- home
- Advanced Search
- Energy Research
- Restricted
- other engineering and technologies
- FR
- CA
- IR
- Energy Research
- Restricted
- other engineering and technologies
- FR
- CA
- IR
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Majid Sadeqzadeh; Ali Ghannadzadeh;Ammonia production through more efficient technologies can be achieved using exergy analysis. Ammonia production is one of the most important but also one of most energy consuming processes in the chemical industry. Based on a panel of solutions previously developed, this study helps to identify potential areas of improvement using an exergy analysis that covers all aspects of conventional ammonia synthesis and separation. The total internal and external exergy losses are calculated as 3,152 and 6,364 kJ/kg, respectively. The process is then divided into five main functional blocks based on their exergy losses. The reforming block contains the largest exergy loss (3,098 kJ/kg) and thus the largest potential for improvement including preheating cold feed through an economizer, developing technology towards isobaric mixing, and pressure drop reduction in the secondary reformer as the main contributors to the irreversibility (1,302 kJ/kg) in this block. The second largest exergy loss resides in the ammonia synthesis block (3,075 kJ/kg) where solutions such as reduced temperature rise across the compressor, proper compressor isolation, reducing undesired components such as argon in the reactor feed, and using lower temperatures for reactor outlet streams, are proposed to decrease the exergy losses. Throttling process in the syngas separator is the key contributing mechanism for the irreversibility (1,635 kJ/kg exergy losses) in the gas upgrading block. The exergy losses in the residual ammonia removal block (833 kJ/kg exergy losses) are mainly due to the stripper and the absorber column where a modified column design might be helpful. The highest exergy loss in the preheating block belongs to the compressors (518 kJ/kg exergy losses) where a lower inlet temperature and better system isolation could help to reduce losses.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.11.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.11.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Book 2014 DenmarkPublisher:Elsevier BV Authors: Tommaso, Venturini; Meunier, Axel; Munk, Anders Kristian;doi: 10.2139/ssrn.2532946
Climaps.eu is an online atlas providing data, visualizations and commentaries about climate adaptation debate. It contains 33 issue-maps and 5 issue-stories. Each of the maps focuses on one issue in the adaptation debate and provides.The atlas is addressed to climate experts (negotiators, NGOs and companies concerned by global warming, journalists…) and to citizens willing to engage with the issues of climate adaptation.It employs advanced digital methods to deploy the complexity of the issues related to climate adaptation and information design to make this complexity legible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2532946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2532946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Mehdi Sellali; Achour Betka; Abdesslem Djerdir; Yongheng Yang; Imene Bahri; Said Drid;The present paper exhibits a real time assessment of a robust Energy Management Strategy (EMS) for battery-super capacitor (SC) Hybrid Energy Storage System (HESS). The proposed algorithm, dedicated to an electric vehicular application, is based on a self-gain scheduled controller, which guarantees the H∞ performance for a class of linear parameter varying (LPV) systems. Assuming that the duty cycle of the involved DC-DC converters are considered as the variable parameters, that can be captured in real time, and forwarded to the controller to ensure both; the performance and robustness of the closed-loop system. The subsequent controller is therefore time-varying and it is automatically scheduled according to each parameter variation. This algorithm has been validated through experimental results provided by a tailor-made test bench including both the HESS and the vehicle traction emulation system. The experimental results demonstrate the overall stability of the system, where the proposed LPV supervisor successfully accomplishes a power frequency splitting in an adequate way, respecting the dynamic of the sources. The proposed solution provides significant performances for different speed levels.
VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2020.3017811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2020.3017811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Ali Ghannadzadeh; Majid Sadeqzadeh;Ethylene oxide production process is one of the highest energy consumers in chemical industry, and therefore even a slight improvement in its overall efficiency can have a significant impact on the sustainability of the process. Efficiency improvement can be carried out using the exergy-aided pinch analysis outlined in this paper. The overall exergy loss distribution in different unit operations of an ethylene oxide process was first evaluated and mapped out in the form of “visualized exergetic process flowsheet”. An initial analysis of the four main functional blocks of the process showed that the exothermic reaction block contained the largest exergy loss (6043 and 428 kJ/kg of internal and external losses, respectively) which can be reduced by isothermal mixing, as well as increasing reaction temperature and reduction in pressure drop. The absorption block was also estimated to have the second highest contribution with total exergy losses of 3640 kJ/kg which were mainly due to the cooling column. These losses were then recommended to be reduced by improvements in the concentration and temperature gradients along the tower. Following the block-wise analysis, exergy analysis was then carried out for individual unit operations in each block to pinpoint the main sources of thermal exergetic inefficiency. Thermal solutions to reduce losses were also proposed in accordance with the identified sources of inefficiency, leading to a comprehensive list of cold and hot process streams that could be introduced to reduce losses. Finally, pinch analysis was brought into action to estimate the minimum energy requirements, to select utilities, and to design heat exchanger network. Thus, the methodology used in this work took advantage of both exergy and pinch analyses. The combined thermal-exergy-based pinch approach helped to set energy targets so that all the thermal possible solutions supported by exergy analysis were considered, preventing exclusion of any hot or cold process stream with high potential for heat integration during pinch analysis. Results indicated that the minimum cold utility requirement could be reduced from 601.64 MW (obtained via conventional pinch analysis) to 577.82 MW through screening of streams by the combined methodology.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1402-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1402-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2003 ItalyPublisher:Elsevier BV Authors: Martin Bojinov; Sandro Cattarin; Bernard Tribollet; Marco Musiani;In the anodisation of Nb in acidic fluoride solutions or warm aqueous alkali, and in that of Mo in concentrated phosphoric acid, impedance spectroscopy provides evidence that 3D film growth proceeds already during the active–passive transition. Indeed, linear potential dependences of both the inverse of the high-frequency capacitance and of the product of the high-frequency resistance times the steady-state current are observed already below the peak potential. Simultaneously, a pseudo-inductive loop at intermediate frequencies is detected in the impedance spectra. In the present paper, we propose a kinetic model for the interpretation of these data. The model assumes that the metal is covered with a non-stoichiometric oxide containing at least two oxidation states of the cation. The processes of oxidative dissolution of the lower valence cations and their transformation to cations of higher valence, leading to passivation, explain the shape of the I–E curve. These processes are limited by both charge transfer at the film–solution (F/S) interface and transport of cation vacancies through the film. Thickening of the oxide film is assumed to proceed simultaneously, and is limited by transport of oxygen vacancies accelerated by an interfacial charge of cation vacancies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(03)00578-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(03)00578-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: S. Hippeli; Harald Mehling; Stefan Hiebler; Luisa F. Cabeza;Hot water heat stores with stratification are a common technology used in solar energy systems and reuse of waste heat. Adding a PCM module at the top of the water tank would give the system higher storage density, and compensate heat loss in the top layer. The work presented here includes experimental results and numerical simulation of the system using an explicit finite-difference method. Experiments and simulations were carried out using different cylindrical PCM modules. With only 1/16 of the volume of the store being PCM, 3/16 of water at the top of the store was held warm for 50% to 200% longer and the average energy density was increased by 20% to 45%. Furthermore, these 3/16 of water were reheated by the heat from the module after being cooled down in only 20 min.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(02)00108-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(02)00108-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Egido Cortés, Ignacio; Fernández Bernal, Fidel; Centeno López, Pablo; Rouco Rodríguez, Luis;handle: 11531/5176
Artículos en revistas Large frequency deviations due to a number of disturbances are frequent in small isolated power systems. The maximum frequency deviation in the system is limited to prevent other generator tripping. It is important to have an accurate model to calculate it, both for system planning and operation. A new simplified model to calculate the maximum frequency deviation when either a generator or load-related disturbance occurs in these systems is presented. This model takes into account the response of governor- prime mover even when different technologies are present in the power system. Model parameters can be easily obtained from either more complex models or from test records. Simulation results for an actual power system aimed at checking the model accuracy are presented. High accuracy is obtained while computation time is reduced due to the simplicity of the model. info:eu-repo/semantics/publishedVersion
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Transactions on Power SystemsArticle . 2009 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2009.2030399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 126 citations 126 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Transactions on Power SystemsArticle . 2009 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2009.2030399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Camila Barreneche; Camila Barreneche; Luisa F. Cabeza; M. Elena Navarro; A. Inés Fernández; M. Niubó;Abstract In recent years, the overall energy consumption is increasing significantly and the energy consumption in the building sector represents over 30% of the global ones in developed countries. Thermal energy storage (TES) using phase change materials (PCM), which are materials able to store high amounts of energy as latent heat, is suggested as a possible solution to decrease the energy consumption. The authors of this paper developed materials able to encapsulate/stabilize PCM in addition to isolate an industrial residue from the steel recycling process: electrical arc furnace dust (EAFD). This waste is a hazardous dust, and when it is combined with a polymeric matrix produce dense sheet materials suitable for multilayered constructive systems. In this paper the physical, mechanical, thermal and acoustical characterization of two new materials with EAFD and PCM in a polymeric matrix for constructive system is presented. The results are compared with those obtained for one commercial dense sheet material available in the market, Texsound commercialized by TEXSA (Spain). The new dense sheet materials developed in this paper have similar acoustic properties compared to the results obtained for the commercial material and are competitive with it, even better because the new material incorporates PCM which increases the thermal inertia of final constructive system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Boquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; +3 AuthorsBoquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Ubertini, Filippo; Cabeza, Luisa F.;The incorporation of recycled materials in concrete as a partial replacement of cement is becoming an alternative strategy for decreasing energy-intensive and CO2 emissions imputable to the cement manufacture, while investigating new potential uses of such multifunctional materials for environmental sustainability opportunities. Therefore, low-cost and worldwide availability of by-products materials is being assessed for sensible heat thermal energy storage applications based on cementitious materials. A greater concern is especially required focusing on the thermal stability of cement paste under high temperature cycled conditions. Moreover, compatibility between cement type and supplementary cementitious materials is determinant for the proper performance reliability. In this study, benchmark cement types were selected, i.e., ordinary Portland and calcium aluminate. Six supplementary cementitious materials were added to both types of cement in a content of 10 % and 25 %. Thermo-mechanical properties were studied before and after 10 thermal cycles from 290 to 650 ◦C. Results after thermal cycling showed that calcium aluminate cement paste mixtures maintained their integrity. However, most ordinary Portland cement paste mixtures were deteriorated: only mixtures with 25 % cement replacement with chamotte, flay ash, and ground granulated blast furnace slag remained without cracks. Calcium aluminate cement paste mixtures obtained the highest compressive strength, for partial replacement of cement with 10 % of chamotte, ground granulated blast furnace slag, and iron silicate. The incorporation of supplementary cementitious materials did not increase the thermal conductivity. This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors at University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme and by the Italian project ‘SOS-CITTA’ supported by Fondazione Cassa di Risparmio di Perugia under grant agreement No 2018.0499.026. Laura Boquera acknowledgments are due to the PhD school in Energy and Sustainable Development from University of Perugia. Laura Boquera would like to acknowledge the financial support provided by UNIPG – CIRIAF InpathTES project. The authors also thank the companies that provided the material to make possible this experimental research: Arciresa, Abrasivos Mendiola EDERSA—Masaveu Industria, General Admixtures S.p.A, Mapei, Ciments Molins industrial, and Promsa for the material supplied in this research. Financial support of the UNIPG-CIRIAF team has been achieved from the Italian Ministry of University and Research (MUR) in the framework of the Project FISR 2019: “Eco Earth” (code 00245) and it is gratefully acknowledged.
Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Hindawi Limited Perrine Devos; Jean‐Michel COMMANDRE; Loïc Brancheriau; Kévin Candelier; Patrick Rousset;doi: 10.1002/er.5744
When biomass is thermally treated, the enrichment of carbon in the remaining “green coal” is correlated with the temperature and duration. Other properties related to the energetic properties of the torrefied biomass are closely related to chemical modifications and correlated to the material mass loss occurring during the thermal degradation. The possibility of using near infrared spectrometry has been investigated to predict the mass loss of Pinus sylvestris wood torrefied at temperatures ranging from 220°C to 300°C with durations varying from 1 minute to 10 hours. A first mass loss prediction model (NIR‐260) associated with the mean torrefaction temperature of 260°C was developed, and appeared suitable only for this temperature due to specific chemical reactions rate. A second model (NIRS‐All), using all available data was constructed and showed an accurate mass loss prediction, for both low (220°C) and high temperatures (300°C). The main differences between NIRS‐260 and NIRS‐All models are mainly attributed to the thermal modification of hemicelluloses and cellulose fractions occurred during the wood torrefaction. The results showed near infrared spectrometry combined with multivariate calibration modeling have potential utility in an industrial context as a standardized continuous method to figure out the mass loss of biomass during torrefaction by a rapid characterization. Novelty Statement The novelty concerns the use of the Near Infrared Spectrometry (NIRS) combined with multivariate calibration modeling as a standardized method for determining the mass loss biomass during torrefaction by a rapid and nondestructive characterization. A model was constructed and showed an accurate mass loss prediction, for both low (220°C) and high temperatures (300°C). Near infrared spectrometry have potential utility in an industrial context as a standardized continuous method.
Agritrop arrow_drop_down International Journal of Energy ResearchArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.5744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down International Journal of Energy ResearchArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.5744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2016Publisher:Elsevier BV Authors: Majid Sadeqzadeh; Ali Ghannadzadeh;Ammonia production through more efficient technologies can be achieved using exergy analysis. Ammonia production is one of the most important but also one of most energy consuming processes in the chemical industry. Based on a panel of solutions previously developed, this study helps to identify potential areas of improvement using an exergy analysis that covers all aspects of conventional ammonia synthesis and separation. The total internal and external exergy losses are calculated as 3,152 and 6,364 kJ/kg, respectively. The process is then divided into five main functional blocks based on their exergy losses. The reforming block contains the largest exergy loss (3,098 kJ/kg) and thus the largest potential for improvement including preheating cold feed through an economizer, developing technology towards isobaric mixing, and pressure drop reduction in the secondary reformer as the main contributors to the irreversibility (1,302 kJ/kg) in this block. The second largest exergy loss resides in the ammonia synthesis block (3,075 kJ/kg) where solutions such as reduced temperature rise across the compressor, proper compressor isolation, reducing undesired components such as argon in the reactor feed, and using lower temperatures for reactor outlet streams, are proposed to decrease the exergy losses. Throttling process in the syngas separator is the key contributing mechanism for the irreversibility (1,635 kJ/kg exergy losses) in the gas upgrading block. The exergy losses in the residual ammonia removal block (833 kJ/kg exergy losses) are mainly due to the stripper and the absorber column where a modified column design might be helpful. The highest exergy loss in the preheating block belongs to the compressors (518 kJ/kg exergy losses) where a lower inlet temperature and better system isolation could help to reduce losses.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.11.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 23 citations 23 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2016Data sources: DANS (Data Archiving and Networked Services)Energy Conversion and ManagementArticle . 2016 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enconman.2015.11.040&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type , Book 2014 DenmarkPublisher:Elsevier BV Authors: Tommaso, Venturini; Meunier, Axel; Munk, Anders Kristian;doi: 10.2139/ssrn.2532946
Climaps.eu is an online atlas providing data, visualizations and commentaries about climate adaptation debate. It contains 33 issue-maps and 5 issue-stories. Each of the maps focuses on one issue in the adaptation debate and provides.The atlas is addressed to climate experts (negotiators, NGOs and companies concerned by global warming, journalists…) and to citizens willing to engage with the issues of climate adaptation.It employs advanced digital methods to deploy the complexity of the issues related to climate adaptation and information design to make this complexity legible.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2532946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 3 citations 3 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.2139/ssrn.2532946&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2021 France, DenmarkPublisher:Institute of Electrical and Electronics Engineers (IEEE) Mehdi Sellali; Achour Betka; Abdesslem Djerdir; Yongheng Yang; Imene Bahri; Said Drid;The present paper exhibits a real time assessment of a robust Energy Management Strategy (EMS) for battery-super capacitor (SC) Hybrid Energy Storage System (HESS). The proposed algorithm, dedicated to an electric vehicular application, is based on a self-gain scheduled controller, which guarantees the H∞ performance for a class of linear parameter varying (LPV) systems. Assuming that the duty cycle of the involved DC-DC converters are considered as the variable parameters, that can be captured in real time, and forwarded to the controller to ensure both; the performance and robustness of the closed-loop system. The subsequent controller is therefore time-varying and it is automatically scheduled according to each parameter variation. This algorithm has been validated through experimental results provided by a tailor-made test bench including both the HESS and the vehicle traction emulation system. The experimental results demonstrate the overall stability of the system, where the proposed LPV supervisor successfully accomplishes a power frequency splitting in an adequate way, respecting the dynamic of the sources. The proposed solution provides significant performances for different speed levels.
VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2020.3017811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert VBN arrow_drop_down IEEE Transactions on Energy ConversionArticle . 2021 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tec.2020.3017811&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2017Publisher:Springer Science and Business Media LLC Authors: Ali Ghannadzadeh; Majid Sadeqzadeh;Ethylene oxide production process is one of the highest energy consumers in chemical industry, and therefore even a slight improvement in its overall efficiency can have a significant impact on the sustainability of the process. Efficiency improvement can be carried out using the exergy-aided pinch analysis outlined in this paper. The overall exergy loss distribution in different unit operations of an ethylene oxide process was first evaluated and mapped out in the form of “visualized exergetic process flowsheet”. An initial analysis of the four main functional blocks of the process showed that the exothermic reaction block contained the largest exergy loss (6043 and 428 kJ/kg of internal and external losses, respectively) which can be reduced by isothermal mixing, as well as increasing reaction temperature and reduction in pressure drop. The absorption block was also estimated to have the second highest contribution with total exergy losses of 3640 kJ/kg which were mainly due to the cooling column. These losses were then recommended to be reduced by improvements in the concentration and temperature gradients along the tower. Following the block-wise analysis, exergy analysis was then carried out for individual unit operations in each block to pinpoint the main sources of thermal exergetic inefficiency. Thermal solutions to reduce losses were also proposed in accordance with the identified sources of inefficiency, leading to a comprehensive list of cold and hot process streams that could be introduced to reduce losses. Finally, pinch analysis was brought into action to estimate the minimum energy requirements, to select utilities, and to design heat exchanger network. Thus, the methodology used in this work took advantage of both exergy and pinch analyses. The combined thermal-exergy-based pinch approach helped to set energy targets so that all the thermal possible solutions supported by exergy analysis were considered, preventing exclusion of any hot or cold process stream with high potential for heat integration during pinch analysis. Results indicated that the minimum cold utility requirement could be reduced from 601.64 MW (obtained via conventional pinch analysis) to 577.82 MW through screening of streams by the combined methodology.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1402-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 12 citations 12 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2017Data sources: DANS (Data Archiving and Networked Services)Clean Technologies and Environmental PolicyArticle . 2017 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10098-017-1402-5&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Conference object , Journal 2003 ItalyPublisher:Elsevier BV Authors: Martin Bojinov; Sandro Cattarin; Bernard Tribollet; Marco Musiani;In the anodisation of Nb in acidic fluoride solutions or warm aqueous alkali, and in that of Mo in concentrated phosphoric acid, impedance spectroscopy provides evidence that 3D film growth proceeds already during the active–passive transition. Indeed, linear potential dependences of both the inverse of the high-frequency capacitance and of the product of the high-frequency resistance times the steady-state current are observed already below the peak potential. Simultaneously, a pseudo-inductive loop at intermediate frequencies is detected in the impedance spectra. In the present paper, we propose a kinetic model for the interpretation of these data. The model assumes that the metal is covered with a non-stoichiometric oxide containing at least two oxidation states of the cation. The processes of oxidative dissolution of the lower valence cations and their transformation to cations of higher valence, leading to passivation, explain the shape of the I–E curve. These processes are limited by both charge transfer at the film–solution (F/S) interface and transport of cation vacancies through the film. Thickening of the oxide film is assumed to proceed simultaneously, and is limited by transport of oxygen vacancies accelerated by an interfacial charge of cation vacancies.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(03)00578-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 55 citations 55 popularity Top 10% influence Top 10% impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0013-4686(03)00578-4&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2003Publisher:Elsevier BV Authors: S. Hippeli; Harald Mehling; Stefan Hiebler; Luisa F. Cabeza;Hot water heat stores with stratification are a common technology used in solar energy systems and reuse of waste heat. Adding a PCM module at the top of the water tank would give the system higher storage density, and compensate heat loss in the top layer. The work presented here includes experimental results and numerical simulation of the system using an explicit finite-difference method. Experiments and simulations were carried out using different cylindrical PCM modules. With only 1/16 of the volume of the store being PCM, 3/16 of water at the top of the store was held warm for 50% to 200% longer and the average energy density was increased by 20% to 45%. Furthermore, these 3/16 of water were reheated by the heat from the module after being cooled down in only 20 min.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(02)00108-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 157 citations 157 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/s0960-1481(02)00108-8&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2009 SpainPublisher:Institute of Electrical and Electronics Engineers (IEEE) Authors: Egido Cortés, Ignacio; Fernández Bernal, Fidel; Centeno López, Pablo; Rouco Rodríguez, Luis;handle: 11531/5176
Artículos en revistas Large frequency deviations due to a number of disturbances are frequent in small isolated power systems. The maximum frequency deviation in the system is limited to prevent other generator tripping. It is important to have an accurate model to calculate it, both for system planning and operation. A new simplified model to calculate the maximum frequency deviation when either a generator or load-related disturbance occurs in these systems is presented. This model takes into account the response of governor- prime mover even when different technologies are present in the power system. Model parameters can be easily obtained from either more complex models or from test records. Simulation results for an actual power system aimed at checking the model accuracy are presented. High accuracy is obtained while computation time is reduced due to the simplicity of the model. info:eu-repo/semantics/publishedVersion
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Transactions on Power SystemsArticle . 2009 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2009.2030399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 126 citations 126 popularity Top 1% influence Top 1% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2016Data sources: Recolector de Ciencia Abierta, RECOLECTAIEEE Transactions on Power SystemsArticle . 2009 . Peer-reviewedLicense: IEEE CopyrightData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1109/tpwrs.2009.2030399&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014Publisher:Elsevier BV Camila Barreneche; Camila Barreneche; Luisa F. Cabeza; M. Elena Navarro; A. Inés Fernández; M. Niubó;Abstract In recent years, the overall energy consumption is increasing significantly and the energy consumption in the building sector represents over 30% of the global ones in developed countries. Thermal energy storage (TES) using phase change materials (PCM), which are materials able to store high amounts of energy as latent heat, is suggested as a possible solution to decrease the energy consumption. The authors of this paper developed materials able to encapsulate/stabilize PCM in addition to isolate an industrial residue from the steel recycling process: electrical arc furnace dust (EAFD). This waste is a hazardous dust, and when it is combined with a polymeric matrix produce dense sheet materials suitable for multilayered constructive systems. In this paper the physical, mechanical, thermal and acoustical characterization of two new materials with EAFD and PCM in a polymeric matrix for constructive system is presented. The results are compared with those obtained for one commercial dense sheet material available in the market, Texsound commercialized by TEXSA (Spain). The new dense sheet materials developed in this paper have similar acoustic properties compared to the results obtained for the commercial material and are competitive with it, even better because the new material incorporates PCM which increases the thermal inertia of final constructive system.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.enbuild.2013.09.004&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2022 SpainPublisher:Elsevier BV Authors: Boquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; +3 AuthorsBoquera, Laura; Castro Chicot, José Ramón; Pisello, Anna Laura; Fabiani, Claudia; D'Alessandro, Antonella; Ubertini, Filippo; Cabeza, Luisa F.;The incorporation of recycled materials in concrete as a partial replacement of cement is becoming an alternative strategy for decreasing energy-intensive and CO2 emissions imputable to the cement manufacture, while investigating new potential uses of such multifunctional materials for environmental sustainability opportunities. Therefore, low-cost and worldwide availability of by-products materials is being assessed for sensible heat thermal energy storage applications based on cementitious materials. A greater concern is especially required focusing on the thermal stability of cement paste under high temperature cycled conditions. Moreover, compatibility between cement type and supplementary cementitious materials is determinant for the proper performance reliability. In this study, benchmark cement types were selected, i.e., ordinary Portland and calcium aluminate. Six supplementary cementitious materials were added to both types of cement in a content of 10 % and 25 %. Thermo-mechanical properties were studied before and after 10 thermal cycles from 290 to 650 ◦C. Results after thermal cycling showed that calcium aluminate cement paste mixtures maintained their integrity. However, most ordinary Portland cement paste mixtures were deteriorated: only mixtures with 25 % cement replacement with chamotte, flay ash, and ground granulated blast furnace slag remained without cracks. Calcium aluminate cement paste mixtures obtained the highest compressive strength, for partial replacement of cement with 10 % of chamotte, ground granulated blast furnace slag, and iron silicate. The incorporation of supplementary cementitious materials did not increase the thermal conductivity. This work was partially funded by the Ministerio de Ciencia, Innovación y Universidades de España (RTI2018-093849-B-C31 - MCIU/AEI/FEDER, UE) and by the Ministerio de Ciencia, Innovación y Universidades - Agencia Estatal de Investigación (AEI) (RED2018-102431-T). The authors at University of Lleida would like to thank the Catalan Government for the quality accreditation given to their research group (2017 SGR 1537). GREiA is certified agent TECNIO in the category of technology developers from the Government of Catalonia. This work is partially supported by ICREA under the ICREA Academia programme and by the Italian project ‘SOS-CITTA’ supported by Fondazione Cassa di Risparmio di Perugia under grant agreement No 2018.0499.026. Laura Boquera acknowledgments are due to the PhD school in Energy and Sustainable Development from University of Perugia. Laura Boquera would like to acknowledge the financial support provided by UNIPG – CIRIAF InpathTES project. The authors also thank the companies that provided the material to make possible this experimental research: Arciresa, Abrasivos Mendiola EDERSA—Masaveu Industria, General Admixtures S.p.A, Mapei, Ciments Molins industrial, and Promsa for the material supplied in this research. Financial support of the UNIPG-CIRIAF team has been achieved from the Italian Ministry of University and Research (MUR) in the framework of the Project FISR 2019: “Eco Earth” (code 00245) and it is gratefully acknowledged.
Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu24 citations 24 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Repositori Obert UdL arrow_drop_down Journal of Energy StorageArticle . 2022 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.est.2022.105370&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 FrancePublisher:Hindawi Limited Perrine Devos; Jean‐Michel COMMANDRE; Loïc Brancheriau; Kévin Candelier; Patrick Rousset;doi: 10.1002/er.5744
When biomass is thermally treated, the enrichment of carbon in the remaining “green coal” is correlated with the temperature and duration. Other properties related to the energetic properties of the torrefied biomass are closely related to chemical modifications and correlated to the material mass loss occurring during the thermal degradation. The possibility of using near infrared spectrometry has been investigated to predict the mass loss of Pinus sylvestris wood torrefied at temperatures ranging from 220°C to 300°C with durations varying from 1 minute to 10 hours. A first mass loss prediction model (NIR‐260) associated with the mean torrefaction temperature of 260°C was developed, and appeared suitable only for this temperature due to specific chemical reactions rate. A second model (NIRS‐All), using all available data was constructed and showed an accurate mass loss prediction, for both low (220°C) and high temperatures (300°C). The main differences between NIRS‐260 and NIRS‐All models are mainly attributed to the thermal modification of hemicelluloses and cellulose fractions occurred during the wood torrefaction. The results showed near infrared spectrometry combined with multivariate calibration modeling have potential utility in an industrial context as a standardized continuous method to figure out the mass loss of biomass during torrefaction by a rapid characterization. Novelty Statement The novelty concerns the use of the Near Infrared Spectrometry (NIRS) combined with multivariate calibration modeling as a standardized method for determining the mass loss biomass during torrefaction by a rapid and nondestructive characterization. A model was constructed and showed an accurate mass loss prediction, for both low (220°C) and high temperatures (300°C). Near infrared spectrometry have potential utility in an industrial context as a standardized continuous method.
Agritrop arrow_drop_down International Journal of Energy ResearchArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.5744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 6 citations 6 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Agritrop arrow_drop_down International Journal of Energy ResearchArticle . 2020 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/er.5744&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu