NaNO3-40 wt% KNO3) is the commercial binary molten nitrate salt, which is the preferred energy storage material with high density, high specific heat, low melting point, high thermal stability, and low vapor pressure. This paper explored the effects of impurity Cl− on the thermophysical properties of Solar Salt, including liquidus temperature, density, viscosity, and thermal stability. The results showed that Cl− can significantly reduce the liquidus temperature, and when Cl− was less than 0.5 wt%, the liquidus temperature of molten salt system decreased within 1 °C. On the other hand, Cl− had little effect on the density, viscosity and thermal stability of the mixed molten salt system at 400 °C, but at high temperature Cl− will promote the volatilization of components. By analyzing the thermostatic stability at 565 °C, it was found that the total mass loss changes less than 0.3% when Cl− was less than 0.01 wt%. After comprehensive analysis, the conclusion is that the upper limit of Cl− is preferably less than 0.1 wt% for keeping good thermal performances of Solar Salt.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Anil Kumar; Mamta Sharma; Pankaj Thakur; Vijay Kumar Thakur; Sameer S. Rahatekar; Rajesh Kumar;Abstract Exergy analysis is very helpful for reducing irreversibility and rising the efficiency of solar collectors. The major objective of the present study is to organize a review on exergy analysis of different parabolic solar collectors. The effects of various flows and geometrical parameters of parabolic thermal collectors on the exergy efficiency were presented and discussed. In addition, comparative study was carried out to select the best solar thermal system for maximum exergy efficiency with minimal thermal losses. This study indicated that the hybrid nanofluids enhanced the exergy efficiency significantly as compared to without hybrid nanofluids. Passive techniques comprising twisted tape inserts, fins and insertion of swirl devices in the stream for changing the stream patterns causes to interrupt the thermal boundary layer and accordingly high exergy efficiency. This review would also throw light on the scope for further research and recommendation for improvement in the existing solar thermal collectors. Finally, this work will be beneficial for the scholars working on exergy analyses of solar parabolic collectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Jie Guo; Jie Min; Lei Han;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Zhang Dong; Liu Chang; Yu Kai; Yan Chengtao; Shen Yongqian; An Zhoujian; Jing Jinlong;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Hui Li; Hui Li; Yi Zhang; Haitian Luo;Abstract Cu2BaSn(S,Se)4 (CBTSSe) solar cells are emerging photovoltaic devices due to their high theoretical efficiencies of ~31%, environment-friendly and earth-abundant composition, low density of non-recombination defects, and so on. However, the record efficiency of CBTSSe solar cell is only 5.2%, showing the importance of studying their performance via numerical analysis to further enhance their practical efficiencies. In this paper, the effect of absorber and buffer layers on performances of Cu2BaSnS4 (CBTS) solar cells are firstly systematically studied via the SCAPS-1D software to provide a platform for the study of the effect of MoS2 interlayer on the performances of CBTS solar cells. The highest PCE of CBTS solar cell with a 30 nm CdS buffer layer is 11.87%. The PCE of CBTS solar cell with a 0.8 μm CBTS absorb layer is 12.51%, indicating that the CBTS solar cell is a potential low-cost solar cell due to its large optical absorption coefficient (α > 104 cm−1). The efficiency of CBTS solar cell is improved to 16.47% when the carrier concentration of CBTS is 1016 cm−3. The relationship between the performance of solar cell and the band gap, thickness, donor concentration, acceptor concentration of MoS2 interlayer is systematically investigated on the basis of the optimized efficiency. It is found that MoS2 interlayer plays an important role in the performance of CBTS solar cell. The p-type MoS2 has a beneficial effect on the efficiency improvement while the n-type MoS2 has a negative effect on the efficiency enhancement. The highest PCE of CBTS solar cell is as high as 18.28% when the thickness and the acceptor concentration of MoS2 are 4 nm and 1019 cm−3, respectively. Our simulation result provides a promising research direction to further improve the actual efficiency of the CBTS solar cell.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.05.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.05.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Hongzheng Chen; Lijian Zuo; Jiachi Huang; Jiachi Huang; Tao Ye; Zhuowei Gu;Abstract Morphology control is critical to achieve high efficiency CH3NH3PbI3 perovskite solar cells (PSC). In this paper, fluorinated perylene diimide (FPDI) was used as novel organic electron transport material in planar heterojunction perovskite solar cells. The perovskite film was fabricated by sequential vacuum vapor deposition, and the film morphology could be controlled by optimizing the FPDI film morphology with short time solvent spin-coating or solvent vapor annealing (SVA). Dense and uniform perovskite film with high substrate coverage could be obtained when the FPDI film was treated by chloroform SVA for half an hour, and the fill factor (FF) of the perovskite solar cell increased from 30.44% to 55.20%, enhancing the power conversion efficiency (PCE) from 3.23% to 7.44%. The PCE of the best device reached 7.93%, which was comparable to that (8.25%) of the conventional ZnO electron transport layer based perovskite device prepared by the same method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Jinke Bai; Tingting Zhang; Tingting Zhang; Feng Li; Qin Zhang; Qinghua Li; Xiao Jin; Peizhi Yang;Abstract Bifacial solar cells that can generate electricity from either front or rear side are regarded as advanced photovoltaics for markedly increased photoelectric conversion efficiency. We present here the fabrication of transparent RuSe counter electrodes by an alternating electrodeposition method for bifacial dye-sensitized solar cells (DSSCs). The catalytic and photovoltaics performances are maximized by tuning stoichiometric Ru/Se ratio and bilayer number. Upon irradiation by AM1.5 (100 mW cm−2), the device yields a maximized front efficiency of 8.72% and a rear efficiency of 5.9%, arising from the >80%-transparency of RuSe electrode in visible light region. This strategy provides new opportunities for fabricating high-performance DSSCs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.12.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.12.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Weiqi Yuan; Zhiying Song; Xiao Ren; Muin Uddin; Bendong Yu; Zhaomeng Li; Jie Ji; Bin Zhao; Fan Zhou;Abstract In flat-plate PV/T systems, there are some contradictions in the temperature requirements for the heat and electricity acquisition. The widely-used crystalline-silicon solar cells are negatively affected by the high temperature inside the PV/T collector. This paper proposes to use temperature-insensitive solar cells in PV/T and the CdTe used has the advantages of low power temperature coefficient, high photovoltaic efficiency, and low costs. Besides, the sandwich structure that CdTe cells are sealed between two pieces of glass can prevent them from the permeating of moist air. The CdTe-PV/T is experimentally tested and compared with a Poly-Si-PV/T system and it exhibits better instantaneous electrical performance at high operating temperatures and gains more electrical energy throughout the day. Then the influence of cells’ coverage ratio is investigated experimentally and the result shows that a higher coverage ratio is beneficial to the electrical and energy-saving performance. Furthermore, a new quasi-steady-state mathematical model is established and verified. Parametric discussions are conducted for performance optimization. The black TPT coating with higher emissivity performs better than the selective absorption coating of the absorbing plate, contrary to the traditional PV/T collector. The heat transfer mode between the back glass and the absorbing plate is different in different thicknesses of the air gap. Reducing the thickness can effectively improve the system’s performance in terms of thermal, electrical, and temperature. Then an improved CdTe-PV/T eliminating the backglass and air gap is proposed and numerically simulated. This research hopes to provide some ideas for the applicant and the optimization of CdTe-PV/T in hot climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Prithvi Krishna Chittoor; C. Bharatiraja;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Yue Mao; Bo Qiu; Min Zhang; Hongfei Yin; Jiacheng Yao; Xiaoheng Liu; Shenming Chen;Abstract The stable Ni(OH)2 ultrafine nanosheet combined with Bi2MoO6 to form heterojunction have been fabricated successfully by a simple and mild one-step solvent-thermal method. In this work, the Ni(OH)2/Bi2MoO6heterojunction increased the absorption range of visible light compared to the pure Bi2MoO6, from the UV–visible diffuse reflectance spectrum (DRS), thus greatly improving the degradation rate of organic dyes. The Ni(OH)2/Bi2MoO6heterojunctionwith different proportions was prepared by a mild one-step solvothermal method by controlling the mass fraction ratio between the nickel source and the bismuth source. The morphology and structure of the heterojunction materials were characterized by afield emission scanning electron microscopy (SEM) and a field-emission high-resolution transmission electron microscope (TEM). In this experiment, the photocatalytic properties were demonstrated by the degradation of organic dye Rhodamine B by the prepared samples. The results showed that 2%Ni(OH)2/Bi2MoO6 composite had the strongest photocatalytic performance and the maximum degradation rate was about 98% (135 min) when the Rhodamine B was degraded by visible light irradiation. It also can be found that Bi2MoO6composited by Ni(OH)2ultrafine nanosheet, compared with pure Bi2MoO6, the photocatalytic performance is improved by decreasing the recombination rate of photogenic carriers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Xianyang Gao; Lei Su; Ze Sun; Guimin Lu; Xingfu Song; Jianguo Yu;Abstract Molten nitrate salts are widely used as heat transfer and energy storage medium in Concentrated Solar Power (CSP) systems. Solar Salt (60 wt% NaNO3-40 wt% KNO3) is the commercial binary molten nitrate salt, which is the preferred energy storage material with high density, high specific heat, low melting point, high thermal stability, and low vapor pressure. This paper explored the effects of impurity Cl− on the thermophysical properties of Solar Salt, including liquidus temperature, density, viscosity, and thermal stability. The results showed that Cl− can significantly reduce the liquidus temperature, and when Cl− was less than 0.5 wt%, the liquidus temperature of molten salt system decreased within 1 °C. On the other hand, Cl− had little effect on the density, viscosity and thermal stability of the mixed molten salt system at 400 °C, but at high temperature Cl− will promote the volatilization of components. By analyzing the thermostatic stability at 565 °C, it was found that the total mass loss changes less than 0.3% when Cl− was less than 0.01 wt%. After comprehensive analysis, the conclusion is that the upper limit of Cl− is preferably less than 0.1 wt% for keeping good thermal performances of Solar Salt.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.12.057&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Anil Kumar; Mamta Sharma; Pankaj Thakur; Vijay Kumar Thakur; Sameer S. Rahatekar; Rajesh Kumar;Abstract Exergy analysis is very helpful for reducing irreversibility and rising the efficiency of solar collectors. The major objective of the present study is to organize a review on exergy analysis of different parabolic solar collectors. The effects of various flows and geometrical parameters of parabolic thermal collectors on the exergy efficiency were presented and discussed. In addition, comparative study was carried out to select the best solar thermal system for maximum exergy efficiency with minimal thermal losses. This study indicated that the hybrid nanofluids enhanced the exergy efficiency significantly as compared to without hybrid nanofluids. Passive techniques comprising twisted tape inserts, fins and insertion of swirl devices in the stream for changing the stream patterns causes to interrupt the thermal boundary layer and accordingly high exergy efficiency. This review would also throw light on the scope for further research and recommendation for improvement in the existing solar thermal collectors. Finally, this work will be beneficial for the scholars working on exergy analyses of solar parabolic collectors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 59 citations 59 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.01.025&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Authors: Jie Guo; Jie Min; Lei Han;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.01.020&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:Elsevier BV Zhang Dong; Liu Chang; Yu Kai; Yan Chengtao; Shen Yongqian; An Zhoujian; Jing Jinlong;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2022.02.030&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Authors: Hui Li; Hui Li; Yi Zhang; Haitian Luo;Abstract Cu2BaSn(S,Se)4 (CBTSSe) solar cells are emerging photovoltaic devices due to their high theoretical efficiencies of ~31%, environment-friendly and earth-abundant composition, low density of non-recombination defects, and so on. However, the record efficiency of CBTSSe solar cell is only 5.2%, showing the importance of studying their performance via numerical analysis to further enhance their practical efficiencies. In this paper, the effect of absorber and buffer layers on performances of Cu2BaSnS4 (CBTS) solar cells are firstly systematically studied via the SCAPS-1D software to provide a platform for the study of the effect of MoS2 interlayer on the performances of CBTS solar cells. The highest PCE of CBTS solar cell with a 30 nm CdS buffer layer is 11.87%. The PCE of CBTS solar cell with a 0.8 μm CBTS absorb layer is 12.51%, indicating that the CBTS solar cell is a potential low-cost solar cell due to its large optical absorption coefficient (α > 104 cm−1). The efficiency of CBTS solar cell is improved to 16.47% when the carrier concentration of CBTS is 1016 cm−3. The relationship between the performance of solar cell and the band gap, thickness, donor concentration, acceptor concentration of MoS2 interlayer is systematically investigated on the basis of the optimized efficiency. It is found that MoS2 interlayer plays an important role in the performance of CBTS solar cell. The p-type MoS2 has a beneficial effect on the efficiency improvement while the n-type MoS2 has a negative effect on the efficiency enhancement. The highest PCE of CBTS solar cell is as high as 18.28% when the thickness and the acceptor concentration of MoS2 are 4 nm and 1019 cm−3, respectively. Our simulation result provides a promising research direction to further improve the actual efficiency of the CBTS solar cell.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.05.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.05.074&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Hongzheng Chen; Lijian Zuo; Jiachi Huang; Jiachi Huang; Tao Ye; Zhuowei Gu;Abstract Morphology control is critical to achieve high efficiency CH3NH3PbI3 perovskite solar cells (PSC). In this paper, fluorinated perylene diimide (FPDI) was used as novel organic electron transport material in planar heterojunction perovskite solar cells. The perovskite film was fabricated by sequential vacuum vapor deposition, and the film morphology could be controlled by optimizing the FPDI film morphology with short time solvent spin-coating or solvent vapor annealing (SVA). Dense and uniform perovskite film with high substrate coverage could be obtained when the FPDI film was treated by chloroform SVA for half an hour, and the fill factor (FF) of the perovskite solar cell increased from 30.44% to 55.20%, enhancing the power conversion efficiency (PCE) from 3.23% to 7.44%. The PCE of the best device reached 7.93%, which was comparable to that (8.25%) of the conventional ZnO electron transport layer based perovskite device prepared by the same method.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 47 citations 47 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2016.04.017&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2018Publisher:Elsevier BV Jinke Bai; Tingting Zhang; Tingting Zhang; Feng Li; Qin Zhang; Qinghua Li; Xiao Jin; Peizhi Yang;Abstract Bifacial solar cells that can generate electricity from either front or rear side are regarded as advanced photovoltaics for markedly increased photoelectric conversion efficiency. We present here the fabrication of transparent RuSe counter electrodes by an alternating electrodeposition method for bifacial dye-sensitized solar cells (DSSCs). The catalytic and photovoltaics performances are maximized by tuning stoichiometric Ru/Se ratio and bilayer number. Upon irradiation by AM1.5 (100 mW cm−2), the device yields a maximized front efficiency of 8.72% and a rear efficiency of 5.9%, arising from the >80%-transparency of RuSe electrode in visible light region. This strategy provides new opportunities for fabricating high-performance DSSCs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.12.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 6 citations 6 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2017.12.047&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:Elsevier BV Weiqi Yuan; Zhiying Song; Xiao Ren; Muin Uddin; Bendong Yu; Zhaomeng Li; Jie Ji; Bin Zhao; Fan Zhou;Abstract In flat-plate PV/T systems, there are some contradictions in the temperature requirements for the heat and electricity acquisition. The widely-used crystalline-silicon solar cells are negatively affected by the high temperature inside the PV/T collector. This paper proposes to use temperature-insensitive solar cells in PV/T and the CdTe used has the advantages of low power temperature coefficient, high photovoltaic efficiency, and low costs. Besides, the sandwich structure that CdTe cells are sealed between two pieces of glass can prevent them from the permeating of moist air. The CdTe-PV/T is experimentally tested and compared with a Poly-Si-PV/T system and it exhibits better instantaneous electrical performance at high operating temperatures and gains more electrical energy throughout the day. Then the influence of cells’ coverage ratio is investigated experimentally and the result shows that a higher coverage ratio is beneficial to the electrical and energy-saving performance. Furthermore, a new quasi-steady-state mathematical model is established and verified. Parametric discussions are conducted for performance optimization. The black TPT coating with higher emissivity performs better than the selective absorption coating of the absorbing plate, contrary to the traditional PV/T collector. The heat transfer mode between the back glass and the absorbing plate is different in different thicknesses of the air gap. Reducing the thickness can effectively improve the system’s performance in terms of thermal, electrical, and temperature. Then an improved CdTe-PV/T eliminating the backglass and air gap is proposed and numerically simulated. This research hopes to provide some ideas for the applicant and the optimization of CdTe-PV/T in hot climates.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 21 citations 21 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2021.02.009&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:Elsevier BV Authors: Prithvi Krishna Chittoor; C. Bharatiraja;add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2023.01.056&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Yue Mao; Bo Qiu; Min Zhang; Hongfei Yin; Jiacheng Yao; Xiaoheng Liu; Shenming Chen;Abstract The stable Ni(OH)2 ultrafine nanosheet combined with Bi2MoO6 to form heterojunction have been fabricated successfully by a simple and mild one-step solvent-thermal method. In this work, the Ni(OH)2/Bi2MoO6heterojunction increased the absorption range of visible light compared to the pure Bi2MoO6, from the UV–visible diffuse reflectance spectrum (DRS), thus greatly improving the degradation rate of organic dyes. The Ni(OH)2/Bi2MoO6heterojunctionwith different proportions was prepared by a mild one-step solvothermal method by controlling the mass fraction ratio between the nickel source and the bismuth source. The morphology and structure of the heterojunction materials were characterized by afield emission scanning electron microscopy (SEM) and a field-emission high-resolution transmission electron microscope (TEM). In this experiment, the photocatalytic properties were demonstrated by the degradation of organic dye Rhodamine B by the prepared samples. The results showed that 2%Ni(OH)2/Bi2MoO6 composite had the strongest photocatalytic performance and the maximum degradation rate was about 98% (135 min) when the Rhodamine B was degraded by visible light irradiation. It also can be found that Bi2MoO6composited by Ni(OH)2ultrafine nanosheet, compared with pure Bi2MoO6, the photocatalytic performance is improved by decreasing the recombination rate of photogenic carriers.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solener.2020.07.031&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu