Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • IR

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ziba Borazjani; Reza Azin; Shahriar Osfouri; Markus Lehner; +1 Authors

    Biomass (especially algae) is a renewable energy source that can be a great alternative to fossil fuels. Wet algal biomass converts into products such as solid, aqueous, and gaseous phases as well as biocrude in hydrothermal liquefaction (HTL). The aim of this work was to provide detailed exergy analyses of the production of biocrude from Nannochloropsis sp. by HTL. Physical and chemical exergy of the HTL products, exergy losses, exergy efficiency, and exergy distribution of the HTL process were determined in this research. The highest exergy loss and the lowest efficiency values obtained for the heat exchanger were 65,856.83 MJ/hr and 66.64%, respectively, which was mainly caused by the irreversibility of the heat transfer process. Moreover, the HTL reactor had high efficiency (99.9%) due to the complex reactions that occurred at high temperature and pressure. Also, the optimum operating conditions of the reactor were obtained at 350 °C and 20 MPa by using sensitivity analysis. The high overall exergy efficiency of the process (94.93%) indicated that HTL was the most effective process for the conversion of algae. In addition, the exergy recovery values of the overall exergy input values in the HTL process for biocrude, as well as the aqueous, solid, and gas phases, were nearly 74.88%, 18.42%, 0.86%, and 0.76%, respectively. Exergy assessment provides beneficial information for improving the thermodynamic performance of the HTL system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2021 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2021 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph
Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
1 Research products
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Ziba Borazjani; Reza Azin; Shahriar Osfouri; Markus Lehner; +1 Authors

    Biomass (especially algae) is a renewable energy source that can be a great alternative to fossil fuels. Wet algal biomass converts into products such as solid, aqueous, and gaseous phases as well as biocrude in hydrothermal liquefaction (HTL). The aim of this work was to provide detailed exergy analyses of the production of biocrude from Nannochloropsis sp. by HTL. Physical and chemical exergy of the HTL products, exergy losses, exergy efficiency, and exergy distribution of the HTL process were determined in this research. The highest exergy loss and the lowest efficiency values obtained for the heat exchanger were 65,856.83 MJ/hr and 66.64%, respectively, which was mainly caused by the irreversibility of the heat transfer process. Moreover, the HTL reactor had high efficiency (99.9%) due to the complex reactions that occurred at high temperature and pressure. Also, the optimum operating conditions of the reactor were obtained at 350 °C and 20 MPa by using sensitivity analysis. The high overall exergy efficiency of the process (94.93%) indicated that HTL was the most effective process for the conversion of algae. In addition, the exergy recovery values of the overall exergy input values in the HTL process for biocrude, as well as the aqueous, solid, and gas phases, were nearly 74.88%, 18.42%, 0.86%, and 0.76%, respectively. Exergy assessment provides beneficial information for improving the thermodynamic performance of the HTL system.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    BioEnergy Research
    Article . 2021 . Peer-reviewed
    License: Springer TDM
    Data sources: Crossref
    addClaim

    This Research product is the result of merged Research products in OpenAIRE.

    You have already added works in your ORCID record related to the merged Research product.
    6
    citations6
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao BioEnergy Researcharrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      BioEnergy Research
      Article . 2021 . Peer-reviewed
      License: Springer TDM
      Data sources: Crossref
      addClaim

      This Research product is the result of merged Research products in OpenAIRE.

      You have already added works in your ORCID record related to the merged Research product.
Powered by OpenAIRE graph