- home
- Advanced Search
- Energy Research
- UK Research and Innovation
- 7. Clean energy
- IN
- Energy Research
- UK Research and Innovation
- 7. Clean energy
- IN
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Decentralised off-grid el...UKRI| Decentralised off-grid electricity generation in developing countries: Business models for off-grid electricity supplySarangi, Gopal K; Pugazenthi, Pugazenthi; Mishra, A; Palit, D; Bhattacharyya, Subhes;Renewable energy-based off-grid projects have played a crucial role in Sri Lanka’s universal electrification effort. The paper, in this context, unravels two crucial and quite interrelated aspects of decentralised off-grid electrification in the country: a) it critically analyses the off-grid electricity sector development and assesses its contribution to the universal electrification in the country and; b) it examines the current set of challenges associated with the off-grid electrification in the larger context of massive grid expansion. A mix of quantitative and qualitative research methods is employed as tools of analysis. The paper brings out several policy-relevant findings. Strategic policy interventions coupled with targeted policy goals, robust community-centric management structures, well-designed credit systems, and well-structured capacity-building initiatives are identified as key leveraging points for the success of off-grid electrification projects. The techno-economic analysis of an existing micro-hydro project reveals that there exist opportunities for more productive use of existing capacity. Grid interconnection of off-grid energy projects emerges as a major challenge beset with a whole gamut of technical, legal, regulatory, financial, and social conundrums. Interestingly, the intensity of such challenges differs across ownership types.
Environment Developm... arrow_drop_down De Montfort University Open Research ArchiveArticle . 2019Data sources: De Montfort University Open Research ArchiveEnvironment Development and SustainabilityArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-019-00422-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
download 113download downloads 113 Powered bymore_vert Environment Developm... arrow_drop_down De Montfort University Open Research ArchiveArticle . 2019Data sources: De Montfort University Open Research ArchiveEnvironment Development and SustainabilityArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-019-00422-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:The Open Journal Funded by:UKRI | The Faraday InstitutionUKRI| The Faraday InstitutionThomas Tranter; Robert Timms; Valentin Sulzer; Ferran Planella; Gavin Wiggins; Suryanarayana Karra; Priyanshu Agarwal; Saransh Chopra; Srikanth Allu; Paul Shearing; Dan Brett;doi: 10.21105/joss.04051
Electrification of transport and other energy intensive activities is of growing importance as it provides an underpinning method to reduce carbon emissions. With an increase in reliance on renewable sources of energy and a reduction in the use of more predictable fossil fuels in both stationary and mobile applications, energy storage will play a pivotal role and batteries are currently the most widely adopted and versatile form. Therefore, understanding how batteries work, how they degrade, and how to optimize and manage their operation at large scales is critical to achieving emission reduction targets. The electric vehicle (EV) industry requires a considerable number of batteries even for a single vehicle, sometimes numbering in the thousands if smaller cells are used, and the dynamics and degradation of these systems, as well as large stationary power systems, is not that well understood. As increases in the efficiency of a single battery become diminishing for standard commercially available chemistries, gains made at the system level become more important and can potentially be realised more quickly compared with developing new chemistries. Mathematical models and simulations provide a way to address these challenging questions and can aid the engineer and designers of batteries and battery management systems to provide longer lasting and more efficient energy storage systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21105/joss.04051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 350visibility views 350 download downloads 255 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21105/joss.04051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Green Revolution epic nar...UKRI| Green Revolution epic narratives and their echoes in today's South-South technology transfersAuthors: Cabral, Lidia; Pandey, Poonam; Xu, Xiuli;handle: 20.500.12413/16731
AbstractThe Green Revolution is often seen as epitomising the dawn of scientific and technological advancement and modernity in the agricultural sector across developing countries, a process that unfolded from the 1940s through to the 1980s. Despite the time that has elapsed, this episode of the past continues to resonate today, and still shapes the institutions and practices of agricultural science and technology. In Brazil, China, and India, narratives of science-led agricultural transformations portray that period in glorifying terms—entailing pressing national imperatives, unprecedented achievements, and heroic individuals or organizations. These “epic narratives” draw on the past to produce meaning and empower the actors that deploy them. Epic narratives are reproduced over time and perpetuate a conviction about the heroic power of science and technology in agricultural development. By crafting history and cultivating a sense of scientific nationalism, exceptionalism, and heritage, these epic narratives sustain power-knowledge relations in agricultural science and technology, which are underpinned by a hegemonic modernization paradigm. Unravelling the processes of assemblage and reproduction of epic narratives helps us make sense of how science and technology actors draw on their subjective representations of the past to assert their position in the field at present. This includes making claims about their credentials to envision and deliver sustainable solutions for agriculture into the future.
Institute of Develop... arrow_drop_down Institute of Development Studies (IDS), Brighton: OpenDocsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10460-021-10241-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institute of Develop... arrow_drop_down Institute of Development Studies (IDS), Brighton: OpenDocsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10460-021-10241-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:UKRI | "Mind the Gap" ..., UKRI | Centre for Nature Inspire..., UKRI | EPSRC Centre for Doctoral... +1 projectsUKRI| "Mind the Gap" - jumping the hurdles limiting polymer fuel cell performance and commercialisation ,UKRI| Centre for Nature Inspired Engineering (CNIE): Addressing Challenges in Sustainability and Scalable Manufacturing ,UKRI| EPSRC Centre for Doctoral Training in Fuel Cells and their Fuels - Clean Power for the 21st Century ,UKRI| Developing an experimental functional map of polymer electrolyte fuel cell operationTobias P. Neville; Natarajan Rajalakshmi; Jason Millichamp; Rhodri Jervis; Thomas Mason; Paul R. Shearing; Dan J. L. Brett;Abstract Conventional polymer electrolyte fuel cells (PEFCs) require a means of placing the series of laminar components that make up cells under mechanical compression so as to ensure effective electrical conduction, mass transport and gas-tight operation. This review describes the effect of mechanical compression and dimensional change on the components of PEFCs and reviews the range of methods used to achieve desired stack compression. The case is made for improved understanding of the mechanisms of fuel cell component compression and greater attention to the development of technological approaches for stack compression.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.02.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.02.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 08 Sep 2021 United KingdomPublisher:Wiley Funded by:UKRI | Strategic University Netw..., UKRI | Time-resolved cathodolumi...UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE) ,UKRI| Time-resolved cathodoluminescence scanning electron microscopeLi, Zewei; Senanayak, Satyaprasad P.; Dai, Linjie; Kusch, Gunnar; Shivanna, Ravichandran; Zhang, Youcheng; Pradhan, Dipika; Ye, Junzhi; Huang, Yi‐Teng; Sirringhaus, Henning; Oliver, Rachel A.; Greenham, Neil C.; Friend, Richard H.; Hoye, Robert L. Z.;handle: 10044/1/91116
AbstractHalide double perovskites have gained significant attention, owing to their composition of low‐toxicity elements, stability in air, and recent demonstrations of long charge‐carrier lifetimes that can exceed 1 µs. In particular, Cs2AgBiBr6 is the subject of many investigations in photovoltaic devices. However, the efficiencies of solar cells based on this double perovskite are still far from the theoretical efficiency limit of the material. Here, the role of grain size on the optoelectronic properties of Cs2AgBiBr6 thin films is investigated. It is shown through cathodoluminescence measurements that grain boundaries are the dominant nonradiative recombination sites. It also demonstrates through field‐effect transistor and temperature‐dependent transient current measurements that grain boundaries act as the main channels for ion transport. Interestingly, a positive correlation between carrier mobility and temperature is found, which resembles the hopping mechanism often seen in organic semiconductors. These findings explain the discrepancy between the long diffusion lengths >1 µm found in Cs2AgBiBr6 single crystals versus the limited performance achieved in their thin film counterparts. This work shows that mitigating the impact of grain boundaries will be critical for these double perovskite thin films to reach the performance achievable based on their intrinsic single‐crystal properties.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/91116Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202104981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 117visibility views 117 download downloads 66 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/91116Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202104981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Engineered Science Publisher Funded by:UKRI | Computer-aided design of ...UKRI| Computer-aided design of zinc phosphide heterojunctions for efficient solar energy conversionAvinash Rokade; Sunil V. Barma; Russell W. Cross; Mamta P. Nasane; Nelson Y. Dzade; Sagar B. Jathar; Vijaya Jadkar; Yogesh Jadhav; Ganesh Rahane; Sandesh Jadkar; Sachin R. Rondiya;doi: 10.30919/esmm5f1040
In this study, we report the synthesis and characterization of CdSe nanocrystals (NC's) by facile Hot injection (HI) method. The formation of CdSe NC's was confirmed by x-ray diffraction (XRD), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). The optical properties were analyzed by UV-visible and photoluminescence (PL) spectroscopy shows an excitonic peak at 600 nm in UV-Vis spectra corresponds to the band gap of ~ 2 eV favorable for optoelectronic device applications. The Photoelectrochemical (PEC) performance of CdSe thin film prepared by spin coating demonstrates a rise of photocurrent density (Jsc = 0.081 µAcm-2) after illumination. The Mott-Schottky (MS) and electrochemical impedance spectroscopy (EIS) measurements were further carried out to understand intrinsic properties namely the type of conductivity, flat band potential, charge carrier density (ND), charge transfer resistance, and recombination lifetime. The n-type conductivity, the charge carrier density of ND = 1.292 x 1016 cm-2, and recombination lifetime of 32.4 µs suggest the ideal behavior of CdSe NC's for device quality photoelectrodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30919/esmm5f1040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 80download downloads 80 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30919/esmm5f1040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Strategic University Netw...UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE)Aiswarya Abhisek Mohapatra; Yifan Dong; Puttaraju Boregowda; Ashutosh Mohanty; Aditya Sadhanala; Awadhesh Narayan; Chris McNeill; James R Durrant; Satish Patil; Xuechen Jiao; Priyakumari Chakkingal Parambil;<div> <div> <div> <p>An efficient photogeneration of free charge carriers has long been recognized as the paramount challenge in organic photovoltaic (OPV) devices. The low dielectric constant organic semiconductors fall short to reduce strong Coulombic interaction of tightly bound exciton and hence lead to a loss mechanism in OPVs due to charge-carrier recombination. To circumvent this problem, we adopt a strategy to enhance the dielectric constant of organic semiconductors by incorporating tetraethyleneglycol (TEG) side-chains. We report synthesis of three new semiconducting copolymers by combining thiophene substituted diketopyrrolopyrrole (TDPP) monomer with three other monomeric units with varying electron donating strength: benzodithiophene (BBT-3TEG-TDPP), TDPP (TDPP-3TEG-TDPP) and naphthalene diimide (PNDITEG-TDPP). BBT-3TEG-TDPP and PNDITEG-TDPP showed highest dielectric constants (~ 5) at 1MHz frequency suggesting efficient contribution of dipolar polarization from TEG side-chains. To understand the electronic contribution of the polymer backbone and the polarity of TEG side-chains, and the resulting enhancement of the dielectric constant, we further performed first-principles density functional theory calculations. Single-component organic solar cells (OSC) fabricated utilizing these polymers resulted in poor performance which is attributed to the absence of free charge generation. Furthermore, transient absorption spectroscopy studies show low exciton diffusion length as observed in donor-acceptor type conjugated polymers. Our results suggest that, the strategy of enhancing dielectric constant with polar side-chains is not sufficient to reduce Coulombic interaction between hole and electron in OSCs. </p> </div> </div> </div>
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.26434/chemr...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe Journal of Physical Chemistry CArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv.12561965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.26434/chemr...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe Journal of Physical Chemistry CArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv.12561965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | DTP 2016-2017 University ...UKRI| DTP 2016-2017 University College LondonAuthors: Vivien Kizilcec; Priti Parikh; Iwona Bisaga;doi: 10.3390/en14020330
Solar home systems (SHSs) are successfully addressing energy access deficits across the globe, particularly when combined with pay-as-you-go (PAYG) payment models, allowing households to pay for energy services in small instalments. To increase energy access, it is vital to understand the PAYG SHS customer journey in depth. To aid this, the paper presents unique data from active customers, consisting of structured interviews (n = 100) and two focus groups (n = 24) across two districts in Rwanda. These results are presented under a novel customer journey framework, which describes all the individual stages a customer might experience, including awareness and understanding, purchase, usage, upgrade, recommendation and retaining or switching energy source. The paper reveals that the customer journey is non-linear and cyclical in nature, acknowledging that a household operates in a social network within which they could influence or be influenced by others. It also highlights the growing importance of SHS recommendations in raising awareness of SHSs, pointing to the shifts in the off-grid energy market environment where customer awareness no longer appears to be a main adoption barrier.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:UKRI | Computer-aided design of ...UKRI| Computer-aided design of zinc phosphide heterojunctions for efficient solar energy conversionH.J. Yashwanth; Sachin R. Rondiya; Nelson Y. Dzade; S.D. Dhole; D.M. Phase; K. Hareesh;Herein, we demonstrate the single-step microwave radiation assisted approach to develop Nitrogen (N) and Phosphorous (P) co-doped carbon quantum dots (NP-CQD). The developed NP-CQD showed enhancement in visible light photocatalytic activity towards methylene blue dye degradation than that of N-CQD and P-CQD due to creation of energy states and reduced work function as estimated by Ultraviolet photoelectron spectroscopy and corroborated by first-principles Density Functional Theory (DFT) calculations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.vacuum.2020.109589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 32download downloads 32 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.vacuum.2020.109589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Computer-aided design of ...UKRI| Computer-aided design of zinc phosphide heterojunctions for efficient solar energy conversionMahendra A. More; Sachin R. Rondiya; Adinath M. Funde; M. M. Kamble; Nelson Y. Dzade; Bharat R. Bade; Sandesh Jadkar; Mamta P. Nasane; Avinash Rokade; Somnath R. Bhopale;Titanium dioxide (TiO2) is a versatile and inexpensive material for extended applicability in several scientific and technological fields including photo-catalysis for industrial waste treatment, energy harvesting, and hydrogen production. In this work, we report the synthesis of TiO2 thin film using hydrothermal method and investigations on the influence of reaction time and annealing temperature on growth mechanism of the TiO2 nanorods. The synthesized TiO2 films were studied by using UV–visible spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope and energy-dispersive X-ray spectroscopy (EDS). The XRD and Raman measurements revealed the formation of defect free and pure tetragonal TiO2 rutile phase. The TiO2 thin films show absorption band edge at around 420 nm in the UV–visible spectrum and exhibit direct band gap value of 2.9 eV. The TiO2 nanorods are demonstrated to grow randomly on the FTO substrate with changing reaction times but grow uniformly in a flower-like pattern with increasing annealing temperature. Investigation of the field emission properties of TiO2 thin films (tested as field-emitter array) estimates the turn-on and threshold field at 4.06 and 7.06 V/µm at 10 and 100 µA/cm2, respectively.
CORE arrow_drop_down COREArticle . 2019License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/125114/1/Bade2019_Article_InvestigationOfGrowthMechanism.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s42452-019-0978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 72download downloads 72 Powered bymore_vert CORE arrow_drop_down COREArticle . 2019License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/125114/1/Bade2019_Article_InvestigationOfGrowthMechanism.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s42452-019-0978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Decentralised off-grid el...UKRI| Decentralised off-grid electricity generation in developing countries: Business models for off-grid electricity supplySarangi, Gopal K; Pugazenthi, Pugazenthi; Mishra, A; Palit, D; Bhattacharyya, Subhes;Renewable energy-based off-grid projects have played a crucial role in Sri Lanka’s universal electrification effort. The paper, in this context, unravels two crucial and quite interrelated aspects of decentralised off-grid electrification in the country: a) it critically analyses the off-grid electricity sector development and assesses its contribution to the universal electrification in the country and; b) it examines the current set of challenges associated with the off-grid electrification in the larger context of massive grid expansion. A mix of quantitative and qualitative research methods is employed as tools of analysis. The paper brings out several policy-relevant findings. Strategic policy interventions coupled with targeted policy goals, robust community-centric management structures, well-designed credit systems, and well-structured capacity-building initiatives are identified as key leveraging points for the success of off-grid electrification projects. The techno-economic analysis of an existing micro-hydro project reveals that there exist opportunities for more productive use of existing capacity. Grid interconnection of off-grid energy projects emerges as a major challenge beset with a whole gamut of technical, legal, regulatory, financial, and social conundrums. Interestingly, the intensity of such challenges differs across ownership types.
Environment Developm... arrow_drop_down De Montfort University Open Research ArchiveArticle . 2019Data sources: De Montfort University Open Research ArchiveEnvironment Development and SustainabilityArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-019-00422-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
download 113download downloads 113 Powered bymore_vert Environment Developm... arrow_drop_down De Montfort University Open Research ArchiveArticle . 2019Data sources: De Montfort University Open Research ArchiveEnvironment Development and SustainabilityArticle . 2019 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10668-019-00422-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 United KingdomPublisher:The Open Journal Funded by:UKRI | The Faraday InstitutionUKRI| The Faraday InstitutionThomas Tranter; Robert Timms; Valentin Sulzer; Ferran Planella; Gavin Wiggins; Suryanarayana Karra; Priyanshu Agarwal; Saransh Chopra; Srikanth Allu; Paul Shearing; Dan Brett;doi: 10.21105/joss.04051
Electrification of transport and other energy intensive activities is of growing importance as it provides an underpinning method to reduce carbon emissions. With an increase in reliance on renewable sources of energy and a reduction in the use of more predictable fossil fuels in both stationary and mobile applications, energy storage will play a pivotal role and batteries are currently the most widely adopted and versatile form. Therefore, understanding how batteries work, how they degrade, and how to optimize and manage their operation at large scales is critical to achieving emission reduction targets. The electric vehicle (EV) industry requires a considerable number of batteries even for a single vehicle, sometimes numbering in the thousands if smaller cells are used, and the dynamics and degradation of these systems, as well as large stationary power systems, is not that well understood. As increases in the efficiency of a single battery become diminishing for standard commercially available chemistries, gains made at the system level become more important and can potentially be realised more quickly compared with developing new chemistries. Mathematical models and simulations provide a way to address these challenging questions and can aid the engineer and designers of batteries and battery management systems to provide longer lasting and more efficient energy storage systems.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21105/joss.04051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 5 citations 5 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 350visibility views 350 download downloads 255 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.21105/joss.04051&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Green Revolution epic nar...UKRI| Green Revolution epic narratives and their echoes in today's South-South technology transfersAuthors: Cabral, Lidia; Pandey, Poonam; Xu, Xiuli;handle: 20.500.12413/16731
AbstractThe Green Revolution is often seen as epitomising the dawn of scientific and technological advancement and modernity in the agricultural sector across developing countries, a process that unfolded from the 1940s through to the 1980s. Despite the time that has elapsed, this episode of the past continues to resonate today, and still shapes the institutions and practices of agricultural science and technology. In Brazil, China, and India, narratives of science-led agricultural transformations portray that period in glorifying terms—entailing pressing national imperatives, unprecedented achievements, and heroic individuals or organizations. These “epic narratives” draw on the past to produce meaning and empower the actors that deploy them. Epic narratives are reproduced over time and perpetuate a conviction about the heroic power of science and technology in agricultural development. By crafting history and cultivating a sense of scientific nationalism, exceptionalism, and heritage, these epic narratives sustain power-knowledge relations in agricultural science and technology, which are underpinned by a hegemonic modernization paradigm. Unravelling the processes of assemblage and reproduction of epic narratives helps us make sense of how science and technology actors draw on their subjective representations of the past to assert their position in the field at present. This includes making claims about their credentials to envision and deliver sustainable solutions for agriculture into the future.
Institute of Develop... arrow_drop_down Institute of Development Studies (IDS), Brighton: OpenDocsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10460-021-10241-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Institute of Develop... arrow_drop_down Institute of Development Studies (IDS), Brighton: OpenDocsArticle . 2021License: CC BYData sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10460-021-10241-x&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015Publisher:Elsevier BV Funded by:UKRI | "Mind the Gap" ..., UKRI | Centre for Nature Inspire..., UKRI | EPSRC Centre for Doctoral... +1 projectsUKRI| "Mind the Gap" - jumping the hurdles limiting polymer fuel cell performance and commercialisation ,UKRI| Centre for Nature Inspired Engineering (CNIE): Addressing Challenges in Sustainability and Scalable Manufacturing ,UKRI| EPSRC Centre for Doctoral Training in Fuel Cells and their Fuels - Clean Power for the 21st Century ,UKRI| Developing an experimental functional map of polymer electrolyte fuel cell operationTobias P. Neville; Natarajan Rajalakshmi; Jason Millichamp; Rhodri Jervis; Thomas Mason; Paul R. Shearing; Dan J. L. Brett;Abstract Conventional polymer electrolyte fuel cells (PEFCs) require a means of placing the series of laminar components that make up cells under mechanical compression so as to ensure effective electrical conduction, mass transport and gas-tight operation. This review describes the effect of mechanical compression and dimensional change on the components of PEFCs and reviews the range of methods used to achieve desired stack compression. The case is made for improved understanding of the mechanisms of fuel cell component compression and greater attention to the development of technological approaches for stack compression.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.02.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 80 citations 80 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.jpowsour.2015.02.111&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Embargo end date: 08 Sep 2021 United KingdomPublisher:Wiley Funded by:UKRI | Strategic University Netw..., UKRI | Time-resolved cathodolumi...UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE) ,UKRI| Time-resolved cathodoluminescence scanning electron microscopeLi, Zewei; Senanayak, Satyaprasad P.; Dai, Linjie; Kusch, Gunnar; Shivanna, Ravichandran; Zhang, Youcheng; Pradhan, Dipika; Ye, Junzhi; Huang, Yi‐Teng; Sirringhaus, Henning; Oliver, Rachel A.; Greenham, Neil C.; Friend, Richard H.; Hoye, Robert L. Z.;handle: 10044/1/91116
AbstractHalide double perovskites have gained significant attention, owing to their composition of low‐toxicity elements, stability in air, and recent demonstrations of long charge‐carrier lifetimes that can exceed 1 µs. In particular, Cs2AgBiBr6 is the subject of many investigations in photovoltaic devices. However, the efficiencies of solar cells based on this double perovskite are still far from the theoretical efficiency limit of the material. Here, the role of grain size on the optoelectronic properties of Cs2AgBiBr6 thin films is investigated. It is shown through cathodoluminescence measurements that grain boundaries are the dominant nonradiative recombination sites. It also demonstrates through field‐effect transistor and temperature‐dependent transient current measurements that grain boundaries act as the main channels for ion transport. Interestingly, a positive correlation between carrier mobility and temperature is found, which resembles the hopping mechanism often seen in organic semiconductors. These findings explain the discrepancy between the long diffusion lengths >1 µm found in Cs2AgBiBr6 single crystals versus the limited performance achieved in their thin film counterparts. This work shows that mitigating the impact of grain boundaries will be critical for these double perovskite thin films to reach the performance achievable based on their intrinsic single‐crystal properties.
Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/91116Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202104981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 52 citations 52 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
visibility 117visibility views 117 download downloads 66 Powered bymore_vert Imperial College Lon... arrow_drop_down Imperial College London: SpiralArticle . 2021License: CC BYFull-Text: http://hdl.handle.net/10044/1/91116Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/adfm.202104981&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Engineered Science Publisher Funded by:UKRI | Computer-aided design of ...UKRI| Computer-aided design of zinc phosphide heterojunctions for efficient solar energy conversionAvinash Rokade; Sunil V. Barma; Russell W. Cross; Mamta P. Nasane; Nelson Y. Dzade; Sagar B. Jathar; Vijaya Jadkar; Yogesh Jadhav; Ganesh Rahane; Sandesh Jadkar; Sachin R. Rondiya;doi: 10.30919/esmm5f1040
In this study, we report the synthesis and characterization of CdSe nanocrystals (NC's) by facile Hot injection (HI) method. The formation of CdSe NC's was confirmed by x-ray diffraction (XRD), Raman spectroscopy, and x-ray photoelectron spectroscopy (XPS). The optical properties were analyzed by UV-visible and photoluminescence (PL) spectroscopy shows an excitonic peak at 600 nm in UV-Vis spectra corresponds to the band gap of ~ 2 eV favorable for optoelectronic device applications. The Photoelectrochemical (PEC) performance of CdSe thin film prepared by spin coating demonstrates a rise of photocurrent density (Jsc = 0.081 µAcm-2) after illumination. The Mott-Schottky (MS) and electrochemical impedance spectroscopy (EIS) measurements were further carried out to understand intrinsic properties namely the type of conductivity, flat band potential, charge carrier density (ND), charge transfer resistance, and recombination lifetime. The n-type conductivity, the charge carrier density of ND = 1.292 x 1016 cm-2, and recombination lifetime of 32.4 µs suggest the ideal behavior of CdSe NC's for device quality photoelectrodes.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30919/esmm5f1040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 80download downloads 80 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.30919/esmm5f1040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 United KingdomPublisher:American Chemical Society (ACS) Funded by:UKRI | Strategic University Netw...UKRI| Strategic University Network to Revolutionise Indian Solar Energy (SUNRISE)Aiswarya Abhisek Mohapatra; Yifan Dong; Puttaraju Boregowda; Ashutosh Mohanty; Aditya Sadhanala; Awadhesh Narayan; Chris McNeill; James R Durrant; Satish Patil; Xuechen Jiao; Priyakumari Chakkingal Parambil;<div> <div> <div> <p>An efficient photogeneration of free charge carriers has long been recognized as the paramount challenge in organic photovoltaic (OPV) devices. The low dielectric constant organic semiconductors fall short to reduce strong Coulombic interaction of tightly bound exciton and hence lead to a loss mechanism in OPVs due to charge-carrier recombination. To circumvent this problem, we adopt a strategy to enhance the dielectric constant of organic semiconductors by incorporating tetraethyleneglycol (TEG) side-chains. We report synthesis of three new semiconducting copolymers by combining thiophene substituted diketopyrrolopyrrole (TDPP) monomer with three other monomeric units with varying electron donating strength: benzodithiophene (BBT-3TEG-TDPP), TDPP (TDPP-3TEG-TDPP) and naphthalene diimide (PNDITEG-TDPP). BBT-3TEG-TDPP and PNDITEG-TDPP showed highest dielectric constants (~ 5) at 1MHz frequency suggesting efficient contribution of dipolar polarization from TEG side-chains. To understand the electronic contribution of the polymer backbone and the polarity of TEG side-chains, and the resulting enhancement of the dielectric constant, we further performed first-principles density functional theory calculations. Single-component organic solar cells (OSC) fabricated utilizing these polymers resulted in poor performance which is attributed to the absence of free charge generation. Furthermore, transient absorption spectroscopy studies show low exciton diffusion length as observed in donor-acceptor type conjugated polymers. Our results suggest that, the strategy of enhancing dielectric constant with polar side-chains is not sufficient to reduce Coulombic interaction between hole and electron in OSCs. </p> </div> </div> </div>
Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.26434/chemr...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe Journal of Physical Chemistry CArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv.12561965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu10 citations 10 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 1visibility views 1 Powered bymore_vert Smithsonian figshare arrow_drop_down Smithsonian figshareArticle . 2021License: CC BY NCData sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.26434/chemr...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: Crossrefhttps://doi.org/10.26434/chemr...Article . 2020 . Peer-reviewedLicense: CC BY NCData sources: CrossrefThe Journal of Physical Chemistry CArticle . 2021 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.26434/chemrxiv.12561965&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 United KingdomPublisher:MDPI AG Funded by:UKRI | DTP 2016-2017 University ...UKRI| DTP 2016-2017 University College LondonAuthors: Vivien Kizilcec; Priti Parikh; Iwona Bisaga;doi: 10.3390/en14020330
Solar home systems (SHSs) are successfully addressing energy access deficits across the globe, particularly when combined with pay-as-you-go (PAYG) payment models, allowing households to pay for energy services in small instalments. To increase energy access, it is vital to understand the PAYG SHS customer journey in depth. To aid this, the paper presents unique data from active customers, consisting of structured interviews (n = 100) and two focus groups (n = 24) across two districts in Rwanda. These results are presented under a novel customer journey framework, which describes all the individual stages a customer might experience, including awareness and understanding, purchase, usage, upgrade, recommendation and retaining or switching energy source. The paper reveals that the customer journey is non-linear and cyclical in nature, acknowledging that a household operates in a social network within which they could influence or be influenced by others. It also highlights the growing importance of SHS recommendations in raising awareness of SHSs, pointing to the shifts in the off-grid energy market environment where customer awareness no longer appears to be a main adoption barrier.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 21 citations 21 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14020330&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020Publisher:Elsevier BV Funded by:UKRI | Computer-aided design of ...UKRI| Computer-aided design of zinc phosphide heterojunctions for efficient solar energy conversionH.J. Yashwanth; Sachin R. Rondiya; Nelson Y. Dzade; S.D. Dhole; D.M. Phase; K. Hareesh;Herein, we demonstrate the single-step microwave radiation assisted approach to develop Nitrogen (N) and Phosphorous (P) co-doped carbon quantum dots (NP-CQD). The developed NP-CQD showed enhancement in visible light photocatalytic activity towards methylene blue dye degradation than that of N-CQD and P-CQD due to creation of energy states and reduced work function as estimated by Ultraviolet photoelectron spectroscopy and corroborated by first-principles Density Functional Theory (DFT) calculations.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.vacuum.2020.109589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen hybrid 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 32download downloads 32 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.vacuum.2020.109589&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2019 United KingdomPublisher:Springer Science and Business Media LLC Funded by:UKRI | Computer-aided design of ...UKRI| Computer-aided design of zinc phosphide heterojunctions for efficient solar energy conversionMahendra A. More; Sachin R. Rondiya; Adinath M. Funde; M. M. Kamble; Nelson Y. Dzade; Bharat R. Bade; Sandesh Jadkar; Mamta P. Nasane; Avinash Rokade; Somnath R. Bhopale;Titanium dioxide (TiO2) is a versatile and inexpensive material for extended applicability in several scientific and technological fields including photo-catalysis for industrial waste treatment, energy harvesting, and hydrogen production. In this work, we report the synthesis of TiO2 thin film using hydrothermal method and investigations on the influence of reaction time and annealing temperature on growth mechanism of the TiO2 nanorods. The synthesized TiO2 films were studied by using UV–visible spectroscopy, Raman spectroscopy, X-ray diffraction (XRD), scanning electron microscope and energy-dispersive X-ray spectroscopy (EDS). The XRD and Raman measurements revealed the formation of defect free and pure tetragonal TiO2 rutile phase. The TiO2 thin films show absorption band edge at around 420 nm in the UV–visible spectrum and exhibit direct band gap value of 2.9 eV. The TiO2 nanorods are demonstrated to grow randomly on the FTO substrate with changing reaction times but grow uniformly in a flower-like pattern with increasing annealing temperature. Investigation of the field emission properties of TiO2 thin films (tested as field-emitter array) estimates the turn-on and threshold field at 4.06 and 7.06 V/µm at 10 and 100 µA/cm2, respectively.
CORE arrow_drop_down COREArticle . 2019License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/125114/1/Bade2019_Article_InvestigationOfGrowthMechanism.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s42452-019-0978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
download 72download downloads 72 Powered bymore_vert CORE arrow_drop_down COREArticle . 2019License: CC BYFull-Text: https://orca.cardiff.ac.uk/id/eprint/125114/1/Bade2019_Article_InvestigationOfGrowthMechanism.pdfData sources: COREadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s42452-019-0978-2&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu