- home
- Advanced Search
Filters
Clear All- Energy Research
- Restricted
- FR
- University of Lleida
- Energy Research
- Restricted
- FR
- University of Lleida
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Stefan Gshwander; Magali Fois; Luisa F. Cabeza; Gonzalo Diarce; Thomas Haussmann; Conchita Peñalosa; Belén Zalba; Aran Solé; Ana Lázaro;For the correct design of thermal storage systems using phase change materials (PCMs) in any application, as well as for their simulation, it is essential to characterise the materials from thermophysical and rheological standpoints (phase change enthalpy, thermal conductivity in solid and liquid phases, viscosity and density in function of temperature). Taking advantage of the different research groups facilities available in two international networks: within the IEA (International Energy Agency), the ECES Implementing Agreement (Energy Conservation through Energy Storage IA) and SHC Programme (Solar Heating and Cooling) Task 42/Annex 24 ‘‘Compact Thermal Energy Storage – Material Development for System Integration’’, and the COST Action TU0802 ‘‘Next generation cost effective phase change materials for increased energy efficiency in renewable energy systems in buildings (NeCoE-PCM)’’ a set of Round Robin Tests (RRTs) was proposed. The objective was to come to comparable results for PCMs using Differential Scanning Calorimetry (DSC) to determine their melting enthalpy as well as their melting and solidification behaviour. The first RRT was without defining the procedure, the second one with a predefined procedure for the measurements, but not for calibration and the third one with a predefined procedure for calibration, for the measurements and also for the data evaluation. This paper presents the conclusions after the three RRT. The main conclusion of the paper is that enthalpy in function of temperature determined using a dynamic method for DSC can be influenced by certain reasons and finally a methodology to avoid these influences have been proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.11.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.11.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Navarro, Maria E.; Martínez, Mònica; Gil, Antoni; Fernández Renna, Ana Inés; Cabeza, Luisa F.; Olives, R.; Py, Xavier;Abstract Alternative low cost materials are evaluated through the valorization of by-products derived from mining and metallurgical industry for solid sensible heat based energy storage systems. They were used either as received or formulated as aggregates in mortars, and their thermal and mechanical properties were characterized. A selection methodology was applied in order to compare them with available materials found in the literature for applications as (STES) materials, and with materials from Cambridge Educational Software (CES) Selector database. It was demonstrated that these recycled materials have a high potential for these thermal energy storage applications.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 115 citations 115 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu
description Publicationkeyboard_double_arrow_right Article , Journal 2013Publisher:Elsevier BV Stefan Gshwander; Magali Fois; Luisa F. Cabeza; Gonzalo Diarce; Thomas Haussmann; Conchita Peñalosa; Belén Zalba; Aran Solé; Ana Lázaro;For the correct design of thermal storage systems using phase change materials (PCMs) in any application, as well as for their simulation, it is essential to characterise the materials from thermophysical and rheological standpoints (phase change enthalpy, thermal conductivity in solid and liquid phases, viscosity and density in function of temperature). Taking advantage of the different research groups facilities available in two international networks: within the IEA (International Energy Agency), the ECES Implementing Agreement (Energy Conservation through Energy Storage IA) and SHC Programme (Solar Heating and Cooling) Task 42/Annex 24 ‘‘Compact Thermal Energy Storage – Material Development for System Integration’’, and the COST Action TU0802 ‘‘Next generation cost effective phase change materials for increased energy efficiency in renewable energy systems in buildings (NeCoE-PCM)’’ a set of Round Robin Tests (RRTs) was proposed. The objective was to come to comparable results for PCMs using Differential Scanning Calorimetry (DSC) to determine their melting enthalpy as well as their melting and solidification behaviour. The first RRT was without defining the procedure, the second one with a predefined procedure for the measurements, but not for calibration and the third one with a predefined procedure for calibration, for the measurements and also for the data evaluation. This paper presents the conclusions after the three RRT. The main conclusion of the paper is that enthalpy in function of temperature determined using a dynamic method for DSC can be influenced by certain reasons and finally a methodology to avoid these influences have been proposed.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.11.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.apenergy.2012.11.045&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 SpainPublisher:Elsevier BV Navarro, Maria E.; Martínez, Mònica; Gil, Antoni; Fernández Renna, Ana Inés; Cabeza, Luisa F.; Olives, R.; Py, Xavier;Abstract Alternative low cost materials are evaluated through the valorization of by-products derived from mining and metallurgical industry for solid sensible heat based energy storage systems. They were used either as received or formulated as aggregates in mortars, and their thermal and mechanical properties were characterized. A selection methodology was applied in order to compare them with available materials found in the literature for applications as (STES) materials, and with materials from Cambridge Educational Software (CES) Selector database. It was demonstrated that these recycled materials have a high potential for these thermal energy storage applications.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 115 citations 115 popularity Top 1% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTASolar Energy Materials and Solar CellsArticle . 2012 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.solmat.2012.07.032&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu