Advanced search in Research products
Research products
arrow_drop_down
Searching FieldsTerms
Author ORCID
arrow_drop_down
is
arrow_drop_down
The following results are related to Energy Research. Are you interested to view more results? Visit OpenAIRE - Explore.
5 Research products
Relevance
arrow_drop_down
unfold_lessCompact results

  • Energy Research
  • IR

  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Peyman Abdeshahian; Peyman Abdeshahian; Haslenda Hashim; orcid Jeng Shiun Lim;
    Jeng Shiun Lim
    ORCID
    Harvested from ORCID Public Data File

    Jeng Shiun Lim in OpenAIRE
    +2 Authors

    Abstract Anaerobic digestion of renewable feedstocks has been known as a prospective technology for the production of clean energy in the form of biogas. Biogas is a sustainable energy carrier which is mainly composed of methane (60%) and carbon dioxide (35–40%). Among the raw substances, organic matters obtained from farm animal waste are pivotal sources for biogas production. In recent years, the number of animal husbandry has drastically grown in Malaysia. Accordingly, a large amount of animal waste including manure, blood and rumen content are produced which provide a tremendous source of biogas generation. This paper presents biogas potential from the organic waste obtained from the farm animals and slaughterhouses in Malaysia. The findings of this study indicated that biogas potential of 4589.49 million m 3 year − 1 could be produced from animal waste in Malaysia in 2012 which could provide an electricity generation of 8.27×10 9 kWh year −1 .

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2016 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    280
    citations280
    popularityTop 0.1%
    influenceTop 1%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2016 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Behnam Mohammadi-Ivatloo; Zainuddin Abdul Manan; orcid Khairulnadzmi Jamaluddin;
    Khairulnadzmi Jamaluddin
    ORCID
    Harvested from ORCID Public Data File

    Khairulnadzmi Jamaluddin in OpenAIRE
    orcid Roziah Zailan;
    Roziah Zailan
    ORCID
    Harvested from ORCID Public Data File

    Roziah Zailan in OpenAIRE
    +3 Authors

    Abstract The development of biomass-based cogeneration energy systems in Malaysia is progressing to meet the circular economy concept and sustainability goal. This comprehensive review aims to report recent advancements in biomass-based cogeneration/biomass co-firing technology in Malaysia correlated with the optimization modeling role. First, this work presents the outlook and current scenario of cogeneration systems in Malaysia by observing performance and the challenges confronted by the technologies. Next, investigation of technical issues concerning the key players of the technologies and the biomass supply chain. This work had prepared using quantitative content-based analysis-meta-analysis. The practical implication of this review enables a complex optimization model that integrates biomass-based cogeneration and biomass supply chain considering economic and environmental viability. It will further enhance progress toward the Malaysian “Industry 4.0-driven” energy initiative. A novel optimization model grounded on Industry 4.0 parameters will foster new opportunities for researchers.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Renewable and Sustainable Energy Reviews
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    19
    citations19
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Renewable and Sustai...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Renewable and Sustainable Energy Reviews
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: Tan, Sie Ting; Hashim, Haslenda; Abdul Rashid, Ahmad Hazri; orcid Lim, Jeng Shiun;
    Lim, Jeng Shiun
    ORCID
    Harvested from ORCID Public Data File

    Lim, Jeng Shiun in OpenAIRE
    +2 Authors

    Abstract Transboundary haze has been a critical environmental concern in the region of Southeast Asia in the recent decades. The smoke occurred by land clearing through burning activities for agricultural cultivation and urban development is a significant contributors to haze issue which has affected countries within the region and beyond. Instead of ‘slashing and burning’ the biomass residues, there is the possibility of utilising the biomass residue produced either by land-clearing or on plantations to become higher value bio-products,with monetary returns to the plantations and farmers. Due to the diffuse nature of biomass which leads to high transportation costs, effective spatial planning is required for cost-effectiveness and sustainable biomass supply. This study focuses on mitigation of transboundary haze by moving away from the conventional activities of biomass ‘slash and burn’ through its conversion to energy. A spatial optimal biomass allocation networks has been developed to address the issue of transportation distance of biomass to the centralised bioenergy facility by taking into account the geographical locations of the biomass, biomass availability, distances, and transportation cost. Five optimal centralised biomass facilities were identified in Peninsular Malaysia. The results indicated that the cost of electricity generated from oil palm trunk (OPT) and oil palm frond (OPF) was USD 0.13/kWh which is comparable with current Feed-in-Tariff (FiT). The result suggests that the conversion of biomass–to-energy could create economic benefits and ultimately reduce open burning practices, and prevent the transboundary haze issue in Malaysia and other ASEAN countries.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Energy
    Article . 2018 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    26
    citations26
    popularityTop 10%
    influenceAverage
    impulseTop 10%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Energyarrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Energy
      Article . 2018 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
  • image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Authors: orcid Jeng Shiun Lim;
    Jeng Shiun Lim
    ORCID
    Harvested from ORCID Public Data File

    Jeng Shiun Lim in OpenAIRE
    Haslenda Hashim; Ahmad Hazri Abdul Rashid; Wai Shin Ho; +2 Authors

    Abstract Transboundary haze is one of the major environmental issues in Southeast Asia for the last three decades. The haze has not only affected the countries within the region, but even beyond because of the impacts on environmental concerns with greenhouse gas (GHG) emissions and biodiversity thus challenging international attempts to address these issues. Fires associated with agricultural and plantation development in Indonesia impact ecosystem services and release emissions into the atmosphere that degrade regional air quality and contribute to greenhouse gas concentrations. One solution to clearing the biomass without fire may be to harvest it and use it for power. Economic benefit of biomass conversion to power is undeniable, however, there is still debatable question on the emission impact of biomass burning and biomass utilization. A biomass utilization process involving transportation of biomass feedstock to the processing plant as well as the processing of the biomass to power, emitted certain amount of GHG. This study aimed to assess and compared the GHG emission of open forest burning and the GHG emission from biomass utilization in direct combustion processing for electricity. The result showed that the biomass to power utilization alternative has a carbon reduction of 11.701 t CO 2 / t biomass while biomass open fire burning activity contribute to 0.06 t CO 2 / t biomass of emission, which is less favorable as compared to biomass to energy alternative which contribute to the emission reduction.

    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article . 2017 . Peer-reviewed
    License: CC BY NC ND
    Data sources: Crossref
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    Energy Procedia
    Article
    License: CC BY NC ND
    Data sources: UnpayWall
    image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
    addClaim
    3
    citations3
    popularityAverage
    influenceAverage
    impulseAverage
    BIP!Powered by BIP!
    more_vert
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Energy Procediaarrow_drop_down
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article . 2017 . Peer-reviewed
      License: CC BY NC ND
      Data sources: Crossref
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      Energy Procedia
      Article
      License: CC BY NC ND
      Data sources: UnpayWall
      image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
      addClaim
  • image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Authors: orcid Omid Sadeghian;
    Omid Sadeghian
    ORCID
    Harvested from ORCID Public Data File

    Omid Sadeghian in OpenAIRE
    orcid Arash Moradzadeh;
    Arash Moradzadeh
    ORCID
    Harvested from ORCID Public Data File

    Arash Moradzadeh in OpenAIRE
    Behnam Mohammadi-Ivatloo; Mehdi Abapour; +3 Authors

    Abstract In recent years, energy saving has attracted the attention of researchers due to environment, energy, and reliability issues. Energy saving due to these advantages is one of the major steps toward sustainable cities and society. In this regard, the low-voltage section of the distribution system, including buildings and public lighting systems (PLSs), has great energy-saving potential. Accordingly, the present work reviews the potential of different energy-saving options and their environmental impact on buildings of different sectors and PLSs. In addition to direct energy-saving options such as using renewable energy sources and energy-efficient luminaries, available indirect options such as transactive energy, using energy storage systems and demand response programs are reviewed. For both the building and PLS sectors, available control strategies and technologies and related energy and emission saving potential are discussed. The detailed highlights of the previous works associated with the location of each research or experimental study are given in this review study. Finally, the key findings regarding the gap in the literature of the energy saving topic are discussed. This study is influential for policy-makers to take effective actions for energy saving through existing approaches and technologies, and is beneficial for researchers of the energy saving topic.

    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Cities a...arrow_drop_down
    image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
    Sustainable Cities and Society
    Article . 2021 . Peer-reviewed
    License: Elsevier TDM
    Data sources: Crossref
    addClaim
    52
    citations52
    popularityTop 1%
    influenceTop 10%
    impulseTop 1%
    BIP!Powered by BIP!
    more_vert
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Sustainable Cities a...arrow_drop_down
      image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
      Sustainable Cities and Society
      Article . 2021 . Peer-reviewed
      License: Elsevier TDM
      Data sources: Crossref
      addClaim
Powered by OpenAIRE graph