- home
- Advanced Search
Filters
Clear All- Energy Research
- Open Access
- Embargo
- 15. Life on land
- 8. Economic growth
- 12. Responsible consumption
- IT
- BE
- US
- Energy Research
- Open Access
- Embargo
- 15. Life on land
- 8. Economic growth
- 12. Responsible consumption
- IT
- BE
- US
description Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:The Royal Society Funded by:NSF | LTER: Environmental drive...NSF| LTER: Environmental drivers and ecological consequences of kelp forest dynamics (SBV IV)Authors: Stier, Adrian C.; Essington, Timothy E.; Samhouri, Jameal F.; Siple, Margaret C.; +5 AuthorsStier, Adrian C.; Essington, Timothy E.; Samhouri, Jameal F.; Siple, Margaret C.; Halpern, Benjamin S.; White, Crow; Lynham, John M.; Salomon, Anne K.; Levin, Phillip S.;A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative—depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Mukhtar Ahmed; Claudio O. Stöckle; Roger Nelson; Stewart S. Higgins; Shakeel Ahmad; Muhammad Ali Raza;pmid: 31127159
pmc: PMC6534615
AbstractElevated carbon-dioxide concentration [eCO2] is a key climate change factor affecting plant growth and yield. Conventionally, crop modeling work has evaluated the effect of climatic parameters on crop growth, without considering CO2. It is conjectured that a novel multimodal ensemble approach may improve the accuracy of modelled responses to eCO2. To demonstrate the applicability of a multimodel ensemble of crop models to simulation of eCO2, APSIM, CropSyst, DSSAT, EPIC and STICS were calibrated to observed data for crop phenology, biomass and yield. Significant variability in simulated biomass production was shown among the models particularly at dryland sites (44%) compared to the irrigated site (22%). Increased yield was observed for all models with the highest average yield at dryland site by EPIC (49%) and lowest under irrigated conditions (17%) by APSIM and CropSyst. For the ensemble, maximum yield was 45% for the dryland site and a minimum 22% at the irrigated site. We concluded from our study that process-based crop models have variability in the simulation of crop response to [eCO2] with greater difference under water-stressed conditions. We recommend the use of ensembles to improve accuracy in modeled responses to [eCO2].
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Public Library of Science (PLoS) Antonio Di Franco; Marta Sales; Paolo Guidetti; Fiorenza Micheli; David G. Foley; David G. Foley; Alexandros A. Karamanlidis; Francesco Ferretti; Simone Mariani; Kimberly A. Selkoe; Panagiotis Dendrinos; Andrew Rosenberg; Antonio Pais; Mikel Zabala; Alan M. Friedlander; Kristin Riser; Simonetta Fraschetti; Luisa Mangialajo; Fiona Tomas; Enric Ballesteros; Zafer Kizilkaya; Enrique Macpherson; Enric Sala; Bernat Hereu; Richard M. Starr; Richard M. Starr; Benjamin S. Halpern; Harun Güçlüsoy; Joaquim Garrabou;pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 331 citations 331 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 139visibility views 139 download downloads 129 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017Publisher:Springer Science and Business Media LLC Funded by:ANR | VIRGOANR| VIRGOAuthors: Mathias, Jean-Denis; Anderies, J.M.; Janssen, M.A.;AbstractThe planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.
Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Kimberly E. Baugh; Mikhail Zhizhin; Mikhail Zhizhin; Morgan Bazilian; Feng-Chi Hsu; Tilottama Ghosh; Christopher D. Elvidge;In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets. Keywords: VIIRS, Gas flaring, Nightfire, Nationally determined contributions, UN climate agreement
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:MDPI AG Authors: Koo, Kyung; Patten, Bernard; Madden, Marguerite;doi: 10.3390/f6041208
Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg.) in the Great Smoky Mountains National Park (GSMNP), eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM), to a GIS spatial model, red spruce habitat model (ARIM.HAB). ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.
Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2020Publisher:Copernicus GmbH Giorgia Bagagiolo; Danilo Rabino; Marcella Biddoccu; Guido Nigrelli; Daniele Cat Berro; Luca Mercalli; Federico Spanna; Giorgio Capello; Eugenio Cavallo;<p>Historical weather data represent an extremely precious resource for agro-meteorology for studying evolutionary dynamics and for predictive purposes, to address agronomical and management choices, that have economic, social and environmental effect. The study of climatic variability and its consequences starts from the observation of variations over time and the identification of the causes, on the basis of historical series of meteorological observations. The availability of long-lasting, complete and accurate datasets is a fundamental requirement to predict and react to climate variability. Inter-annual climate changes deeply affect grapevine productive cycle determining direct impact on the onset and duration of phenological stages and, ultimately, on the grape harvest and yield. Indeed, climate variables, such as air temperature and precipitation, affect evapotranspiration rates, plant water requirements, and also the vine physiology. In this respect, the observed increase in the number of warm days poses a threat to grape quality as it creates a situation of imbalance at maturity, with respect to sugar content, acidity and phenolic and aromatic ripeness.</p><p>A study was conducted to investigate the relationships between climate variables and harvest onset dates to assess the responses of grapevine under a global warming scenario. The study was carried out in the &#8220;Monferrato&#8221; area, a rainfed hillslope vine-growing area of NW Italy. In particular, the onset dates of harvest of different local wine grape varieties grown in the Vezzolano Experimental Farm (CNR-IMAMOTER) and in surrounding vineyards (affiliated to the Terre dei Santi Cellars) were recorded from 1962 to 2019 and then related to historical series of climate data by means of regression analysis. The linear regression was performed based on the averages of maximum and minimum daily temperatures and sum of precipitation (1962&#8211;2019) calculated for growing and ripening season, together with a bioclimatic heat index for vineyards, the Huglin index. The climate data were obtained from two data series collected in the Experimental farm by a mechanical weather station (1962-2002) and a second series recorded (2002-2019) by an electro-mechanical station included in Piedmont Regional Agro-meteorological Network. Finally, a third long-term continuous series covering the period from 1962 to 2019, provided by Italian Meteorological Society was considered in the analysis.</p><p>The results of the study highlighted that inter-annual climate variability, with a general positive trend of temperature, significantly affects the ripening of grapes with a progressive anticipation of the harvest onset dates. In particular, all the considered variables excepted precipitation, resulted negatively correlated with the harvest onset date reaching a high level of significance (up to P< 0.001). Best results have been obtained for maximum temperature and Huglin index, especially by using the most complete dataset. The change ratios obtained using datasets including last 15 years were greater (in absolute terms) than results limited to the period 1962-2002, and also correlations have greater level of significance. The results indicated clearly the relationships between the temperature trend and the gradual anticipation of harvest and the importance of having long and continuous historical weather data series available.</p>
IRIS Cnr arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BY NC NDData sources: Publications Open Repository TOrinoItalian Journal of AgrometeorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BY NC NDData sources: Publications Open Repository TOrinoItalian Journal of AgrometeorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Wiley Funded by:UKRI | EcoLowNOx: Auxiliary Comb...UKRI| EcoLowNOx: Auxiliary Combustion System for Efficient Combustion with Low-NOx emissions for Foundation IndustriesMark E. Capron; Jim R. Stewart; Antoine de Ramon N’Yeurt; Michael D. Chambers; Jang K. Kim; Charles Yarish; Anthony T. Jones; Reginald B. Blaylock; Scott C. James; Rae Fuhrman; Martin T. Sherman; Don Piper; Graham Harris; Mohammed A. Hasan;Unless humanity achieves United Nations Sustainable Development Goals (SDGs) by 2030 and restores the relatively stable climate of pre-industrial CO2 levels (as early as 2140), species extinctions, starvation, drought/floods, and violence will exacerbate mass migrations. This paper presents conceptual designs and techno-economic analyses to calculate sustainable limits for growing high-protein seafood and macroalgae-for-biofuel. We review the availability of wet solid waste and outline the mass balance of carbon and plant nutrients passing through a hydrothermal liquefaction process. The paper reviews the availability of dry solid waste and dry biomass for bioenergy with CO2 capture and storage (BECCS) while generating Allam Cycle electricity. Sufficient wet-waste biomass supports quickly building hydrothermal liquefaction facilities. Macroalgae-for-biofuel technology can be developed and straightforwardly implemented on SDG-achieving high protein seafood infrastructure. The analyses indicate a potential for (1) 0.5 billion tonnes/yr of seafood; (2) 20 million barrels/day of biofuel from solid waste; (3) more biocrude oil from macroalgae than current fossil oil; and (4) sequestration of 28 to 38 billion tonnes/yr of bio-CO2. Carbon dioxide removal (CDR) costs are between 25–33% of those for BECCS with pre-2019 technology or the projected cost of air-capture CDR.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4972/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4972/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type , Article 2021Publisher:Iowa State University Authors: Jones, John;handle: 20.500.12876/EzR2QbYz , 20.500.12876/dv6l1kbz
Management decisions concerning phosphorus (P) fertilization affect the profitability of crop production and potential water quality impairment. Soil testing for P provides a useful diagnostic framework to assess P bioavailability that informs management decisions to optimize P use in nutrient management and mitigate environmental impairment. Management factors such as tillage and P fertilization strategy can influence crop yield and the potential for soil and P losses with surface runoff. Investigation into which forms of soil and P losses that do occur from corn-soybean rotations in Iowa systems can inform which methodologies best quantify forms of P that will pose greater effects on water quality and which management decisions minimize losses while maintaining agronomic productivity. This research field calibrated a recently widely-adopted soil P test that uses weak organic acids with corn and soybean yield to identify critical soil-test P concentrations. The weak organic acids test extracted less soil P and performed more poorly than currently routine tests at relating soil-test P to crop yield. A second study was conducted to quantify the effect of P fertilization strategy and tillage on soil and P losses with runoff in a corn-soybean rotation in Northwest Iowa. Corn yield and soil loss were the highest with tillage, the combination of tillage and broadcast P resulted in the highest runoff TP loss, and the dissolved-reactive fraction of the total P loss was much higher with no-till. The combination of chisel-plow/disking and annual subsurface band placement of P fertilizer led to the lowest losses of dissolved-reactive P and total P, while optimizing crop yields. A third study compared multiple methods for measuring soluble P in runoff, and how management factors in Iowa cropping systems affect their performance. The results suggest that assuming only soluble, orthophosphate-P determined by colorimetric method may underestimate soluble P concentration in runoff and losses from crop fields and will be ...
https://dr.lib.iasta... arrow_drop_down Digital Repository @ Iowa State UniversityDoctoral thesis . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityDoctoral thesis . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dr.lib.iasta... arrow_drop_down Digital Repository @ Iowa State UniversityDoctoral thesis . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityDoctoral thesis . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Report , Other literature type 1997Publisher:Office of Scientific and Technical Information (OSTI) Authors: Taylor, F.;doi: 10.2172/477698
The final technical report for this project contains detailed technical results for the various tasks performed in the projects. The project scope was to develop an apparatus and process for second-stage drying of softwoods, such as southern yellow pine, for construction lumber. The focus of the project was on increasing the efficiency of high-temperature drying. The project tasks were: (1) computer simulation refinement and extension of the theory to commercial-sized kilns, (2) detailed heat exchanger equipment design, (3) pilot-scale design and fabrication, (4) experimental evaluation of the pilot-scale system, and (5) preliminary design of a prototype system. The effort on this project has been continuous and productive in gaining a better understanding of the processes involved in the drying of softwoods. 19 refs., 41 figs., 13 tabs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
description Publicationkeyboard_double_arrow_right Other literature type 2022Publisher:The Royal Society Funded by:NSF | LTER: Environmental drive...NSF| LTER: Environmental drivers and ecological consequences of kelp forest dynamics (SBV IV)Authors: Stier, Adrian C.; Essington, Timothy E.; Samhouri, Jameal F.; Siple, Margaret C.; +5 AuthorsStier, Adrian C.; Essington, Timothy E.; Samhouri, Jameal F.; Siple, Margaret C.; Halpern, Benjamin S.; White, Crow; Lynham, John M.; Salomon, Anne K.; Levin, Phillip S.;A major challenge in sustainability science is identifying targets that maximize ecosystem benefits to humanity while minimizing the risk of crossing critical system thresholds. One critical threshold is the biomass at which populations become so depleted that their population growth rates become negative—depensation. Here, we evaluate how the value of monitoring information increases as a natural resource spends more time near the critical threshold. This benefit emerges because higher monitoring precision promotes higher yield and a greater capacity to recover from overharvest. We show that precautionary buffers that trigger increased monitoring precision as resource levels decline may offer a way to minimize monitoring costs and maximize profits. In a world of finite resources, improving our understanding of the trade-off between precision in estimates of population status and the costs of mismanagement will benefit stakeholders that shoulder the burden of these economic and social costs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen 0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2019Publisher:Springer Science and Business Media LLC Mukhtar Ahmed; Claudio O. Stöckle; Roger Nelson; Stewart S. Higgins; Shakeel Ahmad; Muhammad Ali Raza;pmid: 31127159
pmc: PMC6534615
AbstractElevated carbon-dioxide concentration [eCO2] is a key climate change factor affecting plant growth and yield. Conventionally, crop modeling work has evaluated the effect of climatic parameters on crop growth, without considering CO2. It is conjectured that a novel multimodal ensemble approach may improve the accuracy of modelled responses to eCO2. To demonstrate the applicability of a multimodel ensemble of crop models to simulation of eCO2, APSIM, CropSyst, DSSAT, EPIC and STICS were calibrated to observed data for crop phenology, biomass and yield. Significant variability in simulated biomass production was shown among the models particularly at dryland sites (44%) compared to the irrigated site (22%). Increased yield was observed for all models with the highest average yield at dryland site by EPIC (49%) and lowest under irrigated conditions (17%) by APSIM and CropSyst. For the ensemble, maximum yield was 45% for the dryland site and a minimum 22% at the irrigated site. We concluded from our study that process-based crop models have variability in the simulation of crop response to [eCO2] with greater difference under water-stressed conditions. We recommend the use of ensembles to improve accuracy in modeled responses to [eCO2].
https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 51 citations 51 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert https://doi.org/10.1... arrow_drop_down https://doi.org/10.1038/s41598...Article . 2019 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2012Publisher:Public Library of Science (PLoS) Antonio Di Franco; Marta Sales; Paolo Guidetti; Fiorenza Micheli; David G. Foley; David G. Foley; Alexandros A. Karamanlidis; Francesco Ferretti; Simone Mariani; Kimberly A. Selkoe; Panagiotis Dendrinos; Andrew Rosenberg; Antonio Pais; Mikel Zabala; Alan M. Friedlander; Kristin Riser; Simonetta Fraschetti; Luisa Mangialajo; Fiona Tomas; Enric Ballesteros; Zafer Kizilkaya; Enrique Macpherson; Enric Sala; Bernat Hereu; Richard M. Starr; Richard M. Starr; Benjamin S. Halpern; Harun Güçlüsoy; Joaquim Garrabou;pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
pmid: 22393445
pmc: PMC3290621
handle: 2445/27842 , 10261/49834 , 11588/768572 , 11388/62629 , 11587/364763
Historical exploitation of the Mediterranean Sea and the absence of rigorous baselines makes it difficult to evaluate the current health of the marine ecosystems and the efficacy of conservation actions at the ecosystem level. Here we establish the first current baseline and gradient of ecosystem structure of nearshore rocky reefs at the Mediterranean scale. We conducted underwater surveys in 14 marine protected areas and 18 open access sites across the Mediterranean, and across a 31-fold range of fish biomass (from 3.8 to 118 g m(-2)). Our data showed remarkable variation in the structure of rocky reef ecosystems. Multivariate analysis showed three alternative community states: (1) large fish biomass and reefs dominated by non-canopy algae, (2) lower fish biomass but abundant native algal canopies and suspension feeders, and (3) low fish biomass and extensive barrens, with areas covered by turf algae. Our results suggest that the healthiest shallow rocky reef ecosystems in the Mediterranean have both large fish and algal biomass. Protection level and primary production were the only variables significantly correlated to community biomass structure. Fish biomass was significantly larger in well-enforced no-take marine reserves, but there were no significant differences between multi-use marine protected areas (which allow some fishing) and open access areas at the regional scale. The gradients reported here represent a trajectory of degradation that can be used to assess the health of any similar habitat in the Mediterranean, and to evaluate the efficacy of marine protected areas.
Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 331 citations 331 popularity Top 1% influence Top 1% impulse Top 1% Powered by BIP!
visibility 139visibility views 139 download downloads 129 Powered by
more_vert Recolector de Cienci... arrow_drop_down Recolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: Recolector de Ciencia Abierta, RECOLECTADIGITAL.CSICArticle . 2012 . Peer-reviewedFull-Text: https://doi.org/10.1371/journal.pone.0032742Data sources: DIGITAL.CSICRecolector de Ciencia Abierta, RECOLECTAArticle . 2012 . Peer-reviewedData sources: Recolector de Ciencia Abierta, RECOLECTARecolector de Ciencia Abierta, RECOLECTAArticleData sources: Recolector de Ciencia Abierta, RECOLECTADokuz Eylul University Research Information SystemArticle . 2012Data sources: Dokuz Eylul University Research Information SystemDiposit Digital de la Universitat de BarcelonaArticle . 2012License: PDMData sources: Diposit Digital de la Universitat de BarcelonaRecolector de Ciencia Abierta, RECOLECTAArticle . 2012Data sources: Recolector de Ciencia Abierta, RECOLECTAFEDOA - IRIS Università degli Studi Napoli Federico IIArticle . 2012Data sources: FEDOA - IRIS Università degli Studi Napoli Federico IIRecolector de Ciencia Abierta, RECOLECTAArticle . 2012License: PDMData sources: Recolector de Ciencia Abierta, RECOLECTAadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2017Publisher:Springer Science and Business Media LLC Funded by:ANR | VIRGOANR| VIRGOAuthors: Mathias, Jean-Denis; Anderies, J.M.; Janssen, M.A.;AbstractThe planetary boundary framework constitutes an opportunity for decision makers to define climate policy through the lens of adaptive governance. Here, we use the DICE model to analyze the set of adaptive climate policies that comply with the two planetary boundaries related to climate change: (1) staying below a CO2 concentration of 550 ppm until 2100 and (2) returning to 350 ppm in 2100. Our results enable decision makers to assess the following milestones: (1) a minimum of 33% reduction of CO2 emissions by 2055 in order to stay below 550 ppm by 2100 (this milestone goes up to 46% in the case of delayed policies); and (2) carbon neutrality and the effective implementation of innovative geoengineering technologies (10% negative emissions) before 2060 in order to return to 350 ppm in 2100, under the assumption of getting out of the baseline scenario without delay. Finally, we emphasize the need to use adaptive path-based approach instead of single point target for climate policy design.
Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 24 citations 24 popularity Top 10% influence Top 10% impulse Top 10% Powered by BIP!
more_vert Arizona State Univer... arrow_drop_down Arizona State University: ASU Digital RepositoryArticle . 2017License: CC BYFull-Text: http://hdl.handle.net/2286/R.I.44365Data sources: Bielefeld Academic Search Engine (BASE)https://doi.org/10.1038/srep42...Article . 2017 . Peer-reviewedLicense: CC BYData sources: CrossrefInstitut National de la Recherche Agronomique: ProdINRAArticle . 2017Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article 2018Publisher:Elsevier BV Kimberly E. Baugh; Mikhail Zhizhin; Mikhail Zhizhin; Morgan Bazilian; Feng-Chi Hsu; Tilottama Ghosh; Christopher D. Elvidge;In this paper, we compare 2015 satellite-derived natural gas (gas) flaring data with the greenhouse gas reduction targets presented by those countries in their nationally determined contributions (NDC) under the United Nations Framework Convention on Climate Change (UNFCCC) Paris Agreement. Converting from flaring to utilization is an attractive option for reducing emissions. The analysis rates the potential role of reduction of gas flaring in meeting country-specific NDC targets. The analysis includes three categories of flaring: upstream in oil and gas production areas, downstream at refineries and transport facilities, and industrial (e.g., coal mines, landfills, water treatment plants, etc.). Upstream flaring dominates with 90.6% of all flaring. Global flaring represents less than 2% of the NDC reduction target. However, most gas flaring is concentrated in a limited set of countries, leaving the possibility that flaring reduction could contribute a sizeable portion of the NDC targets for specific countries. States that could fully meet their NDC targets through gas flaring reductions include: Yemen (240%), Algeria (197%), and Iraq (136%). Countries which could meet a substantial portion of their NDC targets with gas flaring reductions include: Gabon (94%), Algeria (48%), Venezuela (47%), Iran (34%), and Sudan (33%). On the other hand, several countries with large flared gas volumes could only meet a small portion of their NDC targets from gas flaring reductions, including the Russian Federation (2.4%) and the USA (0.1%). These findings may be useful in guiding national level efforts to meet NDC greenhouse gas reduction targets. Keywords: VIIRS, Gas flaring, Nightfire, Nationally determined contributions, UN climate agreement
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 123 citations 123 popularity Top 1% influence Top 10% impulse Top 1% Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2015Publisher:MDPI AG Authors: Koo, Kyung; Patten, Bernard; Madden, Marguerite;doi: 10.3390/f6041208
Alpine, subalpine and boreal tree species, of low genetic diversity and adapted to low optimal temperatures, are vulnerable to the warming effects of global climate change. The accurate prediction of these species’ distributions in response to climate change is critical for effective planning and management. The goal of this research is to predict climate change effects on the distribution of red spruce (Picea rubens Sarg.) in the Great Smoky Mountains National Park (GSMNP), eastern USA. Climate change is, however, conflated with other environmental factors, making its assessment a complex systems problem in which indirect effects are significant in causality. Predictions were made by linking a tree growth simulation model, red spruce growth model (ARIM.SIM), to a GIS spatial model, red spruce habitat model (ARIM.HAB). ARIM.SIM quantifies direct and indirect interactions between red spruce and its growth factors, revealing the latter to be dominant. ARIM.HAB spatially distributes the ARIM.SIM simulations under the assumption that greater growth reflects higher probabilities of presence. ARIM.HAB predicts the future habitat suitability of red spruce based on growth predictions of ARIM.SIM under climate change and three air pollution scenarios: 10% increase, no change and 10% decrease. Results show that suitable habitats shrink most when air pollution increases. Higher temperatures cause losses of most low-elevation habitats. Increased precipitation and air pollution produce acid rain, which causes loss of both low- and high-elevation habitats. The general prediction is that climate change will cause contraction of red spruce habitats at both lower and higher elevations in GSMNP, and the effects will be exacerbated by increased air pollution. These predictions provide valuable information for understanding potential impacts of global climate change on the spatiotemporal distribution of red spruce habitats in GSMNP.
Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 14 citations 14 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Forests arrow_drop_down ForestsOther literature type . 2015License: CC BYFull-Text: http://www.mdpi.com/1999-4907/6/4/1208/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Conference object , Other literature type 2020Publisher:Copernicus GmbH Giorgia Bagagiolo; Danilo Rabino; Marcella Biddoccu; Guido Nigrelli; Daniele Cat Berro; Luca Mercalli; Federico Spanna; Giorgio Capello; Eugenio Cavallo;<p>Historical weather data represent an extremely precious resource for agro-meteorology for studying evolutionary dynamics and for predictive purposes, to address agronomical and management choices, that have economic, social and environmental effect. The study of climatic variability and its consequences starts from the observation of variations over time and the identification of the causes, on the basis of historical series of meteorological observations. The availability of long-lasting, complete and accurate datasets is a fundamental requirement to predict and react to climate variability. Inter-annual climate changes deeply affect grapevine productive cycle determining direct impact on the onset and duration of phenological stages and, ultimately, on the grape harvest and yield. Indeed, climate variables, such as air temperature and precipitation, affect evapotranspiration rates, plant water requirements, and also the vine physiology. In this respect, the observed increase in the number of warm days poses a threat to grape quality as it creates a situation of imbalance at maturity, with respect to sugar content, acidity and phenolic and aromatic ripeness.</p><p>A study was conducted to investigate the relationships between climate variables and harvest onset dates to assess the responses of grapevine under a global warming scenario. The study was carried out in the &#8220;Monferrato&#8221; area, a rainfed hillslope vine-growing area of NW Italy. In particular, the onset dates of harvest of different local wine grape varieties grown in the Vezzolano Experimental Farm (CNR-IMAMOTER) and in surrounding vineyards (affiliated to the Terre dei Santi Cellars) were recorded from 1962 to 2019 and then related to historical series of climate data by means of regression analysis. The linear regression was performed based on the averages of maximum and minimum daily temperatures and sum of precipitation (1962&#8211;2019) calculated for growing and ripening season, together with a bioclimatic heat index for vineyards, the Huglin index. The climate data were obtained from two data series collected in the Experimental farm by a mechanical weather station (1962-2002) and a second series recorded (2002-2019) by an electro-mechanical station included in Piedmont Regional Agro-meteorological Network. Finally, a third long-term continuous series covering the period from 1962 to 2019, provided by Italian Meteorological Society was considered in the analysis.</p><p>The results of the study highlighted that inter-annual climate variability, with a general positive trend of temperature, significantly affects the ripening of grapes with a progressive anticipation of the harvest onset dates. In particular, all the considered variables excepted precipitation, resulted negatively correlated with the harvest onset date reaching a high level of significance (up to P< 0.001). Best results have been obtained for maximum temperature and Huglin index, especially by using the most complete dataset. The change ratios obtained using datasets including last 15 years were greater (in absolute terms) than results limited to the period 1962-2002, and also correlations have greater level of significance. The results indicated clearly the relationships between the temperature trend and the gradual anticipation of harvest and the importance of having long and continuous historical weather data series available.</p>
IRIS Cnr arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BY NC NDData sources: Publications Open Repository TOrinoItalian Journal of AgrometeorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access RoutesGreen gold 6 citations 6 popularity Top 10% influence Average impulse Average Powered by BIP!
more_vert IRIS Cnr arrow_drop_down Publications Open Repository TOrinoArticle . 2021License: CC BY NC NDData sources: Publications Open Repository TOrinoItalian Journal of AgrometeorologyArticle . 2021 . Peer-reviewedLicense: CC BYData sources: Crossrefadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Article , Other literature type 2020Publisher:Wiley Funded by:UKRI | EcoLowNOx: Auxiliary Comb...UKRI| EcoLowNOx: Auxiliary Combustion System for Efficient Combustion with Low-NOx emissions for Foundation IndustriesMark E. Capron; Jim R. Stewart; Antoine de Ramon N’Yeurt; Michael D. Chambers; Jang K. Kim; Charles Yarish; Anthony T. Jones; Reginald B. Blaylock; Scott C. James; Rae Fuhrman; Martin T. Sherman; Don Piper; Graham Harris; Mohammed A. Hasan;Unless humanity achieves United Nations Sustainable Development Goals (SDGs) by 2030 and restores the relatively stable climate of pre-industrial CO2 levels (as early as 2140), species extinctions, starvation, drought/floods, and violence will exacerbate mass migrations. This paper presents conceptual designs and techno-economic analyses to calculate sustainable limits for growing high-protein seafood and macroalgae-for-biofuel. We review the availability of wet solid waste and outline the mass balance of carbon and plant nutrients passing through a hydrothermal liquefaction process. The paper reviews the availability of dry solid waste and dry biomass for bioenergy with CO2 capture and storage (BECCS) while generating Allam Cycle electricity. Sufficient wet-waste biomass supports quickly building hydrothermal liquefaction facilities. Macroalgae-for-biofuel technology can be developed and straightforwardly implemented on SDG-achieving high protein seafood infrastructure. The analyses indicate a potential for (1) 0.5 billion tonnes/yr of seafood; (2) 20 million barrels/day of biofuel from solid waste; (3) more biocrude oil from macroalgae than current fossil oil; and (4) sequestration of 28 to 38 billion tonnes/yr of bio-CO2. Carbon dioxide removal (CDR) costs are between 25–33% of those for BECCS with pre-2019 technology or the projected cost of air-capture CDR.
Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4972/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.Access Routesgold 18 citations 18 popularity Top 10% influence Average impulse Top 10% Powered by BIP!
more_vert Energies arrow_drop_down EnergiesOther literature type . 2020License: CC BYFull-Text: http://www.mdpi.com/1996-1073/13/18/4972/pdfData sources: Multidisciplinary Digital Publishing Instituteadd ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Doctoral thesis , Other literature type , Article 2021Publisher:Iowa State University Authors: Jones, John;handle: 20.500.12876/EzR2QbYz , 20.500.12876/dv6l1kbz
Management decisions concerning phosphorus (P) fertilization affect the profitability of crop production and potential water quality impairment. Soil testing for P provides a useful diagnostic framework to assess P bioavailability that informs management decisions to optimize P use in nutrient management and mitigate environmental impairment. Management factors such as tillage and P fertilization strategy can influence crop yield and the potential for soil and P losses with surface runoff. Investigation into which forms of soil and P losses that do occur from corn-soybean rotations in Iowa systems can inform which methodologies best quantify forms of P that will pose greater effects on water quality and which management decisions minimize losses while maintaining agronomic productivity. This research field calibrated a recently widely-adopted soil P test that uses weak organic acids with corn and soybean yield to identify critical soil-test P concentrations. The weak organic acids test extracted less soil P and performed more poorly than currently routine tests at relating soil-test P to crop yield. A second study was conducted to quantify the effect of P fertilization strategy and tillage on soil and P losses with runoff in a corn-soybean rotation in Northwest Iowa. Corn yield and soil loss were the highest with tillage, the combination of tillage and broadcast P resulted in the highest runoff TP loss, and the dissolved-reactive fraction of the total P loss was much higher with no-till. The combination of chisel-plow/disking and annual subsurface band placement of P fertilizer led to the lowest losses of dissolved-reactive P and total P, while optimizing crop yields. A third study compared multiple methods for measuring soluble P in runoff, and how management factors in Iowa cropping systems affect their performance. The results suggest that assuming only soluble, orthophosphate-P determined by colorimetric method may underestimate soluble P concentration in runoff and losses from crop fields and will be ...
https://dr.lib.iasta... arrow_drop_down Digital Repository @ Iowa State UniversityDoctoral thesis . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityDoctoral thesis . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert https://dr.lib.iasta... arrow_drop_down Digital Repository @ Iowa State UniversityDoctoral thesis . 2021Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityDoctoral thesis . 2022Data sources: Bielefeld Academic Search Engine (BASE)Digital Repository @ Iowa State UniversityArticle . 2021Data sources: Bielefeld Academic Search Engine (BASE)add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.description Publicationkeyboard_double_arrow_right Report , Other literature type 1997Publisher:Office of Scientific and Technical Information (OSTI) Authors: Taylor, F.;doi: 10.2172/477698
The final technical report for this project contains detailed technical results for the various tasks performed in the projects. The project scope was to develop an apparatus and process for second-stage drying of softwoods, such as southern yellow pine, for construction lumber. The focus of the project was on increasing the efficiency of high-temperature drying. The project tasks were: (1) computer simulation refinement and extension of the theory to commercial-sized kilns, (2) detailed heat exchanger equipment design, (3) pilot-scale design and fabrication, (4) experimental evaluation of the pilot-scale system, and (5) preliminary design of a prototype system. The effort on this project has been continuous and productive in gaining a better understanding of the processes involved in the drying of softwoods. 19 refs., 41 figs., 13 tabs.
add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.0 citations 0 popularity Average influence Average impulse Average Powered by BIP!
more_vert add ClaimPlease grant OpenAIRE to access and update your ORCID works.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.This Research product is the result of merged Research products in OpenAIRE.
You have already added works in your ORCID record related to the merged Research product.
