- home
- Advanced Search
- Energy Research
- 7. Clean energy
- IN
- Energies
- Energy Research
- 7. Clean energy
- IN
- Energies
description Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors:Stergios Vakalis;
Stergios Vakalis
Stergios Vakalis in OpenAIRESnehesh Shivananda Ail;
Snehesh Shivananda Ail
Snehesh Shivananda Ail in OpenAIREKonstantinos Moustakas;
Marco J. Castaldi;Konstantinos Moustakas
Konstantinos Moustakas in OpenAIREdoi: 10.3390/en16042032
Liquid biowaste represents more than 98% of the total municipal waste streams on wet basis and 4–5% on dry basis. Recent attention has been focused on how to manage it optimally, and several novel technologies are being developed to valorize it. Among the developing alternatives is a technology that operates continuously by integrating a hydrothermal reactor, a gasifier and condenser to recover hydrochar using any produced gases to power the system. This study introduces the “3-step evolution model” in order to simulate the hydrothermal reactor. The model has been developed in a MATLAB/Cantera environment and calculates the outputs as the products of a series of sub-stoichiometric char-gas reactions. Experiments with chicken manure slurry as feedstock were implemented for the validation of the model. Treatment of 32.16 kg/h of chicken manure produces 4.57 kg/h of hydrochar and 3.45 kg/h of syngas. The 3-step evolution model simulated the correct ratio of solid-to-gas, 57–43% (excluding the liquids). The experimentally measured carbon dioxide is used as a correction factor to calculate all the other parameters that cannot be assessed during the continuous operation of the hydrothermal reactor. The simulated compositions for carbon dioxide and methane were 94–96% and 0.5–0.8%, respectively. The values were close to the experimental results that ranged from 94.7% to 95.6% for the carbon dioxide and from 0.5% to 0.7% for the methane. The model predicts that higher temperatures of operation would increase carbon monoxide composition from 4–5% up to 7–8%.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16042032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Funded by:FCT | D4FCT| D4Authors: Mohammad Zaid;Chang-Hua Lin;
Chang-Hua Lin
Chang-Hua Lin in OpenAIREShahrukh Khan;
Shahrukh Khan
Shahrukh Khan in OpenAIREJaved Ahmad;
+5 AuthorsJaved Ahmad
Javed Ahmad in OpenAIREMohammad Zaid;Chang-Hua Lin;
Chang-Hua Lin
Chang-Hua Lin in OpenAIREShahrukh Khan;
Shahrukh Khan
Shahrukh Khan in OpenAIREJaved Ahmad;
Javed Ahmad
Javed Ahmad in OpenAIREMohd Tariq;
Mohd Tariq
Mohd Tariq in OpenAIREArshad Mahmood;
Arshad Mahmood
Arshad Mahmood in OpenAIREAdil Sarwar;
Adil Sarwar
Adil Sarwar in OpenAIREBasem Alamri;
Basem Alamri
Basem Alamri in OpenAIREAhmad Alahmadi;
Ahmad Alahmadi
Ahmad Alahmadi in OpenAIREdoi: 10.3390/en14144372
This paper presents three new and improved non-isolated topologies of quadratic boost converters (QBC). Reduced voltage stress across switching devices and high voltage gain with single switch operation are the main advantages of the proposed topologies. These topologies utilize voltage multiplier cells (VMC) made of switched capacitors and switched inductors to increase the converter’s voltage gain. The analysis in continuous conduction mode is discussed in detail. The proposed converter’s voltage gain is higher than the conventional quadratic boost converter, and other recently introduced boost converters. The proposed topologies utilize only a single switch and have continuous input current and low voltage stress across switch, capacitors, and diodes, which leads to the selection of low voltage rating components. The converter’s non-ideal voltage gain is also determined by considering the parasitic capacitance and ON state resistances of switch and diodes. The efficiency analysis incorporating switching and conduction losses of the switching and passive elements is done using PLECS software (Plexim, Zurich, Switzerland). The hardware prototype of the proposed converters is developed and tested for verification.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 26 citations 26 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14144372&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021Publisher:MDPI AG Authors:Srinivasan Vadivel;
C. S. Boopthi;Srinivasan Vadivel
Srinivasan Vadivel in OpenAIRESridhar Ramasamy;
Sridhar Ramasamy
Sridhar Ramasamy in OpenAIREMominul Ahsan;
+2 AuthorsMominul Ahsan
Mominul Ahsan in OpenAIRESrinivasan Vadivel;
C. S. Boopthi;Srinivasan Vadivel
Srinivasan Vadivel in OpenAIRESridhar Ramasamy;
Sridhar Ramasamy
Sridhar Ramasamy in OpenAIREMominul Ahsan;
Mominul Ahsan
Mominul Ahsan in OpenAIREJulfikar Haider;
Julfikar Haider
Julfikar Haider in OpenAIREEduardo M. G. Rodrigues;
Eduardo M. G. Rodrigues
Eduardo M. G. Rodrigues in OpenAIREdoi: 10.3390/en14196332
The output of a photovoltaic array is reduced considerably when PV panels are shaded even partially. The impact of shading causes an appreciable loss in power delivery, since the PV panels are connected in series and parallel to contribute to the required voltage and power for the load. The prevailing research on mitigating the shading impact is mostly based on complex reconfiguration strategies where the PV panels are subjected to complex rewiring schemes. On the other hand, to disperse the shading many studies in the literature defend the physical rearrangement of the panels. The available intensive reconfiguration schemes, such as the series parallel (SP), bridge link (BL), honeycomb (HC), and total cross tied (TCT) schemes, try only to mitigate the shading impact and there is no scope for compensation; as a result, a loss of output power is inevitable. In the proposed research work, both the mitigation of and the compensation for the losses incurred due to shading are studied. In this work, an optimal reconfiguration scheme is adopted to reduce the shading impact and a power electronic circuit with a battery source is designed to compensate for the shading losses in all aspects. In the optimal reconfiguration scheme, a bifurcation strategy is adopted in each column and the electrical connections of the PV panels are interchanged such that the shading impact is dispersed. The power electronic circuit consists of a half-bridge buck converter with a battery source that injects the current required by a shaded column. This setup compensates for the shaded PV array’s power and improves the efficiency of the total system. The proposed scheme was implemented in a 3200 W system and subjected to various shading patterns, including single panel shading, corner shading, long and wide shading, and random shading. The proposed scheme was simulated in the MATLAB Simulink environment and compared with static 4 × 4 PV array configurations, including the series parallel (SP), bridge link (BL), honeycomb (HC), and total cross tied (TCT) configurations. The comparative performance was assessed in terms of mismatch power loss, fill factor, and efficiency. The proposed system is suitable for all shading patterns and was proved to be very efficient even in the worst shading, where 1353 W was saved.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 6visibility views 6 download downloads 7 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en14196332&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG doi: 10.3390/en15062063
The pollution caused by gas flaring is hazardous to the health of flora, fauna, and humans settled around the flaring site. Gas flaring also incurs economic loss as natural gas, an energy source, is wasted in flares. Furthermore, the unreliable electrical infrastructure is a roadblock for oil and gas companies attempting to achieve their production targets. This paper presents a framework to design hybrid energy systems (HES) which utilize the gas flare waste along with the locally available renewable energy sources to generate electricity. A novel dispatch strategy to suit the requirements of the oil and gas fields has been used for real-time simulations and optimization of the HES. As a test case, six different hybrid energy configurations, modelled for two gas flaring sites, Lakwa and Geleky in Assam—India, were analyzed and compared on the basis of economic and environmental factors. The best suitable configuration comprised 2000 kW solar photovoltaic (PV) panel sets, one 200 kW gas microturbine, two 30 kW gas microturbines, and grid connection. The proposed system economically outperformed the existing power system in the area by 35.52% in terms of the net present cost. Moreover, it could save 850 tons of carbon dioxide emissions annually, and it has a renewable fraction of 93.7% in the total energy generation. Owing to these merits, the presented technique would be a promising option for generation of electricity from flare gas waste and to mitigate pollution.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062063&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Conference object , Article , Journal 2018Publisher:IEEE Authors: Odysseas Tsafarakis; Kostas Sinapis;Wilfried G. J. H. M. Van Sark;
Wilfried G. J. H. M. Van Sark
Wilfried G. J. H. M. Van Sark in OpenAIREThe most common method for assessment of a photovoltaic (PV) system performance is by comparing its energy production to reference data (irradiance or neighboring PV system). Ideally, at normal operation, the compared sets of data tend to show a linear relationship. Deviations from this linearity are mainly due to malfunctions occurring in the PV system or data input anomalies: a significant number of measurements (named as outliers) may not fulfill this, and complicate a proper performance evaluation. In this paper a new data analysis method is introduced which allows to automatically distinguish the measurements that fit to a near-linear relationship from those which do not (outliers). Although it can be applied to any scatter-plot, where the sets of data tend to be linear, it is specifically used here for two different purposes in PV system monitoring: (1) to detect and exclude any data input anomalies; and (2) to detect and separate measurements where the PV system is functioning properly from the measurements characteristic for malfunctioning. Finally, the data analysis method is applied in four different cases, either with precise reference data (pyranometer and neighboring PV system) or with scattered reference data (in plane irradiance obtained from application of solar models on satellite observations).
https://www.mdpi.com... arrow_drop_down https://doi.org/10.1109/pvsc40...Conference object . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc40753.2019.8980901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 14 citations 14 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://www.mdpi.com... arrow_drop_down https://doi.org/10.1109/pvsc40...Conference object . 2019 . Peer-reviewedLicense: STM Policy #29Data sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/pvsc40753.2019.8980901&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 IndonesiaPublisher:MDPI AG Authors:Miguel Angel Esquivias;
Lilik Sugiharti; Hilda Rohmawati;Miguel Angel Esquivias
Miguel Angel Esquivias in OpenAIREOmar Rojas;
+1 AuthorsOmar Rojas
Omar Rojas in OpenAIREMiguel Angel Esquivias;
Lilik Sugiharti; Hilda Rohmawati;Miguel Angel Esquivias
Miguel Angel Esquivias in OpenAIREOmar Rojas;
Omar Rojas
Omar Rojas in OpenAIRENarayan Sethi;
Narayan Sethi
Narayan Sethi in OpenAIREdoi: 10.3390/en15072451
The goal of this study was to examine the interlinkage of renewable energy, technology innovation, human capital, and governance on environment quality by using a panel quantile regression in Asian emerging economies over the period of 1990–2019. The results indicated that higher economic growth, population density, technological innovation in renewable energy, and exploitation of natural resources have significantly raised CO2 emissions in emerging Asia. Furthermore, larger capital, more use of renewable energy, green technology, and human capital development can improve environmental sustainability in Asia. As for governances, proxied by corruption rates, no evidence indicated that it has resulted in more damage, unlike earlier studies have suggested. The findings indicated that the three channels exposed in the Kuznets hypothesis can serve as a reference for proposals for environmental policies (scale of consumption, energy composition, and choice of technologies). There are opportunities to reduce CO2 emissions through investments in human development, investing in new technologies to increase efficiency in energy (generation and consumption), increasing working capital (GCF), and migrating to more environmentally friendly energy. The negative link between carbon dioxide emissions and economic growth, increases in population density, and exploitation of natural resources can compromise the achievement of sustainable environmental goals.
Airlangga University... arrow_drop_down Airlangga University: UNAIR RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 65 citations 65 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Airlangga University... arrow_drop_down Airlangga University: UNAIR RepositoryArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15072451&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Anil Singh Yadav;
Tabish Alam;Anil Singh Yadav
Anil Singh Yadav in OpenAIREGaurav Gupta;
Rajiv Saxena; +7 AuthorsGaurav Gupta
Gaurav Gupta in OpenAIREAnil Singh Yadav;
Tabish Alam;Anil Singh Yadav
Anil Singh Yadav in OpenAIREGaurav Gupta;
Rajiv Saxena; Naveen Kumar Gupta;Gaurav Gupta
Gaurav Gupta in OpenAIREK. Viswanath Allamraju;
K. Viswanath Allamraju
K. Viswanath Allamraju in OpenAIRERahul Kumar;
Rahul Kumar
Rahul Kumar in OpenAIRENeeraj Sharma;
Neeraj Sharma
Neeraj Sharma in OpenAIREAbhishek Sharma;
Abhishek Sharma
Abhishek Sharma in OpenAIREUtkarsh Pandey;
Yogesh Agrawal;Utkarsh Pandey
Utkarsh Pandey in OpenAIREdoi: 10.3390/en15218045
Solar air heating devices have been employed in a wide range of industrial and home applications for solar energy conversion and recovery. It is a useful technique for increasing the rate of heat transfer by artificially creating repetitive roughness on the absorbing surface in the form of semicircular ribs. A thermo-hydraulic performance analysis for a fully developed turbulent flow through rib-roughened solar air heater (SAH) is presented in this article by employing computational fluid dynamics. Both 2-dimensional geometrical modeling and numerical solutions were performed in the finite volume package ANSYS FLUENT. The renormalization-group (RNG) k-ε turbulence model was used, as it is suitable for low Reynolds number (Re) turbulent flows. A thermo-hydraulic performance analysis of an SAH was carried out for a ranging Re, 3800–18,000 (6 sets); relative roughness pitch (RRP), 5–25 (12 sets); relative roughness height (RRH), 0.03–0.06 (3 sets); and heat flux, 1000 W/m2. The numerical analysis revealed that with an RRP of 5 and an RRH of 0.06, the roughened duct produces the highest augmentation in average Nur in the order of 2.76 times that of a plain duct at an Re of 18,000. With an RRP = 10 and RRH = 0.06, the roughened duct was found to provide the most optimum thermo-hydraulic performance parameter (THPP). The THPP was determined to have a maximum value of 1.98 when the Re is equal to 15,000. It was found that semi-circular ribs which have a rib pitch = 20 mm and a rib height = 2 mm can be applied in an SAH to enhance heat transfer.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 25 citations 25 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15218045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Suresh Mikkili;
Akshay Kanjune;Suresh Mikkili
Suresh Mikkili in OpenAIREPraveen Kumar Bonthagorla;
Praveen Kumar Bonthagorla
Praveen Kumar Bonthagorla in OpenAIRETomonobu Senjyu;
Tomonobu Senjyu
Tomonobu Senjyu in OpenAIREdoi: 10.3390/en15062124
At present, primary power generation depends on non-renewable energy resources, which will become extinct. Solar is the best option in renewable energy sources to achieve clean and green power extraction. Solar PV transforms light energy into electrical energy. However, the output power of solar PV changes with solar insolation. It is also affected by environmental factors and the shading effect. One of the key factors that can reduce the PV system output power is partial shading condition (PSC). The reduction in power output not only depends on shaded region but also depends on pattern of shading and physical position of shaded modules in the array. Due to PSCs, mismatch losses are induced between the shaded modules which can cause several peaks in the output power-voltage (P-V) characteristic. This article describes the non-symmetrical reconfiguration technique and compares it with the primary total cross tied connection. The performance of non-symmetrical reconfiguration techniques is evaluated and compared in terms of global maximum power (GMP), voltage and currents at GMP, open and short circuit voltage and currents, mismatch power loss (MPL), fill factor, efficiency, and number of local maximum power peaks (LMPPs) on a 9 × 9 PV array.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 7 citations 7 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15062124&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022Publisher:MDPI AG Authors:Pulla Rose Havilah;
Pulla Rose Havilah
Pulla Rose Havilah in OpenAIREAmit Kumar Sharma;
Amit Kumar Sharma
Amit Kumar Sharma in OpenAIREGopalakrishnan Govindasamy;
Gopalakrishnan Govindasamy
Gopalakrishnan Govindasamy in OpenAIRELeonidas Matsakas;
+1 AuthorsLeonidas Matsakas
Leonidas Matsakas in OpenAIREPulla Rose Havilah;
Pulla Rose Havilah
Pulla Rose Havilah in OpenAIREAmit Kumar Sharma;
Amit Kumar Sharma
Amit Kumar Sharma in OpenAIREGopalakrishnan Govindasamy;
Gopalakrishnan Govindasamy
Gopalakrishnan Govindasamy in OpenAIRELeonidas Matsakas;
Leonidas Matsakas
Leonidas Matsakas in OpenAIREAlok Patel;
Alok Patel
Alok Patel in OpenAIREdoi: 10.3390/en15113938
Rapid climate change and forecasted damage from fossil fuel combustion, forced researchers to investigate renewable and clean energy sources for the sustainable development of societies throughout the world. Biomass-based energy is one of the most important renewable energy sources for meeting daily energy needs, which are gaining in popularity daily. Gasification-based bioenergy production is an effective way to replace fossil fuels and reduce CO2 emissions. Even though biomass gasification has been studied extensively, there is still much opportunity for improvement in terms of high-quality syngas generation (high H2/CO ratio) and reduced tar formation. Furthermore, the presence of tar has a considerable impact on syngas quality. Downdraft gasifiers have recently shown a significant potential for producing high-quality syngas with lower tar concentrations. This article presents a comprehensive review on the advancement in biomass downdraft gasification technologies for high-quality synthesis gas. In addition, factors affecting syngas production and composition e.g., equivalency ratio, temperature, particle size, and gasification medium on synthesis gas generation are also comprehensively studied. The up-gradation and various applications of synthesis gas are also discussed in brief in this review article.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 31 citations 31 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en15113938&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023Publisher:MDPI AG Authors: Ramalingam Sripriya;Chandrasekaran Kumar;
Felix Joseph Xavier; Jeyaraj Senthil Kumar; +2 AuthorsChandrasekaran Kumar
Chandrasekaran Kumar in OpenAIRERamalingam Sripriya;Chandrasekaran Kumar;
Felix Joseph Xavier; Jeyaraj Senthil Kumar;Chandrasekaran Kumar
Chandrasekaran Kumar in OpenAIREPanos Kotsampopoulos;
Panos Kotsampopoulos
Panos Kotsampopoulos in OpenAIREHady H. Fayek;
Hady H. Fayek
Hady H. Fayek in OpenAIREdoi: 10.3390/en16103984
The recent trend in hybrid electric vehicles (HEV) has increased the need for vehicle charging stations (VCS) in the distribution system. In this condition, the additional load in the system leads to an increase in power loss, reduction in voltage and reliability of the system. The drawbacks of introducing this additional load can be rectified by integrating distributed generation (DG) into the distribution system. In this paper, the ideal location for placing DG is identified through the voltage stability index. The power loss minimization objective function is formulated with all the required constraints to estimate the size of DG required for the distribution system. Moreover, loss of load probability is used as a reliability assessment technique, through which the system reliability is analyzed after assessing the impact of integrating VCS and DG. Simulations are carried out to compare the following cases: a system without VCS and DG, a system that has only VCS and a system that has both VCS and DG. The IEEE 12-bus and 33-bus test systems are considered. In the 12-bus system with both VCS and DG, the power loss is reduced by 56% when compared with the system with only VCS, while the net reliability is also improved. The reliability of the system is evaluated for a 24 h load variation. The proposed work provides an efficient tool to improve the reliability of the system with support from DG.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16103984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.3390/en16103984&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu