- home
- Advanced Search
- Energy Research
- AU
- FR
- IT
- University of Queensland
- Energy Research
- AU
- FR
- IT
- University of Queensland
Research data keyboard_double_arrow_right Dataset 2023Embargo end date: 09 Mar 2023Publisher:Dryad Authors:Wolfe, Kennedy David;
Desbiens, Amelia; Mumby, Peter;Wolfe, Kennedy David
Wolfe, Kennedy David in OpenAIREPatterns of movement of marine species can reflect strategies of reproduction and dispersal, species’ interactions, trophodynamics, and susceptibility to change, and thus critically inform how we manage populations and ecosystems. On coral reefs, the density and diversity of metazoan taxa is greatest in dead coral and rubble, which is suggested to fuel food webs from the bottom-up. Yet, biomass and secondary productivity in rubble is predominantly available in some of the smallest individuals, limiting how accessible this energy is to higher trophic levels. We address the bioavailability of motile coral reef cryptofauna based on small-scale patterns of emigration in rubble. We deployed modified RUbble Biodiversity Samplers (RUBS) and emergence traps in a shallow rubble patch at Heron Island, Great Barrier Reef, to detect community-level differences in the directional influx of motile cryptofauna under five habitat accessibility regimes. The mean density (0.13–4.5 ind.cm-3) and biomass (0.14–5.2 mg.cm-3) of cryptofauna were high and varied depending on microhabitat accessibility. Emergent zooplankton represented a distinct community (dominated by the Appendicularia and Calanoida) with the lowest density and biomass, indicating constraints on nocturnal resource availability. Mean cryptofauna density and biomass were greatest when interstitial access within rubble was blocked, driven by the rapid proliferation of small harpacticoid copepods from the rubble surface, leading to trophic simplification. Individuals with high biomass (e.g., decapods, gobies, and echinoderms) were greatest when interstitial access within rubble was unrestricted. Treatments with a closed rubble surface did not differ from those completely open, suggesting that top-down predation does not diminish rubble-derived resources. Our results show that conspecific cues and species’ interactions (e.g., competition and predation) within rubble are most critical in shaping ecological outcomes within the cryptobiome. These findings have implications for prey accessibility through trophic and community size structuring in rubble, which may become increasingly relevant as benthic reef complexity shifts in the Anthropocene. We address the bioavailability of coral reef cryptofauna in rubble based on small-scale patterns of emigration. We adapted the accessibility of Rubble Biodiversity Samplers (RUBS), models used to standardise biodiversity sampling in rubble (Wolfe and Mumby 2020), to explore the local movement patterns of rubble-dwelling fauna, with inference to predation processes within and beyond the cryptobenthos. Five treatments were developed to detect community-level differences in the directional influx of motile cryptofauna under various habitat accessibility regimes. Four of these treatments were developed by modifying accessibility into RUBS (https://www.thingiverse.com/thing:4176644/files) to understand limitations on the directional influx and movement of cryptofauna within coral rubble patches using four treatments; (1) open (completely accessible), (2) interstitial access (top closed), (3) surficial access (sides and bottom closed), and (4) raised (above rubble substratum). The fifth treatment involved a series of emergence plankton traps, designed to target demersal cryptofauna that vertically migrate from within the rubble benthos at night, given emergent zooplankton biomass and diversity are greatest at night. Fieldwork was conducted over several weeks (11th September to 5th October 2021) in a shallow (~3–5 m depth) reef slope site on the southern margin of Heron Island (-23˚26.845’ S, 151˚54.732’ E), Great Barrier Reef, Australia (Fig. 1). All collections were conducted under the Great Barrier Reef Marine Park Authority permit G20/44613.1.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
visibility 4visibility views 4 download downloads 1 Powered bymore_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5061/dryad.0k6djhb4k&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2016 AustraliaPublisher:Wiley Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP130101714Authors: Mahnaz Dadkhah;Mark J. Biggs;
Mark J. Biggs;Mark J. Biggs
Mark J. Biggs in OpenAIRECameron J. Shearer;
+3 AuthorsCameron J. Shearer
Cameron J. Shearer in OpenAIREMahnaz Dadkhah;Mark J. Biggs;
Mark J. Biggs;Mark J. Biggs
Mark J. Biggs in OpenAIRECameron J. Shearer;
Cameron J. Shearer
Cameron J. Shearer in OpenAIREJoseph G. Shapter;
Munkhbayar Batmunkh; Munkhbayar Batmunkh;Joseph G. Shapter
Joseph G. Shapter in OpenAIREhandle: 2440/102862
AbstractHigh‐performance dye‐sensitized solar cell (DSSC) devices rely on photoanodes that possess excellent light‐harvesting capabilities and high surface areas for sufficient dye adsorption. In this work, morphologically controlled SnO2 microstructures were synthesized and used as an efficient light‐backscattering layer on top of a nanocrystalline TiO2 layer to prepare a double‐layered photoanode. By optimizing the thickness of both the TiO2 bottom layer and the SnO2 top layer, a high power conversion efficiency (PCE) of 7.8 % was achieved, an enhancement of approximately 38 % in the efficiency compared with that of a nanocrystalline TiO2‐only photoanode (5.6 %). We attribute this efficiency improvement to the superior light‐backscattering capability of the SnO2 microstructures.
Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routeshybrid 10 citations 10 popularity Average influence Average impulse Top 10% Powered by BIP!
more_vert Energy Technology arrow_drop_down Energy TechnologyArticle . 2016 . Peer-reviewedLicense: Wiley Online Library User AgreementData sources: CrossrefThe University of Adelaide: Digital LibraryArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2016Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1002/ente.201600008&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2020 AustraliaPublisher:Elsevier BV Funded by:ARC | Discovery Projects - Gran...ARC| Discovery Projects - Grant ID: DP160101436Authors:O. Orozovic;
O. Orozovic
O. Orozovic in OpenAIREA. Lavrinec;
Y. Alkassar;A. Lavrinec
A. Lavrinec in OpenAIREJ. Chen;
+3 AuthorsO. Orozovic;
O. Orozovic
O. Orozovic in OpenAIREA. Lavrinec;
Y. Alkassar;A. Lavrinec
A. Lavrinec in OpenAIREJ. Chen;
K. Williams;M.G. Jones;
G.E. Klinzing;M.G. Jones
M.G. Jones in OpenAIREhandle: 1959.13/1420846
The many advantages of slug flow pneumatic conveying are outweighed by the lack of understanding of the flow mechanisms. For horizontal slug flow, the unique feature is the stationary layer of material found between the travelling slugs, which was recently shown to be characterised by two constants. This paper looks to utilise the vast data available in the literature, which is representative of the entire mode of flow, and relates the stationary layer and slug velocity to predict the two constants from only these inputs. It was found that, even for the vast range of materials and systems considered, slug flow encompasses a narrow bound of the two constants. Furthermore, an empirical approach that was developed to relate the layer fraction and particle velocity was found to provide good agreement to measurements and may be of use in other investigations that require an additional equation for modelling.
Powder Technology arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Powder Technology arrow_drop_down The University of Queensland: UQ eSpaceArticle . 2020Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.powtec.2020.01.080&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2012 AustraliaPublisher:Public Library of Science (PLoS) Authors:Mauricio Rodriguez-Lanetty;
Paulina Kaniewska;Mauricio Rodriguez-Lanetty
Mauricio Rodriguez-Lanetty in OpenAIREPaul R. Campbell;
Paul R. Campbell
Paul R. Campbell in OpenAIREDavid I. Kline;
+5 AuthorsDavid I. Kline
David I. Kline in OpenAIREMauricio Rodriguez-Lanetty;
Paulina Kaniewska;Mauricio Rodriguez-Lanetty
Mauricio Rodriguez-Lanetty in OpenAIREPaul R. Campbell;
Paul R. Campbell
Paul R. Campbell in OpenAIREDavid I. Kline;
David J. Miller;David I. Kline
David I. Kline in OpenAIRESophie Dove;
Sophie Dove;Sophie Dove
Sophie Dove in OpenAIREOve Hoegh-Guldberg;
Ove Hoegh-Guldberg;Ove Hoegh-Guldberg
Ove Hoegh-Guldberg in OpenAIREAs atmospheric levels of CO(2) increase, reef-building corals are under greater stress from both increased sea surface temperatures and declining sea water pH. To date, most studies have focused on either coral bleaching due to warming oceans or declining calcification due to decreasing oceanic carbonate ion concentrations. Here, through the use of physiology measurements and cDNA microarrays, we show that changes in pH and ocean chemistry consistent with two scenarios put forward by the Intergovernmental Panel on Climate Change (IPCC) drive major changes in gene expression, respiration, photosynthesis and symbiosis of the coral, Acropora millepora, before affects on biomineralisation are apparent at the phenotype level. Under high CO(2) conditions corals at the phenotype level lost over half their Symbiodinium populations, and had a decrease in both photosynthesis and respiration. Changes in gene expression were consistent with metabolic suppression, an increase in oxidative stress, apoptosis and symbiont loss. Other expression patterns demonstrate upregulation of membrane transporters, as well as the regulation of genes involved in membrane cytoskeletal interactions and cytoskeletal remodeling. These widespread changes in gene expression emphasize the need to expand future studies of ocean acidification to include a wider spectrum of cellular processes, many of which may occur before impacts on calcification.
James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0034659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen gold 223 citations 223 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert James Cook Universit... arrow_drop_down James Cook University, Australia: ResearchOnline@JCUArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2012Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1371/journal.pone.0034659&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euResearch data keyboard_double_arrow_right Dataset 2021 NetherlandsPublisher:Zenodo Authors:Xu, Liang;
Xu, Liang
Xu, Liang in OpenAIRESaatchi, Sassan S.;
Yang, Yan; Yu, Yifan; +15 AuthorsSaatchi, Sassan S.
Saatchi, Sassan S. in OpenAIREXu, Liang;
Xu, Liang
Xu, Liang in OpenAIRESaatchi, Sassan S.;
Yang, Yan; Yu, Yifan; Pongratz, Julia; Bloom, A. Anthony; Bowman, Kevin; Worden, John; Liu, Junjie; Yin, Yi; Domke, Grant; McRoberts, Ronald E.; Woodall, Christopher;Saatchi, Sassan S.
Saatchi, Sassan S. in OpenAIRENabuurs, Gert-Jan;
de-Miguel, Sergio; Keller, Michael; Nancy, Harris; Maxwell, Sean; Schimel, David;Nabuurs, Gert-Jan
Nabuurs, Gert-Jan in OpenAIRELive woody vegetation is the largest reservoir of biomass carbon with its restoration considered one of the most effective natural climate solutions. However, carbon fluxes associated with terrestrial ecosystems still remain the largest source of uncertainty of the global carbon balance. Here, we develop spatially explicit estimates of global carbon stock changes of live woody biomass from 2000 to 2019 using measurements from ground, air, and space. We show live biomass has removed 4.9-5.5 PgC yr-1 from the atmosphere in this century, offsetting 4.6±0.1 PgC yr-1 of gross emissions from land-use and environmental disturbances and adding substantially (0.23-0.88 PgC yr-1) to the global carbon stocks. Gross emissions and removals in the tropics were four times larger than temperate and boreal ecosystems combined. Although live biomass is responsible for more than 80% of gross terrestrial fluxes, soil, dead organic matter, and lateral transport may play important roles in terrestrial carbon sink.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4161694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.5281/zenodo.4161694&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2015 AustraliaPublisher:IGI Global Authors:Isaias, P.;
Isaias, P.
Isaias, P. in OpenAIREIssa, Tomayess;
Issa, Tomayess
Issa, Tomayess in OpenAIREChang, V.;
Chang, V.
Chang, V. in OpenAIREIssa, Theodora;
Issa, Theodora
Issa, Theodora in OpenAIREhandle: 20.500.11937/32102
Cloud computing and sustainability have become part of a core strategy in organizations globally and locally, since their characteristics assist both businesses and individuals to become unique and exclusive in their work and study. Businesses and individuals should integrate sustainability in their strategy and to include cloud computing technology as a tool for sustainable work, especially in the Information Technology (IT) departments to cut costs and increase efficiencies and productivity. This paper examines European organizations' awareness of cloud computing and sustainability opportunities and risks, via an online survey targeting 56 Information Technology managers in Europe. A Cloud Computing Conceptual model was developed using structural equation modeling (SEM) to evaluate the survey results. The study results confirmed that cloud computing technology opportunities, including sustainability in the organization's strategy, will enhance their job performance and job satisfaction, use and awareness; however, security, privacy and risks are still a major concern.
Journal of Electroni... arrow_drop_down Journal of Electronic Commerce in OrganizationsArticle . 2015 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4018/jeco.2015100101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesgold 8 citations 8 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Journal of Electroni... arrow_drop_down Journal of Electronic Commerce in OrganizationsArticle . 2015 . Peer-reviewedData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2015Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.4018/jeco.2015100101&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2004 AustraliaPublisher:Elsevier BV Authors:Diniz Da Costa, J. C.;
Prasad, P.; Pagan, R. J.;Diniz Da Costa, J. C.
Diniz Da Costa, J. C. in OpenAIREIn this work we assess the pathways for environmental improvement by the coal utilization industry for power generation in Australia. In terms of resources, our findings show that coal is a long term resource of concern as coal reserves are likely to last for the next 500 years or more. However, our analysis indicates that evaporation losses of water in power generation will approach 1000 Gl (gigalitres) per year, equivalent to a consumption of half of the Australian residential population. As Australia is the second driest continent on earth, water consumption by power generators is a resource of immediate concern with regards to sustainability. We also show that coal will continue to play a major role in energy generation in Australia and, hence, there is a need to employ new technologies that can minimize environmental impacts. The major technologies to reduce impacts to air, water and soils are addressed. Of major interest, there is a major potential for developing sequestration processes in Australia, in particular by enhanced coal bed methane (ECBM) recovery at the Bowen Basin, South Sydney Basin and Gunnedah Basin. Having said that, CO2 capture technologies require further development to support any sequestration processes in order to comply with the Kyoto Protocol. Current power generation cycles are thermodynamic limited, with 35-40% efficiencies. To move to a high efficiency cycle, it is required to change technologies of which integrated gasification combined cycle plus fuel cell is the most promising, with efficiencies expected to reach 60-65%. However, risks of moving towards an unproven technology means that power generators are likely to continue to use pulverized fuel technologies, aiming at incremental efficiency improvements (business as usual). As a big picture pathway, power generators are likely to play an increasing role in regional development; in particular EcoParks and reclaiming saline water for treatment as pressures to access fresh water supplies will significantly increase.
Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1205/095758204323065957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess Routesbronze 14 citations 14 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert Process Safety and E... arrow_drop_down Process Safety and Environmental ProtectionArticle . 2004 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefThe University of Queensland: UQ eSpaceArticle . 2004Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1205/095758204323065957&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Journal 2014 France, United Kingdom, Australia, France, United KingdomPublisher:Springer Science and Business Media LLC Authors:Watson, James;
Watson, James
Watson, James in OpenAIREChallinor, Andrew J.;
Fricker, Thomas E.; Ferro, Christopher A. T.;Challinor, Andrew J.
Challinor, Andrew J. in OpenAIREhandle: 10568/76592
Understanding the relationship between climate and crop productivity is a key component of projections of future food production, and hence assessments of food security. Climate models and crop yield datasets have errors, but the effects of these errors on regional scale crop models is not well categorized and understood. In this study we compare the effect of synthetic errors in temperature and precipitation observations on the hindcast skill of a process-based crop model and a statistical crop model. We find that errors in temperature data have a significantly stronger influence on both models than errors in precipitation. We also identify key differences in the responses of these models to different types of input data error. Statistical and process-based model responses differ depending on whether synthetic errors are overestimates or underestimates. We also investigate the impact of crop yield calibration data on model skill for both models, using datasets of yield at three different spatial scales. Whilst important for both models, the statistical model is more strongly influenced by crop yield scale than the process-based crop model. However, our results question the value of high resolution yield data for improving the skill of crop models; we find a focus on accuracy to be more likely to be valuable. For both crop models, and for all three spatial scales of yield calibration data, we found that model skill is greatest where growing area is above 10-15 %. Thus information on area harvested would appear to be a priority for data collection efforts. These results are important for three reasons. First, understanding how different crop models rely on different characteristics of temperature, precipitation and crop yield data allows us to match the model type to the available data. Second, we can prioritize where improvements in climate and crop yield data should be directed. Third, as better climate and crop yield data becomes available, we can predict how crop model skill should improve.
CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76592Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1264-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.euAccess RoutesGreen bronze 16 citations 16 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
visibility 7visibility views 7 download downloads 9 Powered bymore_vert CORE arrow_drop_down CGIAR CGSpace (Consultative Group on International Agricultural Research)Article . 2016Full-Text: https://hdl.handle.net/10568/76592Data sources: Bielefeld Academic Search Engine (BASE)The University of Queensland: UQ eSpaceArticle . 2014Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1007/s10584-014-1264-3&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article , Other literature type 2024Publisher:American Association for the Advancement of Science (AAAS) Authors:Madalina Vlasceanu;
Madalina Vlasceanu
Madalina Vlasceanu in OpenAIREKimberly C. Doell;
Kimberly C. Doell
Kimberly C. Doell in OpenAIREJoseph B. Bak-Coleman;
Joseph B. Bak-Coleman
Joseph B. Bak-Coleman in OpenAIREBoryana Todorova;
+196 AuthorsBoryana Todorova
Boryana Todorova in OpenAIREMadalina Vlasceanu;
Madalina Vlasceanu
Madalina Vlasceanu in OpenAIREKimberly C. Doell;
Kimberly C. Doell
Kimberly C. Doell in OpenAIREJoseph B. Bak-Coleman;
Joseph B. Bak-Coleman
Joseph B. Bak-Coleman in OpenAIREBoryana Todorova;
Michael M. Berkebile-Weinberg;Boryana Todorova
Boryana Todorova in OpenAIRESamantha J. Grayson;
Samantha J. Grayson
Samantha J. Grayson in OpenAIREYash Patel;
Yash Patel
Yash Patel in OpenAIREDanielle Goldwert;
Yifei Pei; Alek Chakroff;Danielle Goldwert
Danielle Goldwert in OpenAIREEkaterina Pronizius;
Karlijn L. van den Broek;Ekaterina Pronizius
Ekaterina Pronizius in OpenAIREDenisa Vlasceanu;
Denisa Vlasceanu
Denisa Vlasceanu in OpenAIRESara Constantino;
Sara Constantino
Sara Constantino in OpenAIREMichael J. Morais;
Michael J. Morais
Michael J. Morais in OpenAIREPhilipp Schumann;
Steve Rathje;Philipp Schumann
Philipp Schumann in OpenAIREKe Fang;
Salvatore Maria Aglioti;
Salvatore Maria Aglioti
Salvatore Maria Aglioti in OpenAIREMark Alfano;
Mark Alfano
Mark Alfano in OpenAIREAndy J. Alvarado-Yepez;
Andy J. Alvarado-Yepez
Andy J. Alvarado-Yepez in OpenAIREAngélica Andersen;
Angélica Andersen
Angélica Andersen in OpenAIREFrederik Anseel;
Frederik Anseel
Frederik Anseel in OpenAIREMatthew A. J. Apps;
Matthew A. J. Apps
Matthew A. J. Apps in OpenAIREChillar Asadli;
Fonda Jane Awuor;Chillar Asadli
Chillar Asadli in OpenAIREFlavio Azevedo;
Piero Basaglia;Flavio Azevedo
Flavio Azevedo in OpenAIREJocelyn J. Bélanger;
Jocelyn J. Bélanger
Jocelyn J. Bélanger in OpenAIRESebastian Berger;
Sebastian Berger
Sebastian Berger in OpenAIREPaul Bertin;
Paul Bertin
Paul Bertin in OpenAIREMichał Białek;
Michał Białek
Michał Białek in OpenAIREOlga Bialobrzeska;
Olga Bialobrzeska
Olga Bialobrzeska in OpenAIREMichelle Blaya-Burgo;
Michelle Blaya-Burgo
Michelle Blaya-Burgo in OpenAIREDaniëlle N. M. Bleize;
Daniëlle N. M. Bleize
Daniëlle N. M. Bleize in OpenAIRESimen Bø;
Simen Bø
Simen Bø in OpenAIRELea Boecker;
Lea Boecker
Lea Boecker in OpenAIREPaulo S. Boggio;
Paulo S. Boggio
Paulo S. Boggio in OpenAIRESylvie Borau;
Sylvie Borau
Sylvie Borau in OpenAIREBjörn Bos;
Björn Bos
Björn Bos in OpenAIREAyoub Bouguettaya;
Ayoub Bouguettaya
Ayoub Bouguettaya in OpenAIREMarkus Brauer;
Markus Brauer
Markus Brauer in OpenAIRECameron Brick;
Cameron Brick
Cameron Brick in OpenAIRETymofii Brik;
Tymofii Brik
Tymofii Brik in OpenAIRERoman Briker;
Roman Briker
Roman Briker in OpenAIRETobias Brosch;
Tobias Brosch
Tobias Brosch in OpenAIREOndrej Buchel;
Ondrej Buchel
Ondrej Buchel in OpenAIREDaniel Buonauro;
Daniel Buonauro
Daniel Buonauro in OpenAIRERadhika Butalia;
Radhika Butalia
Radhika Butalia in OpenAIREHéctor Carvacho;
Héctor Carvacho
Héctor Carvacho in OpenAIRESarah A. E. Chamberlain;
Sarah A. E. Chamberlain
Sarah A. E. Chamberlain in OpenAIREHang-Yee Chan;
Hang-Yee Chan
Hang-Yee Chan in OpenAIREDawn Chow;
Dawn Chow
Dawn Chow in OpenAIREDongil Chung;
Dongil Chung
Dongil Chung in OpenAIRELuca Cian;
Luca Cian
Luca Cian in OpenAIRENoa Cohen-Eick;
Noa Cohen-Eick
Noa Cohen-Eick in OpenAIRELuis Sebastian Contreras-Huerta;
Luis Sebastian Contreras-Huerta
Luis Sebastian Contreras-Huerta in OpenAIREDavide Contu;
Davide Contu
Davide Contu in OpenAIREVladimir Cristea;
Vladimir Cristea
Vladimir Cristea in OpenAIREJo Cutler;
Silvana D'Ottone;Jo Cutler
Jo Cutler in OpenAIREJonas De Keersmaecker;
Jonas De Keersmaecker
Jonas De Keersmaecker in OpenAIRESarah Delcourt;
Sarah Delcourt
Sarah Delcourt in OpenAIRESylvain Delouvée;
Sylvain Delouvée
Sylvain Delouvée in OpenAIREKathi Diel;
Benjamin D. Douglas;Kathi Diel
Kathi Diel in OpenAIREMoritz A. Drupp;
Moritz A. Drupp
Moritz A. Drupp in OpenAIREShreya Dubey;
Shreya Dubey
Shreya Dubey in OpenAIREJānis Ekmanis;
Jānis Ekmanis
Jānis Ekmanis in OpenAIREChristian T. Elbaek;
Christian T. Elbaek
Christian T. Elbaek in OpenAIREMahmoud Elsherif;
Iris M. Engelhard;Mahmoud Elsherif
Mahmoud Elsherif in OpenAIREYannik A. Escher;
Yannik A. Escher
Yannik A. Escher in OpenAIRETom W. Etienne;
Tom W. Etienne
Tom W. Etienne in OpenAIRELaura Farage;
Laura Farage
Laura Farage in OpenAIREAna Rita Farias;
Ana Rita Farias
Ana Rita Farias in OpenAIREStefan Feuerriegel;
Stefan Feuerriegel
Stefan Feuerriegel in OpenAIREAndrej Findor;
Andrej Findor
Andrej Findor in OpenAIRELucia Freira;
Lucia Freira
Lucia Freira in OpenAIREMalte Friese;
Malte Friese
Malte Friese in OpenAIRENeil Philip Gains;
Neil Philip Gains
Neil Philip Gains in OpenAIREAlbina Gallyamova;
Albina Gallyamova
Albina Gallyamova in OpenAIRESandra J. Geiger;
Sandra J. Geiger
Sandra J. Geiger in OpenAIREOliver Genschow;
Oliver Genschow
Oliver Genschow in OpenAIREBiljana Gjoneska;
Theofilos Gkinopoulos;Biljana Gjoneska
Biljana Gjoneska in OpenAIREBeth Goldberg;
Beth Goldberg
Beth Goldberg in OpenAIREAmit Goldenberg;
Amit Goldenberg
Amit Goldenberg in OpenAIRESarah Gradidge;
Sarah Gradidge
Sarah Gradidge in OpenAIRESimone Grassini;
Kurt Gray; Sonja Grelle;Simone Grassini
Simone Grassini in OpenAIRESiobhán M. Griffin;
Siobhán M. Griffin
Siobhán M. Griffin in OpenAIRELusine Grigoryan;
Lusine Grigoryan
Lusine Grigoryan in OpenAIREAni Grigoryan;
Ani Grigoryan
Ani Grigoryan in OpenAIREDmitry Grigoryev;
Dmitry Grigoryev
Dmitry Grigoryev in OpenAIREJune Gruber;
June Gruber
June Gruber in OpenAIREJohnrev Guilaran;
Johnrev Guilaran
Johnrev Guilaran in OpenAIREBritt Hadar;
Britt Hadar
Britt Hadar in OpenAIREUlf J.J. Hahnel;
Ulf J.J. Hahnel
Ulf J.J. Hahnel in OpenAIREEran Halperin;
Eran Halperin
Eran Halperin in OpenAIREAnnelie J. Harvey;
Annelie J. Harvey
Annelie J. Harvey in OpenAIREChristian A. P. Haugestad;
Christian A. P. Haugestad
Christian A. P. Haugestad in OpenAIREAleksandra M. Herman;
Aleksandra M. Herman
Aleksandra M. Herman in OpenAIREHal E. Hershfield;
Hal E. Hershfield
Hal E. Hershfield in OpenAIREToshiyuki Himichi;
Toshiyuki Himichi
Toshiyuki Himichi in OpenAIREDonald W. Hine;
Wilhelm Hofmann;Donald W. Hine
Donald W. Hine in OpenAIRELauren Howe;
Lauren Howe
Lauren Howe in OpenAIREEnma T. Huaman-Chulluncuy;
Enma T. Huaman-Chulluncuy
Enma T. Huaman-Chulluncuy in OpenAIREGuanxiong Huang;
Guanxiong Huang
Guanxiong Huang in OpenAIRETatsunori Ishii;
Tatsunori Ishii
Tatsunori Ishii in OpenAIREAyahito Ito;
Ayahito Ito
Ayahito Ito in OpenAIREFanli Jia;
Fanli Jia
Fanli Jia in OpenAIREJohn T. Jost;
John T. Jost
John T. Jost in OpenAIREVeljko Jovanović;
Veljko Jovanović
Veljko Jovanović in OpenAIREDominika Jurgiel;
Ondřej Kácha;Dominika Jurgiel
Dominika Jurgiel in OpenAIREReeta Kankaanpää;
Reeta Kankaanpää
Reeta Kankaanpää in OpenAIREJaroslaw Kantorowicz;
Jaroslaw Kantorowicz
Jaroslaw Kantorowicz in OpenAIREElena Kantorowicz-Reznichenko;
Keren Kaplan Mintz;Elena Kantorowicz-Reznichenko
Elena Kantorowicz-Reznichenko in OpenAIREIlker Kaya;
Ilker Kaya
Ilker Kaya in OpenAIREOzgur Kaya;
Ozgur Kaya
Ozgur Kaya in OpenAIRENarine Khachatryan;
Narine Khachatryan
Narine Khachatryan in OpenAIREAnna Klas;
Anna Klas
Anna Klas in OpenAIREColin Klein;
Colin Klein
Colin Klein in OpenAIREChristian A. Klöckner;
Lina Koppel;Christian A. Klöckner
Christian A. Klöckner in OpenAIREAlexandra I. Kosachenko;
Alexandra I. Kosachenko
Alexandra I. Kosachenko in OpenAIREEmily J. Kothe;
Ruth Krebs;Emily J. Kothe
Emily J. Kothe in OpenAIREAmy R. Krosch;
Amy R. Krosch
Amy R. Krosch in OpenAIREAndre P.M. Krouwel;
Andre P.M. Krouwel
Andre P.M. Krouwel in OpenAIREYara Kyrychenko;
Yara Kyrychenko
Yara Kyrychenko in OpenAIREMaria Lagomarsino;
Maria Lagomarsino
Maria Lagomarsino in OpenAIREClaus Lamm;
Claus Lamm
Claus Lamm in OpenAIREFlorian Lange;
Florian Lange
Florian Lange in OpenAIREJulia Lee Cunningham;
Julia Lee Cunningham
Julia Lee Cunningham in OpenAIREJeffrey Lees;
Jeffrey Lees
Jeffrey Lees in OpenAIRETak Yan Leung;
Tak Yan Leung
Tak Yan Leung in OpenAIRENeil Levy;
Neil Levy
Neil Levy in OpenAIREPatricia L. Lockwood;
Patricia L. Lockwood
Patricia L. Lockwood in OpenAIREChiara Longoni;
Chiara Longoni
Chiara Longoni in OpenAIREAlberto López Ortega;
Alberto López Ortega
Alberto López Ortega in OpenAIREDavid D. Loschelder;
David D. Loschelder
David D. Loschelder in OpenAIREJackson G. Lu;
Jackson G. Lu
Jackson G. Lu in OpenAIREYu Luo;
Joseph Luomba;Annika E. Lutz;
Annika E. Lutz
Annika E. Lutz in OpenAIREJohann M. Majer;
Johann M. Majer
Johann M. Majer in OpenAIREEzra Markowitz;
Ezra Markowitz
Ezra Markowitz in OpenAIREAbigail A. Marsh;
Abigail A. Marsh
Abigail A. Marsh in OpenAIREKaren Louise Mascarenhas;
Karen Louise Mascarenhas
Karen Louise Mascarenhas in OpenAIREBwambale Mbilingi;
Bwambale Mbilingi
Bwambale Mbilingi in OpenAIREWinfred Mbungu;
Winfred Mbungu
Winfred Mbungu in OpenAIRECillian McHugh;
Cillian McHugh
Cillian McHugh in OpenAIREMarijn H.C. Meijers;
Marijn H.C. Meijers
Marijn H.C. Meijers in OpenAIREHugo Mercier;
Hugo Mercier
Hugo Mercier in OpenAIREFenant Laurent Mhagama;
Fenant Laurent Mhagama
Fenant Laurent Mhagama in OpenAIREKaterina Michalakis;
Katerina Michalakis
Katerina Michalakis in OpenAIRENace Mikus;
Nace Mikus
Nace Mikus in OpenAIRESarah Milliron;
Sarah Milliron
Sarah Milliron in OpenAIREPanagiotis Mitkidis;
Panagiotis Mitkidis
Panagiotis Mitkidis in OpenAIREFredy S. Monge-Rodríguez;
Fredy S. Monge-Rodríguez
Fredy S. Monge-Rodríguez in OpenAIREYouri L. Mora;
Youri L. Mora
Youri L. Mora in OpenAIREDavid Moreau;
David Moreau
David Moreau in OpenAIREKosuke Motoki;
Kosuke Motoki
Kosuke Motoki in OpenAIREManuel Moyano;
Mathilde Mus;Manuel Moyano
Manuel Moyano in OpenAIREJoaquin Navajas;
Joaquin Navajas
Joaquin Navajas in OpenAIRETam Luong Nguyen;
Tam Luong Nguyen
Tam Luong Nguyen in OpenAIREDung Minh Nguyen;
Dung Minh Nguyen
Dung Minh Nguyen in OpenAIRETrieu Nguyen;
Laura Niemi;Trieu Nguyen
Trieu Nguyen in OpenAIRESari R. R. Nijssen;
Sari R. R. Nijssen
Sari R. R. Nijssen in OpenAIREGustav Nilsonne;
Gustav Nilsonne
Gustav Nilsonne in OpenAIREJonas P. Nitschke;
Jonas P. Nitschke
Jonas P. Nitschke in OpenAIRELaila Nockur;
Ritah Okura;Laila Nockur
Laila Nockur in OpenAIRESezin Öner;
Sezin Öner
Sezin Öner in OpenAIREAsil Ali Özdoğru;
Asil Ali Özdoğru
Asil Ali Özdoğru in OpenAIREHelena Palumbo;
Helena Palumbo
Helena Palumbo in OpenAIRECostas Panagopoulos;
Costas Panagopoulos
Costas Panagopoulos in OpenAIREMaria Serena Panasiti;
Maria Serena Panasiti
Maria Serena Panasiti in OpenAIREPhilip Pärnamets;
Philip Pärnamets
Philip Pärnamets in OpenAIREMariola Paruzel-Czachura;
Mariola Paruzel-Czachura
Mariola Paruzel-Czachura in OpenAIREYuri G. Pavlov;
Yuri G. Pavlov
Yuri G. Pavlov in OpenAIRECésar Payán-Gómez;
César Payán-Gómez
César Payán-Gómez in OpenAIREAdam R. Pearson;
Adam R. Pearson
Adam R. Pearson in OpenAIRELeonor Pereira da Costa;
Leonor Pereira da Costa
Leonor Pereira da Costa in OpenAIREHannes M. Petrowsky;
Hannes M. Petrowsky
Hannes M. Petrowsky in OpenAIREStefan Pfattheicher;
Stefan Pfattheicher
Stefan Pfattheicher in OpenAIRENhat Tan Pham;
Nhat Tan Pham
Nhat Tan Pham in OpenAIREVladimir Ponizovskiy;
Clara Pretus;Vladimir Ponizovskiy
Vladimir Ponizovskiy in OpenAIREGabriel G. Rêgo;
Gabriel G. Rêgo
Gabriel G. Rêgo in OpenAIRERitsaart Reimann;
Ritsaart Reimann
Ritsaart Reimann in OpenAIREShawn A. Rhoads;
Shawn A. Rhoads
Shawn A. Rhoads in OpenAIREJulian Riano-Moreno;
Julian Riano-Moreno
Julian Riano-Moreno in OpenAIREdoi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
doi: 10.1126/sciadv.adj5778 , 10.17615/j71a-aj22 , 10.48350/192662 , 10.26181/27048496.v1 , 10.26181/27048496
pmid: 38324680
pmc: PMC10849597
Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions’ effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior—several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people’s initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu36 citations 36 popularity Average influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1126/sciadv.adj5778&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eudescription Publicationkeyboard_double_arrow_right Article 2023 AustraliaPublisher:Elsevier BV Authors: Duarte de Paula Costa, Micheli; Adame, Maria Fernanda; Bryant, Catherine V.;Hill, Jack;
+10 AuthorsHill, Jack
Hill, Jack in OpenAIREDuarte de Paula Costa, Micheli; Adame, Maria Fernanda; Bryant, Catherine V.;Hill, Jack;
Kellaway, Jeffrey J.; Lovelock, Catherine E.; Ola, Anne;Hill, Jack
Hill, Jack in OpenAIRERasheed, Michael A.;
Salinas, Christian; Serrano, Oscar; Waltham, Nathan;Rasheed, Michael A.
Rasheed, Michael A. in OpenAIREYork, Paul H.;
Young, Mary;York, Paul H.
York, Paul H. in OpenAIREMacreadie, Peter;
Macreadie, Peter
Macreadie, Peter in OpenAIREpmid: 36870497
Vegetated coastal ecosystems, in particular mangroves, tidal marshes and seagrasses are highly efficient at sequestering and storing carbon, making them valuable assets for climate change mitigation and adaptation. The state of Queensland, in northeastern Australia, contains almost half of the total area of these blue carbon ecosystems in the country, yet there are few detailed regional or state-wide assessments of their total sedimentary organic carbon (SOC) stocks. We compiled existing SOC data and used boosted regression tree models to evaluate the influence of environmental variables in explaining the variability in SOC stocks, and to produce spatially explicit blue carbon estimates. The final models explained 75 % (for mangroves and tidal marshes) and 65 % (for seagrasses) of the variability in SOC stocks. Total SOC stocks in the state of Queensland were estimated at 569 ± 98 Tg C (173 ± 32 Tg C, 232 ± 50 Tg C, and 164 ± 16 Tg C from mangroves, tidal marshes and seagrasses, respectively). Regional predictions for each of Queensland's eleven Natural Resource Management regions revealed that 60 % of the state's SOC stocks occurred within three regions (Cape York, Torres Strait and Southern Gulf Natural Resource Management regions) due to a combination of high values of SOC stocks and large areas of coastal wetlands. Protected areas in Queensland play an important role in conserving SOC assets in Queensland's coastal wetlands. For example, ~19 Tg C within terrestrial protected areas, ~27 Tg C within marine protected areas and ~ 40 Tg C within areas of matters of State Environmental Significance. Using multi-decadal (1987-2020) mapped distributions of mangroves in Queensland; we found that mangrove area increased by approximately 30,000 ha from 1987 to 2020, which led to temporal fluctuations in mangrove plant and SOC stocks. We estimated that plant stocks decreased from ~45 Tg C in 1987 to ~34.2 Tg C in 2020, while SOC stocks remained relatively constant from ~107.9 Tg C in 1987 to 108.0 Tg C in 2020. Considering the level of current protection, emissions from mangrove deforestation are potentially very low; therefore, representing minor opportunities for mangrove blue carbon projects in the region. Our study provides much needed information on current trends in carbon stocks and their conservation in Queensland's coastal wetlands, while also contributing to guide future management actions, including blue carbon restoration projects.
The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu1 citations 1 popularity Average influence Average impulse Average Powered by BIP!
more_vert The Science of The T... arrow_drop_down The Science of The Total EnvironmentArticle . 2023 . Peer-reviewedLicense: Elsevier TDMData sources: CrossrefUniversity of Wollongong, Australia: Research OnlineArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)James Cook University, Australia: ResearchOnline@JCUArticle . 2023Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.All Research productsarrow_drop_down <script type="text/javascript"> <!-- document.write('<div id="oa_widget"></div>'); document.write('<script type="text/javascript" src="https://beta.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=10.1016/j.scitotenv.2023.162518&type=result"></script>'); --> </script>
For further information contact us at helpdesk@openaire.eu