- home
- Advanced Search
- Energy Research
- 2016-2025
- IR
- Energy Research
- 2016-2025
- IR
description Publicationkeyboard_double_arrow_right Article , Other literature type 2023Publisher:MDPI AG Authors:
Apostolos Pesyridis; Muhammad Suleman Asif;Apostolos Pesyridis
Apostolos Pesyridis in OpenAIRE
Sadegh Mehranfar; Sadegh Mehranfar
Sadegh Mehranfar in OpenAIRE
Amin Mahmoudzadeh Andwari; +2 AuthorsAmin Mahmoudzadeh Andwari
Amin Mahmoudzadeh Andwari in OpenAIRE
Apostolos Pesyridis; Muhammad Suleman Asif;Apostolos Pesyridis
Apostolos Pesyridis in OpenAIRE
Sadegh Mehranfar; Sadegh Mehranfar
Sadegh Mehranfar in OpenAIRE
Amin Mahmoudzadeh Andwari; Amin Mahmoudzadeh Andwari
Amin Mahmoudzadeh Andwari in OpenAIRE
Ayat Gharehghani; Thanos Megaritis;Ayat Gharehghani
Ayat Gharehghani in OpenAIREdoi: 10.3390/en16114374
Over the past few years, fuel prices have increased dramatically, and emissions regulations have become stricter in maritime applications. In order to take these factors into consideration, improvements in fuel consumption have become a mandatory factor and a main task of research and development departments in this area. Internal combustion engines (ICEs) can exploit only about 15–40% of chemical energy to produce work effectively, while most of the fuel energy is wasted through exhaust gases and coolant. Although there is a significant amount of wasted energy in thermal processes, the quality of that energy is low owing to its low temperature and provides limited potential for power generation consequently. Waste heat recovery (WHR) systems take advantage of the available waste heat for producing power by utilizing heat energy lost to the surroundings at no additional fuel costs. Among all available waste heat sources in the engine, exhaust gas is the most potent candidate for WHR due to its high level of exergy. Regarding WHR technologies, the well-known Rankine cycles are considered the most promising candidate for improving ICE thermal efficiency. This study is carried out for a six-cylinder marine diesel engine model operating with a WHR organic Rankine cycle (ORC) model that utilizes engine exhaust energy as input. Using expander inlet conditions in the ORC model, preliminary turbine design characteristics are calculated. For this mean-line model, a MATLAB code has been developed. In off-design expander analysis, performance maps are created for different speed and pressure ratios. Results are produced by integrating the polynomial correlations between all of these parameters into the ORC model. ORC efficiency varies in design and off-design conditions which are due to changes in expander input conditions and, consequently, net power output. In this study, ORC efficiency varies from a minimum of 6% to a maximum of 12.7%. ORC efficiency performance is also affected by certain variables such as the coolant flow rate, heat exchanger’s performance etc. It is calculated that with the increase of coolant flow rate, ORC efficiency increases due to the higher turbine work output that is made possible, and the condensing pressure decreases. It is calculated that ORC can improve engine Brake Specific Fuel Consumption (BSFC) from a minimum of 2.9% to a maximum of 5.1%, corresponding to different engine operating points. Thus, decreasing overall fuel consumption shows a positive effect on engine performance. It can also increase engine power output by up to 5.42% if so required for applications where this may be deemed necessary and where an appropriate mechanical connection is made between the engine shaft and the expander shaft. The ORC analysis uses a bespoke expander design methodology and couples it to an ORC design architecture method to provide an important methodology for high-efficiency marine diesel engine systems that can extend well beyond the marine sector and into the broader ORC WHR field and are applicable to many industries (as detailed in the Introduction section of this paper).
Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4374/pdfData sources: Multidisciplinary Digital Publishing InstituteBrunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26758Data sources: Bielefeld Academic Search Engine (BASE)University of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 11 citations 11 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2023License: CC BYFull-Text: http://www.mdpi.com/1996-1073/16/11/4374/pdfData sources: Multidisciplinary Digital Publishing InstituteBrunel University London: Brunel University Research Archive (BURA)Article . 2023License: CC BYFull-Text: https://bura.brunel.ac.uk/handle/2438/26758Data sources: Bielefeld Academic Search Engine (BASE)University of Oulu Repository - JultikaArticle . 2023Data sources: University of Oulu Repository - JultikaBrunel University Research ArchiveArticle . 2023License: CC BYData sources: Brunel University Research Archiveadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Authors:
Bahram Ghorbani; Bahram Ghorbani
Bahram Ghorbani in OpenAIRE
Mehdi Mehrpooya; Mohammad-Hossein Hamedi; Kimiya Borzoo Mahyari;Mehdi Mehrpooya
Mehdi Mehrpooya in OpenAIREAbstract In order to solve the water and energy crisis problem, the thermal water desalination and parabolic trough solar collectors are used at the cogeneration plants. In this paper, an integrated structure for cogeneration of fresh water and power has been developed using a multi-stage thermal water desalination system and organic Rankine cycle. In order to supply the input heat, an integrated structure of parabolic trough solar collectors, and to supply the condenser cooling of organic Rankine cycle, the re-gasification operations have been used. This integrated structure is capable of fresh water generation of 3628 kgmol/h and electrical power of 459.9 MW. In this integrated structure, the efficiency of the organic Rankine cycle power plant and gain output ratio of the multi effect desalination system is 12.47% and 2.918, respectively. Exergy analysis has been used to examine the second law of thermodynamics and the quality of the integrated structure. The total exergy efficiency of the integrated structure is 87.11%, and also, the highest share of equipment exergy destruction is related to the heat exchangers and collectors by 50.23% and 38.18%, respectively. In order to simulate the dynamics of the integrated structure, according to the input climatic information of the studied location in Tehran, Iran. Furthermore, decisions are made upon the sensitivity analysis on economic important indicators within an integrated structure.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.111 citations 111 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Sheesh Ram Ola;
Amit Saraswat; Amit Saraswat
Amit Saraswat in OpenAIRE
Sunil Kumar Goyal; S. K. Jhajharia; +4 AuthorsSunil Kumar Goyal
Sunil Kumar Goyal in OpenAIRESheesh Ram Ola;
Amit Saraswat; Amit Saraswat
Amit Saraswat in OpenAIRE
Sunil Kumar Goyal; S. K. Jhajharia;Sunil Kumar Goyal
Sunil Kumar Goyal in OpenAIRE
Baseem Khan; Baseem Khan
Baseem Khan in OpenAIRE
Om Prakash Mahela; Om Prakash Mahela
Om Prakash Mahela in OpenAIRE
Hassan Haes Alhelou; Hassan Haes Alhelou
Hassan Haes Alhelou in OpenAIRE
Pierluigi Siano; Pierluigi Siano
Pierluigi Siano in OpenAIREdoi: 10.3390/app10041516
handle: 11386/4757678
As renewable energy (RE) penetration has a continuously increasing trend, the protection of RE integrated power systems is a critical issue. Recently, power networks developed for grid integration of solar energy (SE) have been designed with the help of multi-tapped lines to integrate small- and medium-sized SE plants and simultaneously supplying power to the loads. These tapped lines create protection challenges. This paper introduces an algorithm for the recognition of faults in the grid to which a solar photovoltaic (PV) system is integrated. A fault index (FI) was introduced to identify faults. This FI was calculated by multiplying the Wigner distribution (WD) index and Alienation (ALN) index. The WD-index was based on the energy density of the current signal evaluated using Wigner distribution function. The ALN-index was evaluated using sample-based alienation coefficients of the current signal. The performance of the algorithm was validated for various scenarios with different fault types at various locations, different fault incident angles, fault impedances, sampling frequencies, hybrid line consisting of overhead (OH) line and underground (UG) cable sections, different types of transformer windings and the presence of noise. Two phase faults with and without the involvement of ground were differentiated using the ground fault index based on the zero sequence current. This study was performed on the IEEE-13 nodes test network to which a solar PV plant with a capacity of 1 MW was integrated. The performance of the algorithm was also tested on the western part of utility grid in the Rajasthan State in India where solar PV energy integration is high. The performance of the algorithm was effectively established by comparing it with the discrete Wavelet transform (DWT), Wavelet packet transform (WPT) and Stockwell transform-based methods.
Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/4/1516/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2020Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 39 citations 39 popularity Top 10% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Applied Sciences arrow_drop_down Applied SciencesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/2076-3417/10/4/1516/pdfData sources: Multidisciplinary Digital Publishing InstituteArchivio della Ricerca - Università di SalernoArticle . 2020Data sources: Archivio della Ricerca - Università di Salernoadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:MDPI AG Authors: Ehsan Rasoulinezhad;
Farhad Taghizadeh-Hesary; Farhad Taghizadeh-Hesary
Farhad Taghizadeh-Hesary in OpenAIRE
Farzad Taghizadeh-Hesary; Farzad Taghizadeh-Hesary
Farzad Taghizadeh-Hesary in OpenAIREdoi: 10.3390/en13092255
It is widely discussed that GDP growth has a vague impact on environmental pollution due to carbon dioxide emissions from fossil fuels consumed in production, transportation, and power generation. The main purpose of this study is to investigate the relationships between economic growth, fossil fuel consumption, mortality (from cardiovascular disease (CVD), diabetes mellitus (DM), cancer, and chronic respiratory disease (CRD), and environmental pollution since environmental pollution can be a reason for societal mortality rate increases. This study uses the generalized method of moments (GMM) estimation technique for the Commonwealth of Independent States (CIS) members for the period from 1993–2018. The major results revealed that the highest variability of mortality could be explained by CO2 variability. Regarding fossil fuel consumption, the estimation proved that this variable positively affects mortality from CVD, DM, cancer, and CRD. Additionally, any improvements in the human development index (HDI) have a negative effect on mortality increases from CVD, DM, cancer, and CRD in the CIS region. It is recommended that the CIS members implement different policies to improve energy transitions, indicating movement from fossil fuel energy sources to renewable sources. Moreover, we recommend the CIS members enhance various policies for easy access to electricity from green sources and increase the renewable supply through improved technologies, sustainable economic growth, and increase the use of green sources in daily social life.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2255/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 86 citations 86 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/9/2255/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Springer Science and Business Media LLC Authors:
Ali Hashemi; Ali Hashemi
Ali Hashemi in OpenAIRE
Farshid Pajoum Shariati; Elnaz Sohani;Farshid Pajoum Shariati
Farshid Pajoum Shariati in OpenAIRE
Soroush Azizi; +2 AuthorsSoroush Azizi
Soroush Azizi in OpenAIRE
Ali Hashemi; Ali Hashemi
Ali Hashemi in OpenAIRE
Farshid Pajoum Shariati; Elnaz Sohani;Farshid Pajoum Shariati
Farshid Pajoum Shariati in OpenAIRE
Soroush Azizi; Seyedeh Zahra Hosseinifar; Hossein Delavari Amrei;Soroush Azizi
Soroush Azizi in OpenAIRECarbon dioxide emission, which acts as one of the major agents of greenhouse gases (GHG), has significant effects on global warming. Nowadays, there is a considerable global tendency toward decreasing the amount of GHG emissions to the atmosphere. In the present study, a simulated power plant flue gas (Be’sat, Power Plant, Tehran) with a constant injection rate of 21.41 cm3 s−1, including 10% CO2, 7% O2 and 83% N2 , was injected to the Synechococcus elongatus culture under two different light–dark (L/D) cycles: 24-0 and 16-8. Additionally, the biomass productivity and the CO2 biofixation rate by microorganisms were investigated. The highest biomass productivities were recorded as 0.68 and 0.52 g L−1 d−1 for 24-0 and 16-8 L/D cycles, respectively. Furthermore, the maximum rate of the CO2 biofixation was 1.26 g L−1 d−1 for the 24-0 L/D cycle and 0.98 g L−1 d−1 for the 16-8 L/D cycle during the cultivation.
Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.17 citations 17 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Clean Technologies a... arrow_drop_down Clean Technologies and Environmental PolicyArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2017Publisher:Informa UK Limited Authors:
Alireza Bazargan; Sarah L. Rough;Alireza Bazargan
Alireza Bazargan in OpenAIRE
Gordon McKay; Gordon McKay
Gordon McKay in OpenAIREpmid: 28399707
Palm kernel shell biochars (PKSB) ejected as residues from a gasifier have been used for solid fuel briquette production. With this approach, palm kernel shells can be used for energy production twice: first, by producing rich syngas during gasification; second, by compacting the leftover residues from gasification into high calorific value briquettes. Herein, the process parameters for the manufacture of PKSB biomass briquettes via compaction are optimized. Two possible optimum process scenarios are considered. In the first, the compaction speed is increased from 0.5 to 10 mm/s, the compaction pressure is decreased from 80 Pa to 40 MPa, the retention time is reduced from 10 s to zero, and the starch binder content of the briquette is halved from 0.1 to 0.05 kg/kg. With these adjustments, the briquette production rate increases by more than 20-fold; hence capital and operational costs can be reduced and the service life of compaction equipment can be increased. The resulting product satisfactorily passes tensile (compressive) crushing strength and impact resistance tests. The second scenario involves reducing the starch weight content to 0.03 kg/kg, while reducing the compaction pressure to a value no lower than 60 MPa. Overall, in both cases, the PKSB biomass briquettes show excellent potential as a solid fuel with calorific values on par with good-quality coal.CHNS: carbon, hydrogen, nitrogen, sulfur; FFB: fresh fruit bunch(es); HHV: higher heating value [J/kg]; LHV: lower heating value [J/kg]; PKS: palm kernel shell(s); PKSB: palm kernel shell biochar(s); POME: palm oil mill effluent; RDF: refuse-derived fuel; TGA: thermogravimetric analysis.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.12 citations 12 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Inderscience Publishers Authors: R. Shabani;
Ali Ghannadzadeh; Ali Ghannadzadeh
Ali Ghannadzadeh in OpenAIRE
H. Ale Ebrahim; H. Ale Ebrahim
H. Ale Ebrahim in OpenAIREThe environmental impacts of the ammonia production process are because of the discharge of harmful chemicals as well as the high energy demand. One way to control its environmental impacts in the electricity transition phase, is the natural gas/biomass-based scenarios. This life cycle assessment (LCA) study, which has used ReCiPe and cumulative exergy demand (CExD), proves that natural gas is not right option for this specific case because the natural gas-based scenarios have more burdens than the residual fuel oil-based scenarios especially regarding fossil depletion (0.72%), human toxicity (14%), freshwater ecotoxicity (23%), particulate matter formation (33%), marine ecotoxicity (37%), and terrestrial acidification (40%). Moreover, this study shows that it is possible to reduce the environmental impacts without retrofitting the heart of process technology using the biomass-based scenarios. This paves the way for a sustainable ammonia process under the energy transition scenarios where retrofitting the process heart is not desired.
International Journa... arrow_drop_down International Journal of ExergyArticle . 2020Data sources: Maastricht University | MUMC+ Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.4 citations 4 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert International Journa... arrow_drop_down International Journal of ExergyArticle . 2020Data sources: Maastricht University | MUMC+ Research Informationadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Elsevier BV Funded by:RCN | Preventing loss of near-w...RCN| Preventing loss of near-well permeability in CO2 injection wellsAuthors:
Mohammad Masoudi; Anja Sundal; Saeed Parvin;Mohammad Masoudi
Mohammad Masoudi in OpenAIRE
Rohaldin Miri; +1 AuthorsRohaldin Miri
Rohaldin Miri in OpenAIRE
Mohammad Masoudi; Anja Sundal; Saeed Parvin;Mohammad Masoudi
Mohammad Masoudi in OpenAIRE
Rohaldin Miri; Rohaldin Miri;Rohaldin Miri
Rohaldin Miri in OpenAIREhandle: 10852/81411
Abstract Carbon capture and storage (CCS) would contribute considerably towards climate change mitigation, if it would be implemented on a very large scale; at many storage sites with substantial injection rates. Achieving high injection rates in deep saline aquifers requires a detailed assessment of injectivity performance and evaluation of the processes that alter the permeability of the near-well region. One of the most common forms of the injectivity loss in the context of CO2 storage in saline aquifers is salt precipitation driven by the evaporation of brine into the relatively dry injected CO2 stream. We present a novel compositional transport formulation based on overall-composition variables which models salt as a separate solid phase which could potentially form through two essentially different ways, i.e., kinetic or equilibrium. To model formation drying-out and subsequent halite-precipitation, an accurate and reliable fluid model ePC-SAFT, which can effectively account for ionic effects, is applied. In addition, a volume balance approach (i.e., depending on how far the salt saturation is from the solubility limit) is implemented to estimate solid saturation in a simulation cell. The resulting simulator is benchmarked against several well-known examples, with analytical solutions demonstrating the ability of the code to cover a variety of physical mechanisms. Finally, injection of dry CO2 into a brine-saturated core-scale domain is simulated and sensitivity analyses over various parameters are performed. We show that the new model is capable to quantitatively represent the physics of salt precipitation (for example salt self-enhancing) under different reservoir conditions.
Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81411Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen hybrid 36 citations 36 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Universitet i Oslo: ... arrow_drop_down Universitet i Oslo: Digitale utgivelser ved UiO (DUO)Article . 2020License: CC BYFull-Text: http://hdl.handle.net/10852/81411Data sources: Bielefeld Academic Search Engine (BASE)International Journal of Greenhouse Gas ControlArticle . 2020 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2020Publisher:Springer Science and Business Media LLC Authors: Rana Tajdid Khajeh;
Soheil Aber; Katayoon Nofouzi;Soheil Aber
Soheil Aber in OpenAIRE
Sirous Ebrahimi; Sirous Ebrahimi
Sirous Ebrahimi in OpenAIREMicrobial fuel cell (MFC) is a green technology that converts the stored chemical energy of organic matter to electricity; therefore, it can be used for wastewater purification and energy production simultaneously. In this study, three kinds of dairy products, including milk, cheese water, and yogurt water, were mixed with Acid orange 7 (AO7) as the model wastewater and used as the anolyte of an MFC. The capability of the system in energy production and dye removal was also investigated. The FESEM images were used to investigate the biofilms attachment to the anodes. Moreover, the polarization curves, electrochemical impedance spectroscopy, cyclic voltammetry (CV), voltage-time profiles, and coulombic efficiency were used to evaluate the electrochemical activity of the MFCs. Based on the CV results, the biofilm formation significantly improved the electrochemical activity of the electrodes. Maximum power density, voltage, and coulombic efficiency were obtained as 44.05 mW.m-2, 332.4 mV, and 1.76%, respectively, for cheese water + AO7 anolyte, but the milk + AO7 MFC produced a stable voltage for a long time and its performance was similar to the cheese water + AO7 anolyte. Maximum COD removal and decolorization efficiencies were obtained equal to 84.57 and 92.18% for yogurt water + AO7 and cheese water + AO7 anolytes, respectively.
Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.20 citations 20 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Environmental Scienc... arrow_drop_down Environmental Science and Pollution ResearchArticle . 2020 . Peer-reviewedLicense: Springer TDMData sources: CrossrefUniSA Research Outputs RepositoryArticle . 2020 . Peer-reviewedData sources: UniSA Research Outputs Repositoryadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2021Publisher:Elsevier BV Authors:
Madjid Soltani; Pooya Farzanehkhameneh;Madjid Soltani
Madjid Soltani in OpenAIRE
Farshad Moradi Kashkooli; Farshad Moradi Kashkooli; +2 AuthorsFarshad Moradi Kashkooli
Farshad Moradi Kashkooli in OpenAIRE
Madjid Soltani; Pooya Farzanehkhameneh;Madjid Soltani
Madjid Soltani in OpenAIRE
Farshad Moradi Kashkooli; Farshad Moradi Kashkooli; Jatin Nathwani;Farshad Moradi Kashkooli
Farshad Moradi Kashkooli in OpenAIRE
Armughan Al-Haq; Armughan Al-Haq
Armughan Al-Haq in OpenAIREAbstract One significant obstacle to the adoption of geothermal heat pump (GHP) technology is the installation costs of geothermal heat exchangers (GHE). Cost reduction through optimization of system parameter offers the potential for increased applications. In the current work, five major parameters are considered: length, radius, well numbers, the flow discharge inside the pipe, and the pipe's external radius for optimization using a genetic algorithm (GA) for a residential building in hot climatic conditions. In addition, system optimization is critical in determining values of design parameters for assessing the impact different circulating fluids on the energy consumption of GHP. A ten-year simulation is undertaken to evaluate the capacity of various circulating fluids and their effects on energy consumption reduction. The simulation shows a significant decrease in energy consumption based on varying levels of Ethylene glycol, Methanol, Potassium acetate, Sodium chloride, Freezium™ compared to pure Water in the GHP. The COP of the GHP system is also calculated with different circulating fluids. In addition, the circulating fluid with the highest performance loss during ten years of operation is identified. Based on the results, Ethylene glycol is selected as the preferred solution for use in the GHP. In the present study, we have also established the optimum configuration of GHEs according to a reliable evolutionary algorithm for investigating the effect of various circulating fluids on the system's energy consumption.
Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.25 citations 25 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energy Conversion an... arrow_drop_down Energy Conversion and ManagementArticle . 2021 . Peer-reviewedLicense: Elsevier TDMData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
